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Abstract. The promise of self-supervised learning (SSL) is to leverage
large amounts of unlabeled data to solve complex tasks. While there has
been excellent progress with simple, image-level learning, recent meth-
ods have shown the advantage of including knowledge of image structure.
However, by introducing hand-crafted image segmentations to define re-
gions of interest, or specialized augmentation strategies, these methods
sacrifice the simplicity and generality that makes SSL so powerful. In-
stead, we propose a self-supervised learning paradigm that discovers this
image structure by itself. Our method, Odin, couples object discovery
and representation networks to discover meaningful image segmentations
without any supervision. The resulting learning paradigm is simpler, less
brittle, and more general, and achieves state-of-the-art transfer learning
results for object detection and instance segmentation on COCO, and
semantic segmentation on PASCAL and Cityscapes, while strongly sur-
passing supervised pre-training for video segmentation on DAVIS.
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1 Introduction

Self-supervised learning proposes to leverage large amounts of unlabeled data to
solve complex visual tasks. Early attempts hand-designed pretext tasks, which
required some semantic understanding of images and their layout to solve [21, 60,
64, 89]. Contrastive learning departed from this tradition by radically simplify-
ing the self-supervised protocol, in that the pretext task is specified by the data
itself: representations must learn to distinguish a given example from the others
in the dataset [25, 36, 62, 81]. Modern instances of the contrastive framework
have proven to be very powerful, leading to strong performance on a variety of
downstream tasks [13, 39, 43]. More recent self-supervised methods have simpli-
fied the framework further, removing the need for negative samples [35], bespoke
architectural components [15], and learning dynamics [87], suggesting that in-
creasingly domain-agnostic and data-driven methods might enable learning from
ever-larger and more general sources of data.

However, a parallel line of work has asked whether the current self-supervised
paradigm—which maximizes the similarity of the same data-point under differ-
ent views—is too simple. By treating data-points as monolithic instances, these
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methods overlook the complexity of real-world data: natural scenes are composed
of many objects, natural speech of multiple speakers, and natural videos of many
scenes. Ignoring this variability and encouraging models to represent different
parts of an image in a similar manner risks dampening their selectivity for ob-
jects, their relationships, and layouts in real-world scenes. Indeed, several works
have demonstrated the benefits of properly handling this variability when learn-
ing task-relevant representations [42, 70, 76, 77, 79]. While such object- and
segmentation-aware approaches have yielded impressive empirical gains, they
have relied on more domain-specific prior knowledge to expose the structure of
the data—for example by using hand-crafted segmentation algorithms [42], or
salience estimation networks trained on human annotations [77]—bounding how
much they can learn from the data and what data they can be used on.

In this work we ask whether this knowledge can instead be derived from
the data itself. To do so, we propose to couple two learning processes: object
discovery and object representation. We use object discovery to uncover the
structure of individual data-points, allowing the self-supervised task to focus
on learning invariant representations of object-level instances. In turn, we use
the resulting object representations as features for unsupervised object discovery,
which feeds back into the representation learning process. These object discovery
and representation networks thus engage in a virtuous cycle of representation
and segmentation quality: better representations lead to better segmentations,
and vice versa. Crucially, we derive the unsupervised segmentations with no prior
knowledge about image structure or content, using a simple k-means clustering
of local features to partition each image. We thus open the possibility of applying
the algorithm to different domains, modalities, and their combination.

We make the following contributions: 1) Our object discovery networks un-
cover, in an entirely self-supervised manner and without any prior knowledge
of image structure or segmentation, meaningful decompositions of real-world
scenes. 2) Our object representation networks lead to state-of-the-art results
in transfer learning to object detection and instance segmentation on COCO,
and semantic segmentation on PASCAL and Cityscapes, surpassing prior works
which exploit segmentation and saliency information, without requiring this prior
knowledge. 3) Our object representation networks seamlessly generalize to video
understanding, surpassing supervised pre-training for video object segmentation
on DAVIS. Finally, we test the resilience of our method by varying its essen-
tial components, and find it to be very robust, supporting further computa-
tional benefits. Together these results suggest that knowledge of scene structure,
and the benefits it confers in representing objects, can—with the right learning
paradigm—be extracted from the data itself.

