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A Theoretical results

Proposition 1 Consider a set of coordinates x=|x1, 2, -, x|, corresponding out-
puts y=[y1,vy2,--- ,yn|’, and a d dimensional embedding W:R—R?. Assuming per-
fect convergence, the necessary and sufficient condition for a linear model to perfect
memorize of the mapping between x and 'y is for X=[¥(z1),¥(x2),...,¥(zyN)] to
have full rank.

Proof: Let us refer to the row vectors of X as [p1,...,pa|’. In order to perfectly
reconstruct y using a linear learner with weights w=[w1, wa, ..., wq] as
d
y=> wpi+b, e
i=1

one needs X to be of rank N (since y needs to completely span {p;}%_,). If d > N
then there is no unique solution to {w, b} without some regularization. In the unlikely
scenario that the row vectors of X have zero mean, then X needs to be of rank NV — 1
since the bias term b can account for that missing linear basis. a

202

With a sufficient embedding dimension, the stable rank of the embedding matrix ob-

Proposition 2 Let the Gaussian embedder be denoted as ) (t,x)=exp (—M)

tained using the Gaussian embedder is min (N , ﬁ) where N is the number of em-
bedded coordinates. Under the same conditions, the embedded distance between two

o 2
coordinates x1 and x5 is D(x1, x2)=exp (—%).

Proof: Let us define the Gaussian embedder as (¢, )= exp <7%) , Where o is
the standard deviation. Given d samples points [¢1,...,%4] and N input coordinates
[1,...,zN], the elements of the embedding matrix are

Vi =Yt x)) . (2)

* Project page at https://osiriszjq.github.io/complex_encoding
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To make sure the stable rank is saturated, we assume that d and NNV is large enough.
Then, ¥ is approximately a circulant matrix. We know that the singular value decom-
position of a circulant matrix C, whose first row is ¢, can be written as

1
C = —F, 'diag (F,c) F, , 3)
n

where F), is the Fourier transform matrix. This means the singular values of a circulant
matrix is the Fourier transform of first row. When N is large enough, we can approxi-

2
mate the first row of ¥ as a continuous signal, which is v (z, t=0)=exp (f Hzﬂl’z ) SO

the singular values are

s(&) =F (W(z;t =0)) = V2noexp (7202H7r§\|2) . 4)
Therefore, we can calculate stable rank directly from the definition,
N 2 400 2 +oo
S s7(§) / 2 2 1
Stable Rank(¥) ; 2 /W =00) de - exp (—4o?||7€||?) d¢ N 5)
Considering the general case, where N might not be large enough, the stable rank will
: 1
be min (N, m .

The distance (or similarity) between two embedded coordinates can be obtained via
the inner product:

+oo
D(z1,22) = P(t, x1)(t, z2)dt
—o0
+
- / R
—00

too  (t—=21)24(t—=p)?
= e 202 dt
— 00

+oo t2 -2z t+a? 4t —2apttad
= e 202 dt

o (6)
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+o0 72t272(m1+m2)tJr (11+2l2) Jr(701*;2)
= e 257 dt
— 00
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e o2 e 02 dt

—oo
@ty
_ (=g —=9)? oo _ = HE2)?
= 102 e o2 dt
)
_(zy—=9)?

= \/%g-e 402

which is also a Gaussian with a standard deviation y/20. We can empirically define that
the distance between two embedded coordinates 1 and x5 is preserved if D(x1,22) >
10~*, for an interval 21 —z5<l, where k is a threshold. In the Gaussian embedder, we

can analytically obtain a ¢ for an arbitrary [ using the relationship 0= im0 a



Trading deepness vs. complexity 3

Proposition 3 Let the RFF embedding be denoted as y(x)=[cos 2rbz, sin 2rrbx], where
b are sampled from a Gaussian distribution. When the embedding dimension is large
enough, the stable rank of RFF will be min (N , 27m), where N is the numnber of
embedded coordinates. Under the same conditions, the embedded distance between two
coordinates x1 and x5 is D(x1,x2)= Zj cos 2mb; (x1—x2).
Proof: Given g samples for b as [by,...,b 4 ] from a Gaussian distribution with a stan-
dard deviation ¢ and N input coordinates [z1, ..., zy]|, RFF embedding is defined as
~(x)=[cos 2bzx;, sin 2wbx;].

