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Outline

This supplementary document is arranged as follows:

• Sec. S1 elaborates the visible range design in occlusion simulation of VSS;
• Sec. S2 illustrates visualization and analysis of TACM and other data-mixing
methods;

• Sec. S3 presents the implementation details of benchmark setup for sim-to-
real settings and cross-site settings;

• Sec. S4 presents the per-class results of tail cuboid over-sampling in TACM;
• Sec. S5 benchmarks DODA with other popular UDA methods on cross-site
settings;

• Sec. S6 investigates DODA performance on 3D-FRONT → NYU-Depth V2,
which focuses on the adaptation from simulation 3D to real RGBD;

• Sec. S7 analyzes the pseudo-label quality with VSS and TACM.
• Sec. S8 presents the qualitative results of S3DIS and ScanNet on sim-to-real
settings.

S1 Visible Range Design

In this section, we elaborate the visible range design. Given the camera position
v and the point of interest h, the maximum visible range Rv is determined by
FOV configurations encompassing the horizontal viewing angle αh, the vertical
viewing angle αv and the viewing mode η. Specifically, the horizontal visible
range Rv[xy] is determined by αh as Eq. (1):

Rv[xy] =

{
p | (pxy − vxy)

T (hxy − vxy)

||pxy − vxy||2||hxy − vxy||2
> cos

αh

2

}
, (1)

where the subscript xy stands for the coordinate vector projected onto the X-Y
plane. As for the vertical visible range Rv[z], it depends on αv and η as shown in
Fig. S1. Specifically, for the simplest fixed mode (η = fixed), it selects the visible
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Fig. S1. An illustration of visible range with different viewing modes η. Note that for
three modes, the definition of αh is the same thus we only show it in the fixed mode.

range lower than the horizontal plane passing through camera v if the camera
look downwards (see Fig. S1 (a)); otherwise range above the horizontal plane
through v will be selected. In this regard, αv is fixed at 90◦. More flexibly, the
parallel mode (η =parallel) decides the upper and lower bound of vertical visible
range as the intersections of marginal rays and the line through h perpendicular
to the ground (See Fig. S1 (b)). The perspective mode (η =perspective) further
constrains the visible range into a rectangular pyramid bounded by the camera
marginal rays (see Fig. S1 (c)), which is the most sophisticated and realistic cam-
era projection process. Formally, the vertical range R[v] with different viewing
modes can be expressed as Eq. (2).

Rv[z] =


{p | pz > vz} if hz > vz, otherwise {p | pz < vz} , η = fixed,{
p | ||vxy − hxy|| tan (θ − αv

2 ) < (pz − vz) < ||vxy − hxy|| tan (θ + αv

2 )
}
, η = parallel,{

p | ||vxy − pxy|| tan (θ − αv

2 ) < (pz − vz) < ||vxy − pxy|| tan (θ + αv

2 )
}
, η = perspective,

(2)
where θ is the camera pitch angle defined as arcsin( vz−hz

||v−h||2 ) and || · || denotes the
L2 distance. Finally we obtain the visible range Rv as the intersection of Rv[xy]
and Rv[z].

S2 Visualization Comparison and Analysis between
TACM and Other Data-mixing Methods

Even though we already present experimental results in Table 8 in the main
paper, to better demonstrate the priority of our TACM among other data-mixing
methods, we also show some visualization examples here. As shown in Fig S2,
when scenes are mixed in Mix3D [8], it leads to ambiguity and loss of semantic
cues since the neighboring relationship in local areas has been disrupted by mixed
points from two domains. As for Copy-paste [4] and CutMix [16], they perturb
a local area with randomly sampled patches or instances, which break the local
context while introducing no disruptions of the broader context. In contrast,
our TACM mixes scenes with the cuboid as the smallest unit, which preserves
the local context while also bringing diversity to the global context by different
cuboid combinations.
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TACM Mix3D Copy-pasteCutMix

Fig. S2. An illustration of TACM examples along with other data-mixing methods.
The yellow points are from source scenes and the blue points are from target scenes.