2 Related Work

Pre-contrastive self-supervised learning: hand-designed tasks. Early
self-supervised approaches focused on injecting human expertise and intuition
into the design of proxy tasks for pretraining. For example, to stimulate the
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network to learn object parts, [21] designed the task of predicting the spatial
arrangement between local image patches. A rich collection of such intuitions
and objectives was further developed, ranging from pixel-wise reconstruction-
based approaches, such as denoising [78], inpainting [64], colorization [49, 89],
and more [23, 90], to higher-level pretext tasks, such as predicting spatial layouts
[21, 59, 60], orientation [30], egomotion [1], and temporal ordering [58].

Contrastive learning and its variants. Instance discrimination [25] has
proven to be a very powerful pretext task which, we argue, owes its superior
performance to being minimally hand-designed and maximally data-driven. By
minimizing a contrastive loss [36, 62], the similarity of a representation across dif-
ferent ‘views’ of the same image is maximized, while minimizing their similarity
with distracting negative samples. Multiple views of a single data-point can nat-
urally be extracted from multimodal or multisensory data [2, 48, 56, 63, 68, 72]
while for a single image-only modality they are typically constructed via local
and global cropping [5, 43, 44, 62] or data-augmentation [13, 22, 25, 39, 81].
Positive pairs then correspond to views of the same data point, while negatives
are sampled views of different data-points (typically from the same mini-batch),
although the need for negative samples has recently been questioned [15, 35, 87].

Baking prior knowledge back into self-supervised learning. A growing
body of research has brought hand-designed supervisory signals back into the
self-supervised paradigm. For example, [42, 77, 79, 82, 88] decompose input im-
ages into their constituent objects and regions of interest using supervised seg-
mentation algorithms, or hand-crafted heuristics. Object-level features are then
computed for each region, and optimized using a contrastive objective. Other ap-
proaches use object-agnostic learning objectives, but integrate knowledge from
segmentation heuristics or models in their augmentation strategies [57, 76, 92].

This trend is reflected in the broader research in self-supervised learning for
other modalities. For example, [50] uses domain-specific knowledge to improve
the masking strategies of BERT and other masked-language models. [37, 85]
leverage motion and flow information to improve learning from video. And sim-
ilar to previously described works in vision, [61] uses a segmentation step prior
to applying SSL on point clouds. In all cases, we aim to remove the dependency
on such prior knowledge while retaining its benefits for representation learning.

Clustering and representation learning. In parallel to the advent of con-
trastive methods, clustering-based representation learning methods have seen
similar success, particularly in harnessing large amounts of uncurated images
for transfer learning [4, 9, 10, 11, 33, 45]. Although they differ in their formu-
lation of the self-supervised objective, these works also treat entire images as
monolithic entities.

In contrast, IIC [45] performs within-image clustering using similarity losses
counterbalanced by information maximization, obtaining compelling results in
unsupervised segmentation. PiCIE [17] improves on this approach by impos-
ing carefully-chosen, modality-specific geometric data augmentations and cor-
responding invariance and equivariance constraints. Neither of these works ex-
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plicitly leverage their unsupervised segmentations for transfer learning across
datasets and tasks however, which we investigate here.

Object discovery. Recent years have seen a growing interest in developing
generative models that perform object discovery. By introducing different in-
ductive biases such as mixture-model likelihoods [8, 34], attention [54, 93] and
specific forms of factorization [46, 47], such models are able to discover objects
and their interactions [20, 32, 71]. While much progress has been made, mod-
els from this family have yet to be demonstrated to work on natural images
[34] and their application has been limited to synthetic data and simple highly
structured environments typically used in robotics. Here we investigate object
discovery on natural images in the wild, leveraging contrastive representation
learning to enable this with simple k-means clustering.

