
MVDG: A Unified Multi-view Framework for
Domain Generalization

—Appendix—

Jian Zhang1,2, Lei Qi3,∗, Yinghuan Shi1,2,∗, and Yang Gao1,2

1 State Key Laboratory for Novel Software Technology, Nanjing University, China.
2 National Institute of Healthcare Data Science, Nanjing University, China.
3 School of Computer Science and Engineering, Southeast University, China.

A Additional Experiments

Art Cartoon Photo Sketch
Domains

70

75

80

85

90

95

100

Ac
c

80.59

76.23

94.91

77.65

80.64

77.22

94.24

77.41

normal learning
longer training

Fig. 1: The comparison of accuracy (%) of normal training and longer training
in the meta-learning framework.

Longer training. In our training scheme, we need to train a model with
more tasks than traditional meta-learning, resulting in a longer training time. To
investigate whether it improves the performance, we train Reptile with a large
epoch (i.e., 120 epochs). As shown in Fig. 1, the longer training does not bring
any drastic performance gain compared to the original training epochs, which
also validates the efficacy of our method.

The effectiveness of re-estimating BN. During the test stage, we note
that the test accuracy is unstable, which is caused by the mismatch between
BN statistics and model weights. During training, BN first normalizes data with
statistics calculated in a batch and then keeps a running average of its statistics,
which is used to normalize test images. However, for MVRML, the second step is
not accomplished because we only update model weights, leaving BN statistics
unchanged, which causes a mismatch. Thus, the performance fluctuates when
we apply these mismatched weights and statistics to test images.

A straightforward solution is to replace the statistics in the updated model
with temporary model statistics, or we simply forward a current batch of data



2 Jian Zhang, Lei Qi, Yinghuan Shi, Yang Gao

0 5 10 15 20 25 30
Epochs

91.4
92.4
93.3
94.2
95.2
96.1

Ac
c

Photo

Update
None

0 5 10 15 20 25 30
Epochs

71.5
74.0
76.6
79.1
81.7
84.2
86.8

Ac
c

Art

Update
None

0 5 10 15 20 25 30
Epochs

74.8
75.9
77.0
78.2
79.3
80.4
81.6

Ac
c

Cartoon

Update
None

0 5 10 15 20 25 30
Epochs

69.6
72.2
74.9
77.6
80.3
82.9

Ac
c

Sketch

Update
None

Fig. 2: The test accuracy (%) of model with or without re-estimating BN statis-
tics at eachepoch. The mean and standard deviation are denoted with the solid
line and shaded areas, respectively.

to continue accumulating the statistics in the updated model. However, we find
that all these operations cannot help stabilize the training procedure. We hy-
pothesize that the updating procedure θj+1 = θj + β(θtmp − θj) makes previous
BN statistics totally unsuitable for the current weight and only a batch of data or
replacement of statistics cannot remedy this effect. Therefore, at the end of the
training stage, we need to re-estimate the statistics by forwarding the training
set to find suitable statistics.

To visualize the performance fluctuation, we plot the mean (the solid line) and
standard deviation (the shaded area) of model accuracy in the target domain. As
seen on the orange line of Fig. 2, the performance of the model trained without
re-estimating BN statistics fluctuates violently, making it hard to select the best
model on the validation set. However, after we re-estimate BN statistics at the
end of each epoch, its accuracy becomes more stable, and clear performance
gains can be obtained in the “art” domain, as seen on the blue line.

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8
Photo

ERM
Reptile
MVRML

0 5 10 15 20 25 30 35
0.0
0.2
0.4
0.6
0.8

Art
ERM
Reptile
MVRML

0 5 10 15 20 25 30 35
0.0

0.2

0.4

0.6

0.8
Cartoon

ERM
Reptile
MVRML

0 5 10 15 20 25 30 35
0.0
0.1
0.2
0.3
0.4
0.5 Sketch

ERM
Reptile
MVRML

Fig. 3: Local sharpness comparison across ERM, Reptile and MVRML on the
validation set of PACS. The X-axis indicates the distance γ to the original pa-
rameter and Y-axis indicates the sharpness of loss surface (the lower and stable,
the more flat).

