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Abstract. This supplementary document is organized as follows:

– Section 1 explains in more detail about the LiDAL implementation.
– Section 2 describes the baseline active learning methods.
– Section 3 enumerates detailed semantic segmentation results of the

line charts in the main paper.
– Section 4 provides more ablation studies.

1 Implementation Details

As explained in Section 3.1 of the main paper, our LiDAL method consists of four
steps: 1. Train the network to convergence using the currently labeled dataset
DL. 2. Calculate the model uncertainty scores for each region of DU . 3. Select
regions based on the uncertainty measures for active learning and self-training.
4. Obtain labels from human annotation and pseudo-labeling. In this section, we
supplement implementation details to these steps. Note that the used symbols
are the same as those in Section 3 of the main paper.

1.1 Network Training

All the experiments are conducted on a PC with 8 NVIDIA Tesla V100 GPUs.
The batch sizes are set to 30 and 90 for the SemanticKITTI [1] and nuScenes [4]
datasets, respectively.

For both datasets, we train the networks by minimizing the cross-entropy
loss using Adam optimizer with an initial learning rate 1e-3. For fully-supervised
baselines, the networks are trained for 80,000 iterations. For each round of active
learning (including the initial round), the networks are trained or fine-tuned for
20,000 iterations.
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Fig. 1: An example of divided sub-scene regions in the SemanticKITTI
dataset. Points of the same regions are painted with the same colors.

The training settings are the same for SPVCNN [15] and MinkowskiNet [5]
network architectures. On the ScanNet dataset, for SPVCNN, LiDAL consumes
about 19 GPU hours for inference (uncertainty scoring) and 40 GPU hours for
training in each round. For MinkowskiNet, LiDAL consumes about 18 GPU
hours for inference and 34 GPU hours for training. On the nuScenes dataset,
for SPVCNN, LiDAL consumes about 10 and 31 GPU hours in each round,
respectively. For MinkowskiNet, LiDAL consumes about 8 and 27 GPU hours,
respectively.

1.2 Correspondence Estimation

In Section 3.2 of the main paper, after the registration of each frame, we then
find for each point its corresponding points in the neighboring frames to calcu-
late inter-frame uncertainty measures. Since there are hundreds of thousands of
points in a LiDAR frame, it is impractical to register all the LiDAR frames at
the same time and then estimate correspondences for each point.

To address this issue, for each frame Fi, we retrieve its neighboring Nnei

frames for correspondence estimation. After registration, for each point p of the
frame Fi, we find its nearest point in each of the neighboring Nnei frames as
the initial corresponding points. Since a certain position may be scanned in not
all the frames due to occlusion and the movement of the scanning device, point
p may not have proper corresponding points in some neighboring frames. We
then filter out the corresponding points whose distances to p are larger than
a threshold Tp. For both the SemanticKITTI and nuScenes datasets, we set
Nnei = 24 and Tp = 0.1m.
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1.3 Region Division and Overlap Determining

We utilize the constrained K-means clustering [2] algorithm to divide a LiDAR
frame F into multiple sub-scene regions. As an extension of the classical K-means
algorithm, this algorithm forces the number of points in each of the K clusters
in (Nmin, Nmax). For both the SemanticKITTI and nuScenes datasets, we set

K = 20, Nmin = 0.95 ∗ |F |
K , and Nmax = 1.05 ∗ |F |

K , where |F | is the number
of points contained in frame F . An example of divided sub-scene regions of the
SemanticKITTI dataset is shown in Fig 1.

In Section 3.3 of the main paper, for a specific region r, we need to retrieve
the set of regions overlapping with r for further processing. To determine if two
regions overlap, we may check the Earth Mover’s distance [9] or the Chamfer
distance [3] between the two regions. However, we find that a simpler solution
based on the distance between the weight centers of two regions yields similar
results. Considering the efficiency of this simple solution, we determine that two
regions overlap if the distance between their weight centers is less than Tr. For
both the SemanticKITTI and nuScenes datasets, we set Tr = 5m.

1.4 Label Acquisition

For active learning, instead of using a human annotator, we simulate annotation
by using the ground-truth annotation of the dataset as the annotation from a
human annotator. For self-training, we use the network predictions averaged over
8 augmented inference runs as the pseudo-labels.

2 Baseline Active Learning Methods

In this section, we describe the implementation of the baseline active learning
methods used in our experiments (Section 4.2 of the main paper).