3 Method

3.1 Self-supervised learning with Odin

Our method learns two sets of networks which work in collaboration. The object
discovery network produces feature maps from high-resolution images. These
feature maps are then spatially clustered to produce a segmentation of the image.
The object representation networks learns better features via a contrastive loss
which uses the masks proposed by the object discovery network. The resulting
improved features are then used by the object discovery network to create better
segmentations, and this process is continuously repeated. Figure 1 illustrates the
full method, which we detail below.

Object discovery network: from representations to segmentations.
Given an image x, we compute a spanning view v0 which encompasses most
of the area of the image (Figure 1, spanning view, defined below) and which is
simply cropped and resized. We use a feature extractor fτ to encode this view
into a spatial map of hidden vectors h0 = fτ (v0) and projections z0 = gτ (h0),
where gτ is a two-layer MLP which is applied to each vector independently,
and τ are the parameters of the object discovery network. We apply K-means
clustering to the spatial map of features h0 or z0, segmenting it (independently
across images) into K non-overlapping binary masks mk,0 (Figure 1, top row).

Object representation networks: from segmentations to representa-
tions. We produce two views v1 and v2 of the image by augmenting x twice,
using the random preprocessing pipeline of BYOL [35], which includes random
cropping, flipping, blurring, and point-wise color transformations (Figure 1, aug-
mented views and appendix).

The spanning view v0 is chosen as the smallest crop which spans the spatial
extent of the augmented views v1 and v2. We can therefore obtain two sets
of masks mk,1,mk,2 which are consistent with each other and aligned with
the underlying image content, by simply cropping, flipping, and resizing each
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Fig. 1. Object discovery and representation networks. The object discovery network
takes as input a cropped but otherwise un-augmented view of the image, and parses
it using k-means clustering on its representation of it. The resulting segmentation is
mapped into two augmented views of the same image, such that the masks are aligned
across views and with the underlying image. The object representation networks take
as input the augmented views of the image, and are trained using a self-supervised
objective based on features pooled within each mask. The object discovery network is
regularly updated with the parameters of the object representation network.

mask mk,0 as necessary (Figure 1, right). Despite the significant differences in
appearance across views, these masks contain the same underlying image content
(up to differences in cropping), which we leverage in our objective.

Each augmented view vl ∈ {v1,v2} is encoded with a feature extractor fθ
into a spatial map of hidden vectors: hlθ = fθ(v

l) where θ are the parameters of
the object representation network being optimized. For every mask mk,l in the
image, we compute a mask-pooled hidden vector

hk,lθ =
1∑

i,jm
k,l[i, j]

∑
i,j

mk,l[i, j] hlθ[i, j], (1)

discarding masks that are empty (due to cropping). Our goal is to ensure that
these object-level features are roughly invariant across views. Specifically, we
wish for an object-level feature in one view to be predictive of the same im-
age content in the other view. To that end we transform the object-level hid-
den vectors hk,lθ with two-layer MLPs gθ and qθ, yielding non-linear projections

zk,lθ = gθ(h
k,l
θ ) and predictions qθ(z

k,l
θ ). In theory, we could regress the predic-

tion qθ(z
k,1
θ ) directly onto its target zk,2θ , however it is helpful to stabilize these

targets by encoding them instead with specific target networks gξ and fξ, where
the parameters ξ vary more slowly [16, 35, 42, 73]. We therefore instead use the

projections zk,lξ = gξ(h
k,l
ξ ) as targets for the online prediction networks.
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Jointly learning to discover and represent objects. Given a set of masks
which approximately segment an image into objects, we wish to learn representa-
tions which distinguish these objects, while being invariant to identity-preserving
transformations. Contrastive learning provides a straightforward objective for
achieving this. Specifically, contrastive detection [42] trains a network to rec-
ognize object-level features across views, in the presence of many distracting
“negative” features from other objects. The resulting objective maximizes the
similarity between different views of the same object, while minimizing the sim-
ilarity between different objects. We define the similarity between object-level
features across views as

s1→2
k =

1

α

〈qθ(zk,1θ ), zk,2ξ 〉
‖qθ(zk,1θ )‖‖zk,2ξ ‖

(2)

where α is temperature hyper-parameter. We define the similarity between an
object-level feature and a distracting negative sample s1→nk analogously, by re-

placing the paired feature zk,2ξ with one from a different mask in the same image,
or a different image altogether. The contrastive loss function for an individual
feature is then