Local sharpness comparison. As mentioned in Sec. 4.4 in the main page
that the sharpness is calculated by the gap between the original parameter and
perturbed parameter, i.e., Eθ′=θ+ϵ[L(θ,D)−L(θ′,D)]. We sample the perturba-
tion 10 times from Gaussian distribution with different γ and average the result
to produce a stable sharpness value. In addition to the sharpness on the test
set shown in Fig. 4 in the main page, we also plot the local sharpness on the



A Novel Multi-view Framework for Domain Generalization 3

validation set, as shown in Fig. 3. Our method also can find a flatter minimum
than DeepAll and Reptile.

Table 1: The influence on accuracy (%) of different augmentation combination
of multi-view prediction on PACS dataset. The best performance is marked as
bold.

crop flip jitter RA A C P S Avg.

85.20 79.97 95.29 83.11 85.89

✓ 85.20 79.58 95.54 84.65 86.24

✓ ✓ 85.62 79.98 95.54 85.08 86.56

✓ ✓ ✓ 84.17 80.13 94.84 84.28 85.85

✓ ✓ 72.38 74.28 91.94 77.38 79.00

✓ ✓ ✓ 72.35 74.09 91.80 77.63 78.97

✓ ✓ ✓ ✓ 70.83 73.98 91.31 77.55 78.42

Weak vs. Strong augmentation in MVP. When we apply MVP, aug-
mentation also plays a significant role in ensemble performance. To investigate
how different augmentation transformations affect performance, we select sev-
eral weak and strong augmentations, including random resized crop with a scale
factor of [0.8, 1], random horizontal flip, color jittering with a magnitude of 0.4,
and RandAugment with N = 4 and M = 5. The model is trained with MVRML.
The number of augmented images is set to 32. In Tab. 1, simple weak augmen-
tations (i.e., random resized crop and flip) can achieve the best performance.
By contrast, the strong augmentations (i.e., the color jittering and RandAug-
ment (RA)) have an adverse effect because the images augmented with strong
augmentation drift off the data manifold [4], making it harder to predict.

guitar elephant elephant dog guitar guitar elephant elephant elephant

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 4: Class activation map of weak augmented images. The texts above the
images are model predictions (best viewed in color).

Visualization of applying multi-view prediction. We visualize the class
activation maps of weak augmented images. As shown in Fig. 4, with small per-
turbations applied to the images, the model tends to make different predictions.
However, by ensembling their predictions, the model could eliminate the situa-
tion that it makes a wrong prediction from a rare view of the testing image.



4 Jian Zhang, Lei Qi, Yinghuan Shi, Yang Gao

1 2 4 8 16 32 64
Augmented images

79.0

79.5

80.1

80.6

81.2

De
ep

Al
l

DeepAll
Ours

85.40

85.72

86.05

86.37

86.70

Ou
rs

2 3 4 8
14

28

55

Fig. 5: Accuracy(%) (lines) and testing time(s) (histogram) with augmented im-
ages.

The optimal number of trajectories in Reptile. We compare Reptile
by varying its number of trajectories. Specifically, the results of using 1, 2, 3,
and 4 trajectories are 82.34%, 82.84%, 83.06%, and 82.83%, respectively. We
notice that using 3 trajectories is optimal for Reptile. Since our method achieves
85.89% without multi-view prediction, its performance still can surpass Reptile.

Table 2: Comparison to SOTA with MVP on PACS dataset.

MLDG† FSDCL∗ MVDG

w/o MVP 82.34 85.85 85.89
w/ MVP 83.41 (+1.07) 86.37 (+0.52) 86.56 (+0.67)

Comparison to SOTA with multi-view prediction. We compare our
method to other two SOTA methods (i.e., MLDG and FDSCL) equipped with
MVP. We directly utilize MVP to their available trained models (denoted as *)
or our reproduced models (denoted as †). As shown in Tab. 2, our method still
outperforms these methods. Also, it validates the efficacy of MVP again.

Training and testing time of the method. The experiments are all con-
ducted on 2080Ti GPU. As shown in Tab. 3, the training time of our method
increases with more tasks and trajectories. Although our method requires 32
minutes to train a model, it is still comparable with SOTA (e.g., FACT: 2.81h,
for the same epochs). Also, we plot the testing time of MVP in Fig. 5 on the
Photo domain. The testing time increases with more augmented images. How-
ever, we find that 8 augmented images are enough to produce satisfying perfor-
mance, which does not bring too much computational overhead. Besides, with
8 augmented images, the model can process 208 images per second on a 2080Ti
card, which is sufficient for real-time tasks.



A Novel Multi-view Framework for Domain Generalization 5

Table 3: The training time w.r.t. the number of tasks and trajectories on Photo
domain.