4 Ding et al.

S3 Benchmark Setup

S3.1 Comparison of Large-scale Simulation Datasets.

In our sim-to-real adaptation benchmark, we select 3D-FRONT [2] as the source
domain which contains 18,968 professionally designed rooms with 13,151 CAD
3D furniture objects from 3D-FUTURE [3]. Regarding other large-scale syn-
thetic datasets, SUNCG [10] is not publicly available. Structured3D [17] does
not provide interior 3D furniture objects that populate the scenes, which cannot
be used as a source dataset without instance classes and layouts. OpenRoom [6]
only contains 2.5K CAD models as the objects, which constrains its diversity.
Hence, 3D-FRONT is a favorable choice with adequate scenes as well as profes-
sional layouts.

S3.2 Label Mapping.

Due to the different label spaces of datasets, we need to condense common cat-
egories for each adaptation task. We manually determine the category mapping
relations according to the class names and representative shapes for each class
in different datasets. The selected common classes and mapping relations for
3D-FRONT → ScanNet, 3D-FRONT → S3DIS, 3D-FRONT → NYU-Depth V2
and ScanNet ⇆ S3DIS are shown in Table S1, S2, S3 and S4, respectively.

S3.3 Implementation Details

Network Details. We validate DODA on the sparse-convolution-based U-Net
backbone [5, 1], which is a popular and high-performance network on 3D seg-
mentation tasks. The voxel size for point cloud voxelization is set to 2cm.
Training Details. In the pretrain stage, we train source data for 11k iterations
with 32 batch size on 8 GPUs. SGD optimizer is employed with 0.9 momentum
and 0.0001 weight decay. The learning rate is initialized as 0.005 without decay.
For pseudo label generation, we set the pseudo label confidence threshold T to 0.7
for ScanNet and to per-class 30% for S3DIS, to achieve the highest performance.
In the self-training stage, we fine-tune the pertrain model for 3.8k iterations on
ScanNet and 0.6k iterations on S3DIS. The initial learning rate is set as 0.005
and decayed following the polynomial policy with 0.9 power. The same batch
size and optimizer are utilized as in the pretrain stage. The loss trade-off factor λ
is set as 0.5. During the two stages, commonly used augmentations are applied,
in terms of rotation along vertical axis, flip, elastic distortion, jittering and point
shuffling. All experiments are conducted on 8 NVIDIA GTX 2080 Ti GPUs.

For the hyper-parameters of VSS, the number of cameras nv is set to 4 by
default. We set the αh as 180◦, αv as 90◦ and η as fixed for FOV configuration.
The point jittering intensity δp is set as 0.01. For cuboid mixing in TACM,
the permutation probability ρs and domain mixing probability ρm are both set
as 0.5. The number of partitions (nx, ny, nz) is set to (2,2,1) with partition
perturbations δϕ as 0.1. Thus a total of 4 cuboids are partitioned for each scene.
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As for tail cuboid over-sampling, we typically set the tail cuboid queue size Nq

as 256 and the number of tail classes nr as 2. The least number of tail cuboids
per scene u is set as 2.

Table S1. Label mapping for 3D-FRONT → ScanNet.

Class ScanNet 3D-FRONT

wall wall

wallInner; wallOuter; baseboard; wallTop;
customizedBackgroundModel; wallbottom;
customizedFeatureWall;
extrusionCustomizedBackgroundModel

floor floor floor

cabinet cabinet
children cabinet; wardrobe; sideboard/side cabinet/
console table; wine cabinet; wardrobe; TV stand;
drawer chest/corner cabinet

bed bed king-size bed; bunk bed; bed frame; single bed; kids bed

chair chair
dining chair; lounge chair/cafe chair/office chair;
dressing chair; classic Chinese chair; barstool

sofa sofa
three-seat/multi-seat sofa; armchair; loveseat sofa;
L-shapped sofa; lazy sofa; chaise longue sofa

table table
coffee table; round end table; dressing table;
dining table

door door door; pocket

window window window; baywindow

bookshelf bookshelf bookcase/jewelry armoire

desk desk desk

S3.4 UDA Baselines.