`1→2
k (θ; ξ, τ) = − log

exp(s1→2
k )

exp(s1→2
k ) +

∑
n exp(s1→nk )

, (3)

which we sum across objects, views, and images in the mini-batch (summation
across images not shown for clarity)

L(θ; ξ, τ) =
1

K

K∑
k=1

`1→2
k (θ; ξ, τ) + `2→1

k (θ; ξ, τ). (4)

We optimize the object discovery and representation networks using a strategy
inspired by BYOL [35]. One object representation network (the online network
with parameters θ) is updated with gradients from the contrastive loss. The
second object representation network (the target network with parameters ξ)
and the object discovery network (with parameters τ) are updated using an
exponential moving average of the online network:

θ ← optimizer(θ,∇θL(θ; ξ, τ), λθ) (5)

ξ ← (1− λξ)ξ + λξθ (6)

τ ← (1− λτ )τ + λτθ, (7)

where the optimizer is LARS [86], and λθ, λξ, λτ are learning rates for the
online, target, and discovery networks respectively. We adopt the learning rates
for online and targets networks from BYOL without modification. For the object
discovery network, we consider two schedules: a constant learning rate which
continuously updates the object discovery network with the online one (e.g.
λτ = 10−3), and a small number of discrete updates which copy the online
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representation network into the object discovery network (e.g. λτ = 1 every
100 epochs and λτ = 0 otherwise). The advantage of the second scheme is
computational: if the object discovery network does not change between updates,
the segments for training the object representation networks can be cached,
removing the need to evaluate the object discovery network at every iteration.

Pretraining details. We train object discovery and representation networks
(Odin) on ImageNet [69] for 1000 epochs, using a ResNet-50 [41] or Swin Trans-
former [53] backbone equipped with Feature Pyramid Networks (FPN; [51]) as
the feature extractor f . The FPN takes as input the hierarchy of latent vec-
tors output by the ResNet or Swin backbone, and progressively upsamples them
while adding information from intermediate feature arrays, yielding high-level
and high-resolution representations of the input image. We use the highest-
resolution output of the FPN (subsampling the image by a factor of 4) as the
array of hidden vectors h.

After pretraining, we discard the target and object discovery networks, and
use only the online object representation network for evaluation, facilitating the
comparison to other methods which have their own means of learning the model.

3.2 Evaluating object discovery and representation

Having trained object representation networks using the Odin framework, we
evaluate the quality of their representation by fine-tuning them for object de-
tection and instance segmentation on COCO, and segmentatic segmentation on
PASCAL and Cityscapes. For consistency with prior work we retain only the pre-
trained backbone (ResNet or Swin transformer) for transfer learning, discarding
feature pyramid networks and projection heads.

Object detection and instance segmentation. For instance segmentation
we use Mask-RCNN [40] while for object detection we report results for Mask-
RCNN and FCOS?. Both methods are equipped with feature pyramid networks
[51] and cross-replica batch-norm [65]. For Mask-RCNN we adopt the Cloud
TPU implementation [31] and use it without modification. FCOS? is our im-
plementation of a single-stage detector based on FCOS [75], and improved with
IoU prediction [80], ATSS [91] and T-Head [29]; full details are available in the
appendix. We follow the common transfer setup and evaluate on COCO [52]
– the pretrained network is used to initialize the backbone of a Mask-RCNN
or FCOS? model, which is then fine-tuned on the train2017 set, and report
bounding-box AP (APbb) and mask AP (APmk) on the val2017 set. We use
two standard training schedules: 12 epochs and 24 epochs [39].