Tasks–Traj. 1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3

Time (minute) 11 14 16 16 22 27 21 26 32

Table 4: Experiments on DomaniBed.

CMNIST RMNIST VLCS PACS OfficeHome TerraInc DomainNet Avg

ERM 51.5±0.1 98.0±0.0 77.5±0.4 85.5±0.2 66.5±0.3 46.1±1.8 40.9±0.1 66.6
ERM∗ 51.5±0.1 95.0±0.1 77.1±0.2 85.3±0.1 70.3±0.1 47.7±0.5 38.1±0.1 66.4
MVRML 52.1±0.1 97.6±0.0 77.9±0.2 88.3±0.3 71.3±0.1 51.0±0.6 45.7±0.1 69.1

Experiments on DomainBed. We conduct an experiment on DomianBed
benchmark, including CMNIST, RMNIST, VLCS, PACS, OfficeHome, TerraInc
and DomainNet. The experiments are repeated three times with a learning rate
of 1e − 3. Since our method consists of re-estimate Batch Normalization layer,
the Batch Normalization layers are unfreezd. As shown in Tab. 4, ERM is the
reported performance of DomainBed and ERM∗ is our reproduced performance
with the same learning rate and freezed BN. Our method can achieve better
performance than ERM (a strong baseline in DomainBed) on these datasets.

dog
elephant
giraffe
guitar
horse
house
person

Photo
Art
Sketch
Cartoon

Photo
Art
Sketch
Cartoon

(a) DeepAll

dog
elephant
giraffe
guitar
horse
house
person

Photo
Art
Sketch
Cartoon

Photo
Art
Sketch
Cartoon

(b) Ours

Fig. 6: The visualization of the feature learned on PACS dataset. DeepAll and
the model trained with our method are shown in the figure. The target domain is
Cartoon, and the others are all source domains. Different colors indicate different
classes, and different shapes indicate different domains (best viewed in color).

Visualization of learned representation. To qualitatively visualize the
representation learned by our method, we generate the t-SNE map of both



6 Jian Zhang, Lei Qi, Yinghuan Shi, Yang Gao

DeepAll and our model. The target domain is Cartoon, and we only utilize
the validation set in the source domain and all images in the test domain to
obtain the visualization result. The better the model can generalize, the more
clustered the data should be. As shown in Fig. 6, DeepAll cannot cluster the un-
seen samples well since the plain training cannot prevent overfitting. By contrast,
MVRML can yield better clustering results, demonstrating its generalizability.

B Proof of Theorem 1

B.1 Notations

We denote the source domain as S = {D1, ...DN} and the target domain as
T = DN+1. We denote a task as t = (Btr,Bte), which is obtained by sampling
from S. At each iteration, a sequence of sampled tasks along a single trajectory
is defined as T = {t0, . . . , tm} with a size of m. Each task in T is sampled from
a mixture distribution of source domains U =

∑
Di∼S αiDi, where

∑
i αi = 1.

Each distribution Uj is sampled from a meta distribution V with uniformly dis-

tributed mixture cooefficients
∑

i α
j
i = 1. Thus, V and S are actually equivalent

with respect to the data point (x, y) since each data point appears with the same
probability in V and S. The meta sequence for the meta-learning methods is de-
fined as T = {T0,T1, . . . ,Tn} with a size of n. A training algorithm A trained
with T or T is denoted as θ = A(T) or θ = A(T). We define the expected risk as
EP(θ) = E(xj ,yj)∼Pℓ(f(xj |θ), yj). With a little abuse of notation, we define the

loss with respect to T as L(T; θ) = 1
m

∑
(Btr,Bte)∈T

1
2 (L(Btr; θ) + L(Bte; θ)) and

the loss with respect to T as L(T; θ) = 1
n

∑
T∈T L(T; θ).

B.2 Lemma

Lemma 1. Given two distributions P and Q, the following inequality holds [5]:

EP(θ) ≤ EQ(θ) +
1

2
Div(DP ,DQ).

where Div is the divergence between two distributions.

Since our training scheme is based on the meta-learning algorithm, we intro-
duce the generalization bound of meta-learning with respect to the sample size
in [1]. By reformulating our training tasks mentioned above, we introduce the
following lemma:
Lemma 2. Assume that an algorithm A satisfies the following two conditions:
C1. For every pair of meta sequences T = {T0, ...,Tn}, T\i := T\{Ti}, and for
every task sequence T, we have

∥∥L(T;A(T))− L(T;A(T\i))
∥∥ ≤ β1.