We reproduce 7 popular 2D UDAmethods and 1 3D outdoor UDA method as our
baselines, encompassing MCD [9], AdaptSegNet [11], CBST [18], MinEnt [12],
AdvEnt [12], Noisy Student [14] APO-DA [15] and SqueezeSegV2 [13]. Similar
to DODA, for each baseline, we adopt a sparse-convolution-based U-Net back-
bone [5, 1] and a linear fully-connected point-wise classification head as the over-
all segmentation network. Besides, some modifications are made for adapting to
the 3D vision task as below. For MCD, the U-Net is used as the generator and
the point-wise classification head is used as two-branch classifiers. For Adapt-
SegNet, we employ its single-level adversarial training performed on the output
space. Since the output of the segmentation network is the point-wise predictions,
we implement the discriminator as a PointNet-like neural network with 3-layer
shared MLP and point random downsampling. For MinEnt, we perform point-
wise entropy minimization on target data. For AdvEnt, the same discriminator
is utilized as in AdaptSegNet to discriminate outputs from different domains.
For APO-DA, we also use the UNet as the generator and only attack the linear
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Table S2. Label mapping for 3D-FRONT → S3DIS.

Class S3DIS 3D-FRONT

wall wall

wallInner; wallOuter; baseboard; wallTop;
customizedBackgroundModel; wallBottom;
customizedFeatureWall;
extrusionCustomizedBackgroundModel

floor floor floor

chair chair
dining chair; lounge chair/cafe chair/office chair;
dressing chair; classic Chinese chair; barstool

sofa sofa
three-seat/multi-seat sofa; armchair; loveseat sofa;
L-shapped sofa; lazy sofa; chaise longue sofa

table table
coffee table; round end table; dressing table;
dining table; desk

door door door; pocket

window window window; baywindow

bookcase bookshelf bookcase/jewelry armoire

ceiling ceiling
customizedCeiling; smartCustomizedCeiling; ceiling;
extrusionCustomizedCeilingModel

beam beam beam

column column column

Table S3. Label mapping for 3D-FRONT → NYU-Depth V2.

Class NYU-Depth V2 3D-FRONT

wall wall

wallInner; wallOuter; baseboard; wallTop;
customizedBackgroundModel; wallBottom;
customizedFeatureWall;
extrusionCustomizedBackgroundModel

floor floor floor

cabinet cabinet
children cabinet; wardrobe; sideboard/side cabinet/
console table; wine cabinet; wardrobe; TV stand;
drawer chest/corner cabinet

bed bed
king-size bed; bunk bed; bed frame; single bed;
kids bed

chair chair
dining chair; lounge chair/cafe chair/office chair;
dressing chair; classic Chinese chair; barstool

sofa sofa
three-seat/multi-seat sofa; armchair; loveseat sofa;
L-shapped sofa; lazy sofa; chaise longue sofa

table table
coffee table; round end table; dressing table;
dining table

door door door; pocket

window window window; baywindow

bookshelf bookshelf bookcase/jewelry armoire

desk desk desk

ceiling ceiling
customizedCeiling; smartCustomizedCeiling;
ceiling; extrusionCustomizedCeilingModel
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Table S4. Label mapping for ScanNet → S3DIS and S3DIS → ScanNet.

Class ScanNet S3DIS

wall wall wall

floor floor floor

chair chair chair

sofa sofa sofa

table table table

door door door

window window window

bookshelf bookshelf bookcase

classification head to generate point-wise adversarial features. As for the self-
training pipeline including CBST and Noisy Student, no other modifications are
needed. For the 3D baseline SqueezeSegV2, without official implementations,
we self-implement the geodesic alignment and domain calibration modules for
our indoor UDA task. The intensity rendering module is discarded since it is
specified for outdoor data.