Semantic segmentation with FCN. Following [39] we initialize the backbone
of a fully-convolutional network (FCN, [55]) with our model. For PASCAL [27],
we fine-tune on the train aug2012 set for 45 epochs and report the mean inter-
section over union (mIoU) on the val2012 set. For Cityscapes [19], we fine-tune
on the train fine set for 160 epochs and evaluate on the val fine set.
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Object discovery on COCO. We wish to assess whether our representations
uncover the structure of real-world scenes during self-supervised pretraining.
Simply visualizing saliency maps induced by the model only weakly tests this
ability however [26], hence we use the COCO dataset comprised of complex
scenes and human-annotated object segments. Specifically, we evaluate models
on COCO images, cluster their features, and measure the overlap between the
resulting segments and human-annotated ones. Given the diversity of object
scales in COCO, we run multiple K-means segmentations (for K in [1, 2, . . . ,
128]) on the same set of latents, resulting in 255 object proposals which we resize
to the input image resolution.

For each ground-truth segment gt we compute the overlap with all proposals
mk using their intersection-over-union (IoU), and record the “best overlap” by
taking the maximum across proposals. Averaging this metric across ground-
truth segments, we obtain the “average best overlap” (ABO) metric [3], and
computing the fraction of “best overlaps” greater than 50% yields the “object
recovery” metric [18]. We then average each of these metrics across images.

Video object segmentation on DAVIS. As a further test of scene under-
standing, we assess whether learned representations can continue to recognize
parts of an object as they evolve over time. Video object segmentation, specif-
ically in its semi-supervised setting, captures this ability, which we evaluate on
the DAVIS’17 benchmark [66]. Having evaluated a learned representation on
a video independently across frames, we segment these features with nearest
neighbor matching from frame to frame, given a segmentation of the first frame.
In this way, the segmentation is propagated according to the similarity of the
representation across space and time.

4 Experiments

4.1 Transfer learning

Our first goal is to assess whether strong transfer learning performance can be
obtained without resorting to prior knowledge of scene segmentations. To that
end we train a ResNet-50 on ImageNet for 1000 epochs using the proposed Odin
framework, and transfer it to object detection and instance segmentation on
COCO, and semantic segmentation on PASCAL and Cityscapes.

Object detection and instance segmentation on COCO. Self-supervised
learning has made steady gains on transfer learning from ImageNet to COCO,
with a majority of methods surpassing supervised pretraining. The top-performing
methods are ReLIC v2 and DetConB which make heavy use of saliency or seg-
mentation information in their learning paradigm. DetCon uses the same learn-
ing objective as Odin, but relies on a hand-crafted image segmentation algorithm
[28] applied to the pixel lattice rather than a learned object discovery network.
ReLIC v2 does not use segmentation information explicitly in its objective, but
uses a hand-crafted saliency network to separate objects from their background
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Table 1. Transfer to COCO object detection and instance segmentation with
Mask-RCNN: all methods pretrain a ResNet-50 on ImageNet before fine-tuning on
COCO with Mask-RCNN for 12 epochs (1× schedule) or 24 epochs (2× schedule). We
report average precision on object detection (APbb) and instance segmentation (APmk)

pretraining fine-tune 1× fine-tune 2×

Method Knows obj? APbb APmk APbb APmk

Supervised no 39.6 35.6 41.6 37.6
VADeR [67] no 39.2 35.6 - -
MoCo [39] no 39.4 35.6 41.7 37.5

SimCLR [13] no 39.7 35.8 41.6 37.4
MoCo v2 [14] no 40.1 36.3 41.7 37.6
InfoMin [74] no 40.6 36.7 42.5 38.4

DeepCluster-v2 [11] no 41.1 37.1 - -
DINO [12] no 41.2 37.1 42.3 38.1
PixPro [84] no 41.4 - - -
BYOL [35] no 41.6 37.2 42.4 38.0
SwAV [11] no 41.6 37.8 - -

ReLIC v2 [76] yesyesyes 42.5 38.0 43.3 38.6
DetConB [42] yesyesyes 42.7 38.2 43.4 38.7

Odin no 42.9 38.4 43.8 39.1

in the data-augmentation pipeline. Both represent a step-change in performance
relative to previous methods. Odin, which instead derives segmentations from
its own learned representations, surpasses both of these methods (Table 1).