To make sure the stable rank is saturated, we assume that the d and NV is large
enough. Although RFF embedding matrix is not circulant, it is naturally frequency
based so we already know its spectrum, which is its singular value distribution

_ 1 ¢
s(6) = =—exp (202) . ™
Similarly,
S A Fee & T
Stable Rank(y) = Z P = /_Oo S2(0) d¢ = /_Oo exp (7T‘2> dé =V2mo, (8)

=1

Considering the general case, the stable rank is min (N , 27ra).

From the basic trigonometry, it can be easily deduced the distance function that
D(z1,22)=>_; cos2mb;(x1—x2). When d is extremely large it can be considered as
f(§)=cos2m&(x1—x2) where £ is a Gaussian random variable with standard deviation
o. Then the above sum can be replaced with the integral,

+o0 2

D(z1,x2) = / €357 cos 2mé€(x1 — xo)dE
+oo 2

= 2/ e 202 cos 2m€(x1 — wa)dE

’ ©)

£2

+oo
2/ efml(ei%r(xl—xz){+e—i27r(a:1—a:2)£>d§
2
0

oo 2 2
:/ 6—20—2—&-12#(961—952)5_i_e—ﬁ—ﬁﬂ(xl—xg)ﬁdg.
0

Further,

+oo 2 +oo . 2
/ e thEgy 042 / e~ @ =izg)? gy — 1 <1+erﬁ ( b )) e fa . (10)
o o 2 2v/a Va

Let a=5+7 and b= + 27 (21 —x32). Then, we have

D(z1,22) = V2roe 27 0 (@1—22)" (11)
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Proposition 4 Let the Rectangular embedder be denoted as 1 (t, x)=rect (1) =(1—

‘gg;‘ )>0. With a sufficient embedding dimension, the stable rank of the embedding
matrix obtained using the Rectangular embedder is min (N , %) where N is the number

of embedded coordinates. Under the same conditions, the embedded distance between

two coordinates x1 and x2 is D (21, x2) =otri (@) =0 maX(lf@, 0).

Proof: Let us define the Rectabgular embedder as 1) (¢, z)=rect (%) = (17 ot ) >0,

0.50
where o is the width of the rectangle impulse. Given d samples points [¢1, ..., t4] and
N input coordinates [z1, . . ., zy], the elements of the embedding matrix are

Ui 5 =Y(ti, x;) - (12)

To make sure the stable rank is saturated, we assume that d and N are large enough.
Then, ¥ is approximately a circulant matrix. We know that the singular value decom-
position of a circulant matrix C, whose first row is ¢, can be written as

1
C = EF,jldiag (Fye) Fy, (13)

where F,, is the Fourier transform matrix. This means the singular values of a circulant
matrix are the Fourier transform of the first row. When NNV is large enough, we can
approximate the first row of ¥ as a continuous signal, which is ¢ (z, t=0)=rect(%), so
the singular values are

s(§) = F (Y(;t = 0)) = osinc(a€) (14)

where sinc(§ ):% Therefore, we can compute the stable rank directly from the

definition,

N 00 oo
Stable Rank(¥) = Y % = / " SEg;ng = / ’ sinc(o€)de = - . (15)
; 1 —0c0 o

s S

Considering the general case, where /N might not be large enough, the stable rank will
be min (N , %)

The distance (or similarity) between two embedded coordinates can be obtained via
the inner product:

+o00
D(,Tl,aig) = w(t,$1)¢(t,$2)dt

— 00

+o0
—t —t
= / rect <x1 > rect (:cg ) dt (16)
. o o
= otri (xl — x2> .
o
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Proposition 5 Let the Triangular embedder be 1 (t, z)=tri (£5L) = max(1— ‘g 5§| ,0).
With a sufficient embedding dimension, the stable rank of the embedding matrix ob-
tained using the Triangular embedder is min(N, = 35) where N is the number of em-
bedded coordinates. Under the same conditions, the embedded distance between two

coordinates x1 and x3 is D(x1,22) = %UQm'Z(@) = 162 max(1 — @, 0)2.