Random Selection (RANDfr and RANDre). In each round of active learn-
ing, this baseline method randomly selects a portion of LiDAR frames or point
cloud regions from the unlabeled dataset for label acquisition. It is a commonly
used baseline strategy in the literature [17,14,12,6].

Segment-entropy (SEGENT). Based on the assumption that points within
a region are supposed to share the same label, segment-entropy is proposed to
serve as a metric for active selection [10]. In this method, the distribution of
predicted labels within a region r is estimated by:

Eseg = −
∑
c

q(c) log q(c), (1)

ŷp = argmax
c

P p, (2)
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q(c) =
1

|r|
∑
p∈r

f(ŷp, c), (3)

f(ŷp, c) =

{
1, if ŷp = c

0, otherwise
, (4)

where Eseg is the proposed segment-entropy, P p is the probability distribution
of point p, ŷp is the predicted label of point p, and q(c) is the percentage of
points predicted as class c. The segment-entropy score of a frame is the average
of the scores of all the points inside this frame. The frames with the largest
segment-entropy scores are selected for label acquisition. In the implementation
of this method, we utilize the same region division results as our LiDAL for a
fair comparison.

Softmax Margin (MAR). Some previous active learning methods [8,11,16]
rank all the samples in order of the model decision margin, which is the difference
of softmax probabilities between the most probable label and the second most
probable label, and then select the samples with the least differences. For a point
p, the softmax margin is calculated as:

MARp = P p(ŷ1)− P p(ŷ2), (5)

where P p is the probability distribution of point p, ŷ1 is the most probable label
class, and ŷ2 is the second most probable label class.

The softmax margin of a frame is calculated by averaging the values of all the
points inside it. The frames with the least softmax margin values are selected
for label acquisition.

Softmax Confidence (CONF). Similar to MAR, the softmax probability of
the most probable label is considered as a confidence score in some previous
methods [13,16]. For point p, the softmax confidence is calculated as:

CONF p = P p(ŷ1), (6)

where P p is the probability distribution of point p, and ŷ1 is the most probable
label class.

For a frame, the softmax confidence score is the average result of the scores of
all the associated points. The frames with the least confidence scores are selected
for label acquisition.

Softmax Entropy (ENT). Unlike MAR and CONF, which consider only the
top two most probable classes, softmax entropy takes into account probabilities
of all classes to measure the information of a probability distribution [7,16]. For
point p, the softmax entropy score is calculated as:

ENT p = −
∑
c

P p(c) log(P p(c)), (7)
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where P p(c) is the probability of point p belonging to class c.

For a frame, the softmax entropy score is the average result of the scores of
all the associated points. The frames with the largest entropy scores are selected
for label acquisition.

Core-set Selection (CSET). Core-set refers to a small subset that captures
the diversity of the whole dataset [12], and thus a model trained on this subset
yields similar performance to that trained on the whole dataset. This method
first extracts features for each sample of the dataset using the currently trained
network. Operating on the feature space, it then selects a small set of samples for
labeling utilizing the furthest point sampling strategy. In the implementation,
we use the intermediate results of the second-last layers of the networks as the
features. The feature of a frame is averaged over all the associated points.

ReDAL. Region-based and diversity-aware active learning (ReDAL) [17] is a
recent state-of-the-art method designed for 3D semantic segmentation of both
indoor and outdoor scenes. This method first divides a 3D scene into sub-scene
regions and then estimates the region information utilizing three metrics: soft-
max entropy, color discontinuity, and structural complexity. With the estimated
region information scores, this method further designs a diversity-aware selec-
tion algorithm to avoid visually similar regions appearing in a querying batch for
labeling. Since both the SemanticKITTI and nuScenes datasets do not provide
colored point clouds, the color discontinuity metric is discarded in the imple-
mentation following the instruction of ReDAL’s official code.

3 Detailed Experimental Results

In this section, we provide more details on our experimental results, for bench-
marking purposes with future works. The results of fully-supervised networks
are reported in Table 1. Detailed scores for Fig. 5 in the main paper are shown
in Tables 2 and 3. For Fig. 6, the detailed scores are presented in Tables 4 and 5.

Table 1: Mean intersection over union scores of fully-supervised net-
works.