A recent self-supervised method, DINO [12], reports high-quality unsuper-
vised segmentations, however it appears to do so at the cost of object represen-
tation. We fine-tune the publicly available ResNet checkpoint in our framework,
and find it underperforms relative to simple methods such as BYOL. Other SSL
methods such as SwAV and DeepCluster-v2 [11] which cluster representations
across images rather than within also underperform in this setting.

Semantic segmentation on PASCAL and Cityscapes. We assess the gen-
erality of these results by transferring them to two separate datasets and tasks,
semantic segmetation on PASCAL and Cityscapes. Similarly to when transfer-
ring to COCO, DetCon and ReLIC v2 substantially outperform supervised and
BYOL pretraining, confirming the utility of prior knowledge about segmentation
and saliency. In this case as well, Odin successfully recovers this knowledge and
surpasses both methods in a fully learned manner (Table 2).

In this setting DINO performs better, surpassing BYOL, possibly because
semantic segmentation on PASCAL, which contains only 20 classes compared
with 80 in COCO, weights object discovery more than object representation—
isolating objects from the background rather than distinguishing object classes
from each other. Nevertheless, Odin surpasses it as well, indicating that it
achieves a better trade-off between object representation and discovery.
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Table 2. Transfer to PASCAL and Cityscapes semantic segmentation with
fully convolutional networks: all methods pretrain a ResNet-50 on ImageNet before
fine-tuning for semantic segmentation on PASCAL or Cityscapes, and report the mean
intersection-over-union

Method Knows obj? PASCAL Cityscapes

Supervised no 74.4 74.9
BYOL [35] no 75.7 74.6

DeepCluster-v2 [11] no 75.8 76.8
SwAV [11] no 76.0 76.2
DINO [12] no 76.9 75.6

DetConB [42] yesyesyes 77.3 77.0
ReLIC v2 [76] yesyesyes 77.9 75.2

Odin no 78.6 77.1

Table 3. Transfer to COCO object detection with FCOS?: all methods pretrain
on ImageNet before fine-tuning on COCO with FCOS? for 30 epochs, and report
average precision on object detection (APbb).

Pretraining Knows obj? ResNet-50 Swin-T Swin-S

Supervised no 44.2 46.7 48.3
DINO [12] no 44.3 - -
MOBY [83] no - 47.6 -

DetConB [42] yesyesyes 45.4 48.4 50.4

Odin no 45.6 48.5 50.4

Transfer learning with high-performance architectures. While Mask-
RCNN has become a standard method for evaluating the quality of object-level
representations, we asked whether the performance gains afforded by the Odin
framework persisted with more sophisticated models. For this we turned to our
FCOS? implementation, whose supervised baseline surpasses Mask-RCNN by
4.6% APbb. In this setting as well, Odin surpasses the supervised baseline and
DINO (+1.3% APbb, Table 3, 1st column).

Swin transformers appear as a compelling candidate for general-purpose vi-
sion architectures, surpassing ResNet’s in a variety of tasks [53]. Despite the
almost universal success of self-supervised pretraining in improving the transfer
learning performance of ResNet architectures, similar results have yet to become
widespread for Swin transformers.

We therefore pretrain Swin-T and Swin-S transformers on ImageNet us-
ing Odin, and transfer them to COCO object detection using FCOS?. We also
evaluate a pre-trained Moby checkpoint in the same setting. Moby pretraining
marginally improves the performance of a Swin-T, whereas Odin furthers these
gains (+1.8% APbb, Table 3, 2nd column). The benefits of Odin pretraining
are emphasized when pretraining and transferring the larger Swin-S backbone
(+2.1% APbb, Table 3, 3rd column).



Object discovery and representation networks 11

We return to our original question of whether Odin has successfully recovered
knowledge of scene structure by pretraining ResNet-50, Swin-T, and Swin-S with
DetCon (which uses a hand-crafted segmentation algorithm instead of the object
discovery network [28, 42]), and transferring them with FCOS?. We find Odin
to match or slightly surpass their performance, confirming our previous results.