Proof: Let us define the Triangle embedder as (¢, z)=tri (£=%) = max (1 lo—t| 0)

0.50 0.50
where o is the width of the Triangular impulse. Given d samples points [¢1, . . ., t4] and
N input coordinates [z1, . . ., zy]|, the elements of the embedding matrix are

@i j = p(ti, ;) - (17

To make sure the stable rank is saturated, we assume that d and N are large enough.
Then, ¥ is approximately a circulant matrix. We know that the singular value decom-
position of a circulant matrix C, whose first row is ¢, can be written as

1
C = —F;'diag (F.c)F, , (18)

n
where F), is the Fourier transform matrix. This means the singular values of a circulant
matrix are the Fourier transform of the first row. When N is large enough, we can

approximate the first row of ¥ as a continuous signal, which is ¢ (x, t=0)=tri (%) so
the singular values are

o . o
$(6) = F (w(wst = 0)) = Zsine® (Z¢) (19)
where sinc(£)= “n(m) . Therefore, we can compute stable rank directly from the defi-
nition as,
N 9 +00 2 +oo
s s(§) /
Stable Rank(% 5= dé = (3 )d_—. 20
able Ran ;s% /_ws()f _Oosmc &) de 3 (20)

Considering the general case, where /N might not be large enough, the stable rank will
be min (N , %)

The distance (or similarity) between two embedded coordinates can be obtained via
the inner product:

+oo
D(Il,{L‘Q) = w(t,l‘l)’(/}(t,xg)dt

Tooo S —t\ L fx—t
_/_oo tri (050> tr1<0'50>dt 21

1 ‘Il 7132‘ 2
—o% max (1 — ,O)
4 o
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B 2D complex encoding

B.1 Closed form solution for separable coordinates

If pixels are sampled on a regular grid formed by samples x=[x1, 22, -, zx|’ and

samples y=[y1,y2, -+, yar|’, then the coordinates of these pixels are separable. Let
SERM*N be the signal defined as S; j=1I(z;,y;), where i=1,2, -, N, j=1,2,---, M,
and ¥:R—RX be the 1D encoder. We want to find the weights WeRX *X of the linear
layer by optimizing the following equation,

arg min |vec(S) — (¥ (y) @ ¥(x)) vec (W)l; . (22)
where ¥ (x)€RN* X is the encoding for x, ¥(y)ERM*X ig the encoding for y. This

is a linear least squares problem. Based on the properties of the Kronecker product, we
find the optimal solution W* as,

vee (W*) = argmin [vec (8) ~ (¥(y) @ ¥ (x)) vee (W)
= () 0 2(x)" (2(y) 0 ¥(x))) ( x>>Tvec<s>
= (((W(y)TW(y)) '

U(y )) ((Q/(X) ))Vec (S) (23)
vee ( (060" w00) ™ 0(0) 8 (21 00) ) )

= vec ((LP(X)TW(X))_ 7 (x)S¥(y)" (W(Y)TW(Y)) 1) )

which means,

-1 1

W= (U(x)"¥(x))  ¢x)S¥(y)" (P(y) () . 24)

B.2 Blending matrix for non-separable coordinates

First, we focus on 1D encoders. Given a 1D encoder ¥:R—R¥ and two points xg,
x1, we want to express ¥ (z)=aoW (zo)+a1¥(x1) for zo<z<z;. This problem can be
solved by
. 2
arg min |@(x) — [#(20) ¥(1)] a||2 , (25)

where a=[ag o] " Note here that U (z), ¥(xg), and ¥(x;) are K x1 vectors. This is
equivalent to a least squared problem, thus, the optimal solution * can be solved by,

o = argmin [ (z) — [#(w0) ¥(x1)] a5

W(eo) W) [#w0) (o)