Network \ Dataset SemanticKITTI nuScenes

SPVCNN 64.5 71.7

MinkowskiNet 61.4 70.6
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Table 2: Mean intersection over union scores on SemanticKITTI Val
with SPVCNN.
Percentage of Labeled Points Init (1%) 2% 3% 4% 5%

RANDfr 48.8 52.1 53.6 55.6 57.2

RANDre 48.8 51.7 55.0 56.1 58.2

SEGENT 48.8 49.8 48.3 49.1 48.2

MAR 48.8 49.4 50.0 48.7 49.3

CONF 48.8 48.0 48.9 50.4 51.6

ENT 48.8 49.6 48.5 50.1 49.9

CSET 48.8 53.1 52.9 53.2 52.6

ReDALreported 41.9 51.7 55.8 56.9 58.2

ReDALretrained 48.8 51.3 54.0 58.6 58.1

LiDAL (ours) 48.8 57.1 58.7 59.3 59.5

Table 3: Mean intersection over union scores on SemanticKITTI Val
with MinkowskiNet.
Percentage of Labeled Points Init (1%) 2% 3% 4% 5%

RANDfr 47.3 51.4 55.8 57.7 56.6

RANDre 47.3 50.1 55.8 55.9 58.5

SEGENT 47.3 49.8 48.8 49.5 47.7

MAR 47.3 50.2 49.8 49.4 50.1

CONF 47.3 48.5 48.5 51.4 51.7

ENT 47.3 49.9 48.8 49.0 50.2

CSET 47.3 52.6 55.9 56.4 57.6

ReDALreported 37.5 48.9 55.3 58.4 59.8

ReDALretrained 47.3 51.4 52.5 58.4 58.1

LiDAL (ours) 47.3 56.7 58.7 59.5 60.1

Table 4: Mean intersection over union scores on nuScenes Val with
SPVCNN.
Percentage of Labeled Points Init (1%) 2% 3% 4% 5%

RANDfr 51.8 58.4 60.5 60.6 63.2

RANDre 51.8 60.3 62.3 63.7 63.6

SEGENT 51.8 55.5 56.1 55 57.8

MAR 51.8 55.2 56.4 57.0 57.7

CONF 51.8 55.1 54.9 55.4 56.0

ENT 51.8 55.4 56.7 56.6 57.2

CSET 51.8 59.4 62.3 62.9 63.0

ReDAL 51.8 54.3 57.0 57.2 58.3

LiDAL (ours) 51.8 60.8 65.6 67.6 68.2
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Table 5: Mean intersection over union scores on nuScenes Val with
MinkowskiNet.
Percentage of Labeled Points Init (1%) 2% 3% 4% 5%

RANDfr 49.7 57.9 60.5 61.8 61.7

RANDre 49.7 58.7 60.9 62.0 63.1

SEGENT 49.7 54.8 55.3 56.5 58.5

MAR 49.7 53.9 55.0 56.7 59.1

CONF 49.7 54.4 55.7 56.8 55.5

ENT 49.7 54.9 56.4 57.2 57.6

CSET 49.7 58.5 62.0 63.2 63.6

ReDAL 49.7 54.5 53.9 56.7 57.2

LiDAL (ours) 49.7 62.3 64.7 66.5 67.0

4 More Ablation Studies

In this section, we provide more ablation studies to examine the design deci-
sion of our self-training strategy and to analyse the actively selected labels and
pseudo-labels. We also evaluate the effects of data augmentation and K-means
clustering techniques used in our method. Moreover, we showcase the overall
trend of performance given more labeling budget.

Self-training Strategy. In Section 3.3 of the main paper, we inject pseudo-
labels to the training set at each active learning round to further boost the per-
formance. We have considered three commonly used strategies for self-training:

– S1: Enlarge the pseudo-label set in each round with the newly selected re-
gions. (The selection criterion is discussed in the main paper.)

– S2: Keep the size of the pseudo-label set constant, and replace in each round
with the newly selected regions.

– S3: (Our design choice) Keep the size of the pseudo-label set constant, and
replace in each round with the newly selected regions that are not already
in the last pseudo-label set.

The results of these three self-training strategies on the SemanticKITTI
dataset with SPVCNN are shown in Table 6. As shown in the table, both two
alternative strategies generate more inferior results to our design choice. We
assume that, for S1, it is easily susceptible to label drifting as its size of pseudo-
label set increases over time. For S2, since the previous pseudo-label set used for
training is also considered for the pseudo-labeling of the current round, it tends
to select a stable set of regions that are less and less helpful during training.