4.2 Object discovery in COCO

We have found thus far that Odin surpasses the transfer learning performance of
state-of-the-art self-supervised methods which rely on prior knowledge of scene
segmentations, suggesting it has derived this knowledge from the data itself. In
this section, we directly evaluate the extent to which Odin has discovered ob-
jects in real-world scenes. We extract Odin features from COCO images, cluster
them, and visualize the resulting segments (Figure 2). Comparing unsupervised
object proposals (last column) to human-annotated segments (2nd column) we
see that Odin recovers a reasonable decomposition of real-world scenes: figures
are separated from their background, small objects are isolated, and even dif-
ferent instances of the same class (such as cars, last row) are roughly sepa-
rated from one-another. Failure modes, such as grouping multiple fruit—or two
shirts—together, reflect the ambiguity of unsupervised object discovery.

Comparing these proposals to those obtained from a randomly-initialized
network (3rd column) and an ImageNet supervised one (4th column), we appre-
ciate the benefits of learning with the Odin framework. Both of these networks
make erroneous proposals, failing to delineate object boundaries, or lacking the
coherence and locality of real-world objects. We quantify this difference by eval-
uating the average best overlap (ABO) and fraction of recovered objects (OR)
of the segments derived from each network. Consistently with the qualitative
results, Odin strongly surpasses both baselines in all metrics (Table 4, left).

We also evaluate the accuracy of a recently-proposed self-supervised method,
DINO, which specializes in object discovery. In this challenging task of discov-
ering multiple objects in an unsupervised setting, we find that it underperforms
relative to Odin. We test Odin in two regimes, one using the ResNet and FPN
used for pretraining, the other with the ResNet only. Although its performance
degrades slightly with the lower-resolution ResNet, it continues to outperform
all other methods in all metrics. In particular, Odin surpasses DetCon by a large
margin (+7% ABO, +16% OR), indicating that it has discovered more relevant
image structure than the hand-crafted segmentations used in DetCon.

Finally, we note that the DINO method was primarily designed for use
with vision transformers [24]. We therefore train a ViT-B/8 (as in DINO) on
ImageNet for 100 epochs using the Odin framework (all other parameters un-
changed). In this setting we find Odin to achieve compelling results, surpassing
the high-resolution ResNet-FPN, and a supervised and DINO-pretrained vision-
transformer (Table 4, right). Figure A.1. illustrates that Odin seems particularly
effective at discovering small objects and differentiating instances of the same
class. In sum, Odin provides a powerful means of discovering objects in real-world
scenes irrespective of the architecture used.
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Original image Human-annotated Random init.

k-means segmentation of CNN features 

Supervised Odin

Fig. 2. Object discovery with Odin. 1st column: original image, 2nd: human-annotated
COCO segmentations, 3rd, 4th, 5th: segmentations obtained from k-means clustering
on randomly intialized, ImageNet-supervised, and Odin-trained features, respectively.
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Table 4. Object discovery on COCO: all methods pretrain on ImageNet before
evaluating object discovery on COCO in an unsupervised manner, reporting average
best overlap of instance masks (ABOi) and categorical masks (ABOc), and average
object recovery (OR). By default we retain only the pretrained ResNet-50 from Odin’s
feature extractor, such that all methods are matched in their architecture. Odin† de-
notes the model equipped with the FPN used during training. ResNet’s use 1024×1024
images for evaluation with a stride of 32, yielding a 32×32 feature grid. ViT’s use
448×448 resolution with a patch size of 8, yielding 56×56 feature grids.