C2. For every pair of task sequences T = {t0, . . . , tm}, T\j := T\{tj}, and for
any task t, we have

∥∥L(t;A(t))− L(t;A(t\j)), y)
∥∥ ≤ β2.



A Novel Multi-view Framework for Domain Generalization 7

Then for any meta distribution P, the following inequality holds with probability
at least 1− δ [1]:

EP(θ) ≤ ÊP(θ) + 2β1 + (4nβ1 +M)

√
ln 1

δ

2n
+ 2β2,

whereM is a bound of loss function ℓ. ÊP(θ) is the empirical error on distribution
P. When β1 = o(1/na), a ≥ 1/2 and β2 = o(1/mb), b ≥ 0, this bound becomes
non-trivial.

C1 and C2 are β-uniform stability conditions [2] that indicate the sensitivity
of the algorithm to the removal of an arbitrary point from the training sample,
and if the uniform stability condition holds, we can upper bound the expected
error by the empirical error.

B.3 Proof

Theorem 1. Assume that algorithm A satisfies β1-uniform stability [2] with
respect to L(T;A(T)) and β2-uniform stability with respect to L(T;A(T)). The
following domain generalization error bound holds with probability at least 1−δ:

ET (θ) ≤ ÊS(θ) +
1

2
sup
Di∈S

Div(Di, T ) + (2β1 + (4nβ1 +M)

√
ln 1

δ

2n
+ 2β2).

Proof. Consider a mixture distribution of N source domains where the mixture
weight is geven by γ and

∑N
i=1 γi = 1.

ET (θ) ≤ ES(θ) +
1

2
Div(S, T ) ≤ ES(θ) +

1

2

N∑
i

γiDiv(Di, T ) (1)

≤ ES(θ) +
1

2
sup
Di∈S

Div(Di, T ) (2)

≤ ÊS(θ) +
1

2
sup
Di∈S

Div(Di, T ) + 2β1 + (4nβ1 +M)

√
ln 1

δ

2n
+ 2β2 (3)

We first bound the expected error between the source and target domains
from Eq. (1) to Eq. (2) with Lemma 1. Eq. (1) is obtained according to [5]

that Div(S, T ) ≤
∑N

i γiDiv(Di, T ), where
∑N

i=1 γi = 1. Then we bound Eq.
(1) with the maximum divergence supDi∈S Div(Di, T ) between Di and T .

According to C.1 and C.2 and the fact that EV(θ) = ES(θ) since the dis-
tribution of V and S are equivalent with respect to the data points, we have:

EV(θ) ≤ ÊV(θ) + 2β1 + (4nβ1 +M)

√
ln 1

δ

2n
+ 2β2. (4)

Thus, by replacing the expected error of source domains in Eq. (3) with empirical
error in Eq. (4), we arrive at Theorem 1.



8 Jian Zhang, Lei Qi, Yinghuan Shi, Yang Gao

C Other Details

Visualization of loss surface. To visualize the loss surface of a model, we
follow the visualization technique in [3]. Suppose we have weight vectors of three
models w1, w2, w3. We first find two basis û, v̂ of the plane across these weights:
u = (w2 − w1), v = ((θ3 − θ1)− ⟨θ3 − θ1, θ2 − θ1⟩)/ ∥θ2 − θ1∥2 · (θ2 − θ1), û =
u/∥u∥, v̂ = v/∥v∥. Then, we define a Cartesian grid in the basis û, v̂ and calculate
the training/test loss corresponding to each of the points in the grid.

References

1. Al-Shedivat, M., Li, L., Xing, E., Talwalkar, A.: On data efficiency of meta-learning.
In: AISTATS (2021) 6, 7

2. Bousquet, O., Elisseeff, A.: Stability and generalization. JMLR (2002) 7
3. Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D.P., Wilson, A.G.: Loss sur-

faces, mode connectivity, and fast ensembling of dnns. In: NeurIPS (2018) 8
4. Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.:

Augmix: A simple data processing method to improve robustness and uncertainty.
arXiv (2019) 3

5. Zhao, H., Zhang, S., Wu, G., Moura, J.M., Costeira, J.P., Gordon, G.J.: Adversarial
multiple source domain adaptation. In: NeurIPS (2018) 6, 7