S4 Per-class Results of Tail Cuboid Over-sampling

We present per-class results of Tail Cuboid Over-Sampling (TCOS) on 3D-
FRONT → ScanNet in Table S5 to demonstrate that the performance gain
mainly comes from boosting tail categories. From target pseudo label statistics,
the tail classes for this setting are bookshelf and desk with sampling ratios around
25% and 75%, respectively. For desk, the significant improvements around 6%
verifies the effectiveness of our method in addressing the long-tail issue in pseudo
labels.

Table S5. Supplementary adaptation results of 3D-FRONT → ScanNet in terms of
mIoU (%). We indicate the best adaptation results in bold. † denotes DODA results
without tail cuboid over-sampling.

Method mIoU wall floor cab. bed chair sofa table door wind. bksf. desk

DODA w/o TCOS† 50.55 72.63 93.98 28.11 65.88 71.43 53.17 57.40 08.53 21.76 57.10 26.09
DODA 51.42 72.71 93.86 27.61 64.31 71.64 55.30 58.43 08.21 24.95 56.49 32.06

S5 Experimental Results on Cross-site Adaptation Tasks

In real-to-real cross-site adaptation tasks, scenes collected from different sites or
room types suffer considerable domain discrepancies. To verify the effectiveness
of TACM in bridging the real-world domain gaps, we compare DODA (only
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TACM) with other popular UDA methods on ScanNet → S3DIS and S3DIS →
ScanNet in Table S6 and Table S7, respectively. Results show that DODA (only
TACM) outperforms other methods by a large margin around 6% ∼ 16% on
ScanNet → S3DIS and 4% ∼ 18% on S3DIS → ScanNet. It verifies that our
TACM can serve as a general module to eliminate source context bias through
target cuboid-level contextual patterns complement.

Besides, to evaluate unsupervised domain adaptation methods, we argue that
S3DIS is unsuitable as a source dataset since the per-class results of DODA
on real-to-real S3DIS → ScanNet are even worse than its counterpart on the
sim-to-real 3D-FRONT → ScanNet setting (see Table 1 of the main paper).
Although real-to-real adaptation theoretically shows smaller domain gaps than
sim-to-real settings, S3DIS is rather simple with a small sample size and limited
diversity as its scenes are collected only in three buildings of mainly office and
educational use, thus resulting in poor performance of adaptation. It illustrates
the importance of carefully selecting real-world datasets as the source domain.
Simulated datasets, on the other hand, can be a consistently appealing choice as
a source domain with arbitrarily large size, diverse samples and free annotations.

Table S6. Adaptation results of ScanNet → S3DIS in terms of mIoU (%). We indicate
the best adaptation result in bold. † denotes the self-training results with TACM based
on CBST.

Method mIoU wall floor chair sofa table door wind. bkcase.

Source Only 54.09 64.38 94.39 76.15 25.46 70.55 28.98 28.52 44.31

MCD [9] 49.83 61.38 95.47 73.51 32.04 75.24 36.95 08.01 16.02
AdaptSegNet [11] 50.28 67.75 94.47 69.13 24.77 67.71 36.32 13.54 28.57

CBST [18] 60.13 68.66 96.02 84.61 55.04 63.80 33.47 35.61 43.84
MinEnt [12] 55.31 71.31 94.70 68.10 39.86 68.23 35.98 22.03 42.24
AdvEnt [12] 49.86 68.83 93.87 67.37 20.77 68.11 32.67 13.74 33.50

Noisy student [14] 58.82 66.76 95.84 83.56 52.05 64.39 36.36 37.51 34.08
APO-DA [15] 53.47 68.70 95.62 76.69 43.01 70.53 26.22 11.63 35.37

DODA (only TACM)† 66.52 73.81 95.94 85.82 70.71 64.64 42.93 48.25 42.09

Oracle 72.51 84.89 97.63 83.72 55.26 81.47 53.94 44.61 78.55

S6 Experimental Results on Sim 3D → Real RGBD task

S6.1 Datasets.