ResNet-50 ViT-B

Pretraining ABOi ABOc OR ABOi ABOc OR

Random init 28.1 33.6 17.0 27.8 33.6 17.5
DetConB [42] 34.1 40.0 20.4 - - -

Supervised 35.8 41.1 23.8 43.9 53.6 41.9
DINO [12] 38.3 46.5 30.8 42.7 51.7 39.7

Odin 41.5 48.6 36.5 45.9 53.9 44.1

Odin† 43.0 53.0 42.3

Table 5. Video Object Segmentation on DAVIS’17: we evaluate representation
quality for video segmentation by nearest neighbor inference. We report the standard
region J and contour F metrics and their mean. All representations are trained on
ImageNet then evaluated without fine-tuning on the 30 validation videos of DAVIS’17.
Odin† includes a feature pyramid network to reduce the output stride from 32× to 8×.

Pretraining (J&F)m J F

Random 15.2 15.9 14.6
Supervised 27.0 33.0 20.9

Odin 35.6 41.3 29.9

Odin† 54.1 54.3 53.9

4.3 Video Object Segmentation

We evaluate on the DAVIS’17 benchmark [66] following the experimental setup
and nonparametric inference method of DINO [12]. Given a video and a seg-
mentation of its first frame, we propagate the segmentation between consecutive
frames by nearest neighbor matching of the extracted representation. In Table
5 we evaluate random, supervised, and our self-supervised representations with
the ResNet-50 architecture. This evaluation does not fine-tune or train on the
DAVIS benchmark, and so accuracy is a measure of object representation, as
the fixed representation must support segmentation of the novel objects in these
held-out videos. Consistently with our previous results, Odin strongly surpasses
supervised pre-training in all metrics.

4.4 Ablations and analysis

What components are necessary for driving Odin’s ability to represent and dis-
cover objects? We systematically vary the two hyper-parameters governing the
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Table 6. Ablating the components of Odin: We use the variant of Odin equipped
with FPN for object discovery. Transfer learning is performed with the ResNet back-
bone only. K denotes the number of segments obtained through K-means during pre-
training

Odin pretraining Object discovery Mask-RCNN transfer

K update sched. ABOi OR APbb APmk

8 every 100 ep. 38.3 34.6 42.6 38.1
16 every 100 ep. 43.0 42.3 42.6 38.1
32 every 100 ep. 43.1 42.0 42.5 38.0
16 λτ = 10−2 41.0 39.5 42.5 38.1
16 λτ = 10−3 41.3 39.9 42.9 38.4
16 λτ = 10−4 41.6 40.1 42.6 38.1

behavior of the object discovery network: the number of segments used for learn-
ing, and the schedule used for updating the network (Table 6). Starting with the
number of segments K we find object discovery degrades substantially when
using too coarse segmentations (e.g. K = 8). However, given a fine enough seg-
mentations (K greater than 16) its performance is stable.

Regarding the rate at which the object discovery network is updated, we find
both schemes to be viable: continuously updating the network leads to slightly
better representations, whereas discrete updates lead to slightly better object
discovery. The advantage of the later scheme is that the computational cost of
the object discovery network becomes negligible, as it only needs to be evaluated
every 100 epochs and resulting segmentations cached in-between.

5 Conclusions

We have presented Odin, a new approach to self-supervised training which cou-
ples object discovery and representation learning. The resulting framework bene-
fits from the same representation quality as methods which utilize explicit priors
about image segmentation [42, 76], while deriving this knowledge from the data
itself. The result is a simpler and more generally-applicable learning paradigm,
and leads to state-of-the-art performance on a range of transfer learning tasks.

In this work, we have shown the utility of coupling representation learning
and object discovery, for transfer learning and unsupervised scene understand-
ing. Nevertheless, we have presented a single instance of this coupling, and there
remain several open questions around how best to tie them together. This may
require greater integration of the learning procedure and architecture—for ex-
ample our self-supervised algorithm learns mask-pooled features which are dif-
ferent from those used in downstream tasks. The learning dynamics of Odin also
warrant further investigation, as well as the objective used for representation
learning. Recent work has revived interest in masked-autoencoding [7, 24, 38]
and masked-distillation [6] as viable alternatives to contrastive learning. Odin, by
proposing to leverage learned representations in the design of iteratively refined
self-supervised tasks, is well positioned to benefit them as well.
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