B T P
E E

T (x)
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With the definition D(x1,x2) in Appendix A, this can be written as,

o = [Bleoz) Dl [0 )]

Typically, this distance function only depends on the difference of the inputs, as
examples shown in Appendix A. Therefore, we can have a close form solution for
D:R—R. Let d=x1—xq, and x=x9+d, where 0<3<1. Then, the solution becomes,

ot = [ (z0,0) D($07I1)] - |:D(x07 )}
D(x1,29) D(x1,21) D(xq,x)
2028 o,
1 D) -

)
- o |20 2], 20 ]

Based on the 1D analysis, encoding 2D non-separable points can also be expressed
as non-linear interpolation of 2D separable coordinates. Suppose that the settings are
the same as in Appendix B.1. The virtual pixels are sampled on a regular grid formed
by samples x=[x1, 2, -, xx]|T and samples y=[y1,y2, - -, yar|T. The query points
are randomly sampled in the space as Q = [q1,qs, - -+, qp|’, where P is the number
of points and each q;ER?*! is a random 2D coordinate. Let s€R”*! be the signal, and
w:R—RX be the 1D encoder. We want to find the weights WERX*E of the linear
layer by optimizing the following equation,

arg rr‘lgfn ls—B(Q) (¥(y) ® ¥(x)) vec (W)Hg ) 29

where B:R2—RMY is the non-linear interpolation coefficients function, i.e., B(Q) €
RP*MN is the blending matrix. Note that although B is large, it is extremely sparse and
only have 4 non-zero values on each row of M N elements. Consider a certain point q,,
is in the grid whose corner points are (2;, y;), (i+1,¥;), (s, Yj+1), and (Tiy1, Yj41),
which means x;<q,0<x;41 and y;<q,1 <y;+1. Then we can obtain the encoding for
dpo and g, as follows,

V(apo) = ¥ (z;) + ¥ (zit1),
V(ap1) =~ Bo¥(y;) + B1¥ (yj+1) -

Then, the 2D encoding for q,, is,

¥ (q) =¥(dp0, dp1)
:W(qpl) ® W(on)
~ (Bo¥ (y5) +61¥ (yj+1)) @ (oW (2;) +oa¥ (Tiy1))
=aofo¥ (y;) @ ¥ (i) + o1V (yj+1) @V (24) (31
+ a1 5o¥ (y;) @V (xi41) + a1 51¥ (Yiv1) @ ¥ (Tig1)
=aoBo¥ (i, y;) + o1V (T4, Yj+1)
+a180¥ (Tit1,Y5) + a1B1¥ (Tig1, Yit1) »

(30)
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which means B(q,)€R™M¥ are all zeros except apf3y at index jN+i, g3 at index
(j+1)N+i, apfp at index jN+i+1 and apfp at index (j+1)N+i+1.

C HD complexity

Let XcRN"*D pe NP points in D dimensional space, ¥:R—RX be the 1D encoder,
and we want to know the memory and computational complexity when the encoding
multiply a linear layer W.

Simple encoding. The embedding ¥(X)eRY"*PK and the weights WERPE X1 5o
the memory complexity is O(DK N) and the computational complexity is O(DK NP).
Complex encoding (naive implementation). The embedding ¥ (X)cRM PxK?
the weights WERX " *1, 5o the memory complexity is O(KP NP) and the computa-
tional complexity is O(KP ND).

Complex encoding (separable coordinates). The embedding ¥ (X)cRY*X and the
weights WeRK " so the memory complexity is O(KP”+NK) and the computational
complexity is Zi’il NiKD“*i:O(NKN;:gD ). A special case of N=K will be
discussed later.