Class Distribution of Actively Selected Samples. To gain a better un-
derstanding of the property of inter-frame constraints, we count the class dis-
tribution of samples selected in all 4 rounds of LiDAL operating on the Se-
manticKITTI dataset with SPVCNN network. As shown in Table 7, LiDAL
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Table 6: Mean intersection over union scores of different self-training
strategies on SemanticKITTI Val with SPVCNN.
Percentage of Labeled Points Init (1%) 2% 3% 4% 5%

S1 48.8 56.9 57.2 59.1 58.8

S2 48.8 57.2 58.5 58.9 59.0

S3 (Our design choice) 48.8 57.1 58.7 59.3 59.5

focuses more on less-represented but highly important classes like person and
bicyclist. This is foreseeable since the networks struggle to generate consistent
predictions for these hard samples. This is a valuable property that can benefit
downstream tasks like autonomous driving, which poses great significance on
safety issues.

Table 7: Class distributions of labels(‰). We present samples selected in
all 4 rounds of LiDAL operating on the SemanticKITTI dataset with SPVCNN
network.
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Full 103 43.68 0.17 0.42 2.02 2.40 0.36 0.13 0.04 205.22 15.19 148.59 4.03 137.00 74.69 275.57 6.23 80.67 2.95 0.63

LiDAL 103 36.75 0.25 1.06 4.01 7.45 0.89 0.39 0.07 146.42 22.30 154.42 11.91 127.15 98.29 277.80 9.01 95.91 4.34 1.57

Accuracy of Pseudo-labels. The main challenge with pseudo-labels is to
ensure their accuracy and to avoid drifting. In Section 4.4 of the main paper,
we evaluate the effects of injecting different numbers of pseudo-labels into the
training set. Here we quantitatively measure the accuracy of added pseudo-labels
in Table 8. The study is conducted in the first training round of SPVCNN on
the SemanticKITTI dataset. As shown in the table, the generated pseudo-labels
maintain high accuracy in general, but the accuracy drops when more and more
pseudo-labels are selected. This confirms our conjecture in the main paper that
adding a reasonable number of pseudo-labels will improve network performance,
but redundant pseudo-labels might introduce unhelpful training bias and label
noise.

Data Augmentation. For 3D semantic segmentation, commonly used data
augmentation techniques include random scaling, rotation around the gravity
axis, spatial translation, spatial elastic distortion, chromatic translation, point
jittering, and context mixing. These techniques can significantly increase the
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Table 8: Accuracy of pseudo-labels. Samples are selected in the first training
round of SPVCNN on SemanticKITTI dataset.

Range of Added Pseudo-labels Mean Accuracy

0-1% 97.58%

1-2% 97.04%

2-3% 93.05%

amount of training data to regularize the convergence of models and improve
their performance. However, they require a large amount of fully labeled data
and rely heavily on domain knowledge.

In Section 3.2 (L202-212) of the main paper, we perform data augmentations
to attain robust probability predictions for uncertainty scoring. With the same
setting as in Section 4.4, we turn off the data augmentation to investigate its
effect. As shown in Table 9, the removal of data augmentation results in a slight
performance drop of 0.2%.

Table 9: Ablation study: Data augmentation.
Number of Augmented Inference Runs mIoU (%)

1 (no augmentation) 56.9

8 (used in the paper) 57.1

K-means Clustering. In LiDAL, to construct region-based query units, we
utilize the constrained K-means clustering algorithm for its simplicity and effi-
ciency. The clustering is performed on the 3D point positions alone and a visual
example is provided in Supplementary Fig. 1. With the same setting as in Sec-
tion 4.4, we vary the number of clusters to measure the effect of clustering size.
As shown in Table 10, when the number of clusters is too small (K = 10), the
performance drops due to the limited context range and the colossal number of
uninformative points in the selected large regions. When K is too large (K =
40, 80), the performance drops as well. It is possibly because of the unstable
gradient flows from the labeled points constituting only a small fraction of the
input points of each training batch. Since LiDAL is orthogonal to the used query
unit, it can easily benefit from the improvements of region division methods.

Table 10: Ablation study: K-means clustering.
Number of Clusters 10 20 (used in the paper) 40 80

mIoU (%) 56.4 57.1 57.0 56.5
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More Training Budget. To demonstrate the overall trend of performance
given more labeling budget, we further perform three rounds of active learning
process based on the results in Fig. 5 of the paper. For fast iteration, we drop
the self-training part and reduce the training iterations of each round to 5K.
As shown in Fig. 2, with more than 5% of labeled data, the performance of the
network tends to saturate. It may be caused by the biases introduced in the
initial round (e.g., consistent mis-predictions for objects of certain classes).

SPVCNN

Percentage of Labeled Points (%)

m
Io

U
 (%

)

Fig. 2: Mean IoU scores on SemanticKITTI Val.
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