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In this supplementary material, we will describe the dataset information,
more details about the comparison setting, and some analysis of our method.

A Dataset

We use the dataset as in [4] for a fair comparison. Here we give a brief introduc-
tion about these two datasets.
ToyDesk Dataset The ToyDesk dataset contains two image sets with 96 and
151 posed images and the corresponding instance segmentation. They capture
the scene and use SfM [2] and 3D reconstruction techniques [1,3] to recover the
meshes with camera poses. And for train/test set split, they randomly sam-
ple 80% frames for training and use the rest for testing. We also use their
train/testing data split as they give in the GitHub issue5.
ScanNet Dataset In our experiment, we choose ‘scene0024 00’, ‘scene0038 00’,
‘scene0113 00’ and ‘scene0192 00’ in ScanNet as used in ObjectNeRF [4] for fair
comparison. For the experiment conducted in these data, we resize the image
resolution to 320× 240 in order to match image resolution in SemanticNeRF [6]
and avoid the OOM issue. To match the training setting of SemanticNeRF, we
use the category semantic label of ScanNet for network training and the mIOU
metric evaluation of each method.

B Comparison Setting Details

We introduce the details in the comparison setting. Firstly, we will introduce the
pipeline we used in calculating the semantic map of ObjectNeRF [4] since it does
not explicitly produce such a result. The main principle we use in computing
the semantic map of ObjectNeRF is the Z-buffer algorithm. We use the object
branch in ObjectNeRF to compute the depth of each object using the following
equation:

D̂i(r) =

∫ vf

vn

Ti(v)σi(r(v))vdv, (1)

5 https://github.com/zju3dv/object nerf/issues/2
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Fig. 1. Network structure of model design ablation., we show the network struc-
ture design in the ablation study, including “VolSDF”, “VolSDF w/ Semantic”, and
Ours. The inputs for all methods are point position p and view direction v. The dif-
ference lies in the output branch of the first MLP (orange part).

where the Ti, σi are the object transparency and object density from i-th object
from object branch, and v is the value of depth along the ray r. After computing
the i-th object’s depth of the ray D̂i(r), we use the object with minimum depth
value in ray r as the semantic label in this pixel.

We also provide the opacity computation in the experiments. The opacity
is a complement probability of T (r), which can be used to understand whether
this ray be occluded in the final. The value of opacity lies in [0, 1]. It can be
calculated as:

Ô(r) =

∫ vf

vn

T (v)σ(r(v))dv. (2)

We adopt this value in computing the opacity map to judge the quality of ren-
dering a single object. If the opacity of a ray is 0, we paint it as black in the
rendered image and paint it as white if it reaches 1.

C Ablation study

We provide more details about the ablation study related to model design. The
model structure of different variants can be found in Fig. 1. The difference lies
in the output of the first MLP (orange part). VolSDF [5] predict the scene SDF
and “VolSDF w/ Semantic” predict the scene SDF with an additional semantic
prediction. However, in our framework, we directly predict the SDF of different
objects and transfer them to scene SDF and semantic with a transformation
function.

We provide the details in “VolSDF w/ Semantic” to obtain each object rep-
resentation by extracting the object with a threshold. Suppose we expect to
obtain the i-th object, we will get the semantic label s and volume density σ of
each point. Then we apply SoftMax operation to normalize the semantic label s
and judge whether the i-th semantic label large than the given threshold τ , i.e.,
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Fig. 2. Apply threshold in original semantic prediction, we show the result
that applying a threshold to extract an object from the original semantic prediction
of “VolSDF w/ Semantic”. From left to right, we show the ground truth image and
instance mask, the results of “VolSDF w/ Semantic” and the results of ours

SoftMax(s)i > τ . If the semantic label meets the requirement, we will adopt the
density in this place for rendering the final result.

In the supplementary, we also show more results in extracting the instance in
original semantic value rather than normalized semantic value using SoftMax.
The result is given in Fig. 2. We use thresholds 5, 10, and 20 to extract the
object. And we also notice that when the threshold is 10, the extracted teapot
is getting ruined but the piano in the bottom is far away from the ground
truth. For different instances, we cannot use the same threshold to extract the
object precisely for the variant “VolSDF w/ Semantic”. It again demonstrates
the robustness of our proposed framework in representing objects inside the
scene.

D Analysis of Our framework

There still exist some limitations of our framework. As our method regarding
the background as an individual object, we can also visualize the reconstructed
result of the background. We give an example from ToyDesk. As shown in Fig. 3,
we notice that there are some holes in the desk region. The reason behind it
is the lack of sufficient observation information in the invisible part. A possible
solution to solve it is incorporating some physics constraint or causality guidance
to constraint the reconstruction quality of the invisible region. We also show the
rendered result of the desk, and we can observe that the texture in the invisible
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Ground Truth Rendered Image of DeskRendered Normal Map of Desk

Fig. 3. Analysis of our framework, we show the result of rendered desk result from
the Toydesk dataset. From left to right, we show the ground truth image, the rendered
normal map of desk (background) and the rendered image of desk. Due to the lack
of observation in the bottom region of each toy, our framework cannot guarantee the
reconstruction result in the invisible regions.

region also contains some artifacts. It also resulted from a lack of observation in
the invisible region. Solving the reconstruction and texture issue in the invisible
region is crucial for a further application like realistic scene editing. We will
explore this problem in future work.
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