Complex encoding (non-separable coordinates). The embedding ¥ (X)cRY*X | the
weights WeRK " and the Blending matrix B(X)eRY PxNP (sparse matrix with only
NP x2P non-zeros values), so the memory complexity is O(KP+NK+2P NP), the
computational complexity is 2° NP4+ 32 NiKPH-i—0(2P NP4 NK N =KZ),
Special case N=K. Both simple encoding and separable complex encoding have
O(DNP+1) computational encoding. Memory complexity is O(DNP+1) for simple
encoding while it is O(NP+2N) for separable encoding. However, the rank of the
latter one is power of D to the first one.

and

D Experiments

D.1 Method Notations

For 1D encoding experiments, we used Fourier-feature-based encodings with linearly,
log-linearly, or randomly sampled frequencies, and shifted encodings whose bases are
Gaussian or triangle. We give a brief introduction to these methods below.

LinF (Fourier feature-based encoding using linearly sampled frequency).

o(x) = [ -, Cos (271- (%20 + %2") x) ,sin (277- (%20 + %2") {E) ,~~~]T , (32)

where =0, ..., K—1 and ¢ is the hyperparameter for the frequency range that sampled
linearly from base frequency (2°) to max frequency (27).
LogF (Fourier feature-based encoding using log-linearly sampled frequency).

1", (33)

o(x) = [ , COS (271'-2”/Kx) ,sin (27r~2"i/Kx),-~-

where 1=0, ..., K—1 and ¢ is the hyperparameter for frequency range. The frequency
are sampled log-linearly from base frequency (2°) to max frequency (2%).
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RFF (Fourier feature-based encoding using randomly sampled frequency) [2].
T T
o(x) = [cos (27bz)" ,sin (2bx) ] , (34)

where beR% ! is random frequencies sampled from N(0, o2), where o is the hyper-
parameter for frequency range.
Tri (shifted triangle encoding).

z—i/K
d

0. 35)

o(x) = [ ,max(l—

where i=0, ..., K—1 and d is the hyperparameter for the width of triangle wave.
Gau (shifted Gaussian encoding).

_ T
ble) = [ e (36)
where =0, ..., K—1 and d is the hyperparameter for the width of Gaussian wave.

D.2 Non-separable 3D video reconstruction

We used the same Youtube video dataset [1] as described in the main paper. The only
difference is that the training points were randomly sampled (12.5% from the total num-
ber of points) of a 64 x64x64 grid, and the rest of the points were used for testing. The
results are shown in Table 1. Similar to our observations in the main paper, complex
encodings combined with a single linear layer have comparable performance to simple
encodings combined with deep (4 layer MLPs) networks while being 10x faster. Com-
plex frequency-based encodings (LinF, LogF, RFF) have inferior results than complex
shifted-based encodings (Tri, Gau) due to deficient rank.

Table 1: Performance of video reconstruction with randomly sampled inputs (non-
separable coordinates). ® are simple positional encodings. @ are complex positional
encodings with stochastic gradient descent using smart indexing. Complex encodings
with a single linear network are 10x faster than simple encodings with deep networks.

PSNR No. of params (memory) Time (s)
LinF 21.38 +£3.32 1,445,891 (5.78 M) 76.87
LogF 21.54 + 3.32 1,445,891 (5.78 M) 76.76
RFF [2] 21.35 4+ 3.32 1,445,891 (5.78 M) 76.22
Tri 20.90 £+ 3.09 1,445,891 (5.78 M) 77.82
Gau 21.16 £ 3.11 1,445,891 (5.78 M) 77.98
e LinF 10.08 + 3.63 786,432 (3.15M) 55.34
® LogF 18.79 £ 2.55 786,432 (3.15M) 53.48
o RFF [2] 20.26 4 2.82 786,432 (3.15M) 1.82
® Tri 21.54 +3.01 786,432 (3.15M) 1.83
e Gau 21.29 4+ 3.04 786,432 (3.15M) 1.86
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D.3 Visual results for 2D images

Here we show 2D image visual results for separable coordinates in Figs. 2 and 3, and
non-separable coordinates in Figs. 4 and 5. For simple encoding, five aforementioned
encoders were tested with 256 width MLP of 0 and 4 hidden ReLU layers (0 means
only a linear layer). For complex encoding, the same five encoders were tested with O

and 1 hidden ReLU MLPs.

As shown in column 1 of these fig-
ures, when we used simple encodings
and the network only had a single linear
layer (0 hidden layers), the reconstructed
images are of low quality, showing low-
resolution color grids (LinF, LogF), cross
strip colors (Tri, Gau), or random color
blobs (RFF). The results clearly support
our claim that a linear network can only
reconstruct a 2D image signal with at
most rank 2. When we introduced non-
linear layers and increased the hidden
layer depth (depth 4, column 2), the re-
construction quality improves, leading to
a better PSNR.

On the contrary, even with a sin-
gle linear layer (depth 0, column 3),
our complex encoding methods can
achieve comparable results with methods
that used a simple encoding combined
with deeper non-linear networks. Note
that Fourier feature-based (frequency-
based) complex encodings (LinF, LogF,
RFF) performed worse than shifted-

[y

LinF
LogF
RFF

NN
N\

singular values
7

(=]

250

[«

index

Fig. 1: The normalized singular values of
different 1D embeddings ¥ (x) € RV*K,
Here N=K=256 and x is sampled equally
spaced from 0 to 1. Fourier feature-based
encodings (LinF, LogF, RFF) tend to have
much fewerr non-zero singular values,
which results in low rank. While shifted en-
codings (Tri, Gau) usually have sufficient
non-zero singular values, which leads to a
high rank. When x is randomly sampled,
the rank deficiency in Fourier feature-based
encodings becomes worse.

based complex encodings (Tri, Gau) when there was only one single linear layer due to
the deficiency of the embedding rank (shown in Fig. 1). Adding an extra non-linear layer
(depth 1, column 4) did not substantially improve the performance of shifted-based
complex encodings while adding more details for frequency-based complex encodings.
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Ground Truth

Simple, Depth 0  Simple, Depth 4 Complex, Depth 0 Complex, Depth 1

LinF

PSNR: 13.40 PSNR: 22.03 PSNR: 17.29

LogF

PSNR: 13.40 PSNR: 2180  PSNR: 19.97 PSNR: 22.71

y \ B T )
PSNR: 12.93 PSNR: 22.38 SNR: 19.37 PSNR: 22.79

PSNR: 22.77 PSNR: 23.05

PSNR: 14.08 PSNR: 21.91 PSNR: 22.85 PSNR: 22.82

Fig. 2: Reconstruction results of an archway using separable coordinates (regular-grid
sampled training points) with different combinations of simple or complex encodings
and network depths.
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Ground Truth

LinF

PSNR: 12.90

LogF

RFF

5

Gau

- " P ¥ Lo . ~ - B, = s

PSNR: 13.89 PSNR: 22.29 PSNR: 22.91 PSNR: 22.81

Fig. 3: Reconstruction results of a heap of walnuts using separable coordinates (regular-
grid sampled training points) with different combinations of simple or complex encod-
ings and network depths
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Simple, Depth 0

LinF

PSNR: 16.32

LogF

PSNR: 16.33

PSNR: 13.43 PSNR: 25.52
— S

A

Tri

PSNR: 18.55 PSNR: 26.93 PSNR: 27.28
- y = &% ) 3

Gau

PSNR: 18.59 PSNR: 26.88 PSNR: 27.23 PSNR: 27.23

13

Fig. 4: Reconstruction results of a lion using non-separable coordinates (randomly sam-
pled training points) with different combinations of simple or complex encodings and

network depths.
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Ground Truth

&
Simple, Depth 0

Simple, Depth 4 Complex, Depth 0 Complex, Depth 1

LinF

PSNR: 14.99
12

LogF

PSNR: 14.98

RFF

s’
PSNR: 14.00

1

PSNR: 16.31

Gau

PSNR: 16.33 PSNR 22.18 PSR 22.83 PSR 22.83
Fig.5: Reconstruction results of a seaside residential area using non-separable coor-

dinates (randomly sampled training points) with different combinations of simple or
complex encodings and network depths.
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