NYU-Depth V2 [7] is a popular RGBD dataset for semantic segmentation. It
contains 1,449 densely annotated RGBD images, i.e. 795 training samples and
654 validation samples. Each image has a resolution of 640×480, which can be
back-projected to a 3D point cloud containing 3077,200 points. It provides 40
semantic categories.
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Table S7. Adaptation results of S3DIS → ScanNet in terms of mIoU (%). We indicate
the best adaptation result in bold. † denotes the self-training results with TACM based
on Noisy Student.

Method mIoU wall floor chair sofa table door wind. bksf.

Source Only 33.43 37.87 84.01 55.26 18.32 36.15 11.43 08.58 15.81

MCD [9] 30.65 39.50 92.76 43.74 00.00 40.57 09.67 06.03 12.88
AdaptSegNet [11] 36.14 58.48 91.61 35.47 21.35 44.23 07.18 09.17 21.62

CBST [18] 43.08 45.43 90.11 67.53 35.48 56.51 16.94 09.65 22.97
MinEnt [12] 39.40 58.11 90.31 51.18 24.86 44.20 08.10 10.27 28.19
AdvEnt [12] 38.09 58.83 90.24 41.73 28.96 40.68 10.58 08.11 25.59

Noisy student + [14] 44.81 55.61 92.75 65.72 37.77 57.77 12.54 15.25 21.09
APO-DA [15] 38.67 63.85 90.18 49.86 22.34 41.89 06.44 04.64 30.15

DODA (only TACM) 48.47 65.03 94.25 69.23 43.13 58.79 03.58 13.86 29.91

Oracle 80.06 86.78 96.02 89.98 84.24 82.15 51.19 64.99 85.16

S6.2 Main Results.

In the main paper, our experiments focus on the sim-to-real adaptation with tar-
get scenes reconstructed by RGBD sequences. However, in real-world scenarios,
the real scene can be a single RGBD image captured by the depth camera with-
out reconstructions. Therefore, we also investigate the performance of DODA in
such a more challenging setting, i.e. sim 3D → real RGBD. As demonstrated
in Table S3, DODA significantly outperforms source only by around 14.3% and
improves CBST by around 8.5%, largely reducing the cross-modal gaps between
3D-FRONT and NYU-Depth V2. Even only equipping source only with VSS,
our DODA (only VSS) also shows its superiority, obtaining 6.3% and 0.6% gains
compared to source only and CBST separately, which demonstrates the effec-
tiveness of VSS in alleviating the point pattern gaps between simulation 3D
and real RGBD. Compared to DODA w/o TACM, TACM further enhances the
performance by around 3.4%, largely bridging the context gaps.

Table S8. Adaptation results of 3D-FRONT [2] → NYU-Depth V2 in terms of mIoU
(%). We indicate the best adaptation result in bold. † denotes our pretrain general-
ization results only with VSS.

Method mIoU

Source Only 17.80
CBST [18] 23.58

DODA (only VSS)† 24.14
DODA w/o TACM 28.74

DODA 32.12

Oracle 52.88
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S7 Analysis of Pseudo label quality

Self-training relies on both pseudo label accuracy and covering ratio (Eq. (3))
for diversity. As shown in Table S9, DODA (only VSS) generates pseudo labels
with around 15.6% higher mIoU and 7.7% larger label covering ratio compared to
source only, which benefits the follow-up self-training stage. Besides, TACM also
improves the pseudo label quality after the first self-training round by about 3.6%
mIoU and 0.5% covering ratio, which is supposed to further boost the iterative
self-training if applied.

covering ratio =
# pseudo-labeled points

# all points
× 100% (3)

Table S9. Results of pseudo label quality with threshold T = 0.7.

Method
pseudo label

mIoU covering ratio (%)

Source Only 35.16 59.85
DODA (only VSS) 50.73 67.54

DODA (w/o TACM) 53.24 81.51
DODA 56.85 82.05

S8 Visualization

We provide some qualitative results of DODA on sim-to-real adaptation tasks
of 3D-FRONT → ScanNet and 3D-FRONT → S3DIS as illustrated in Fig. S3.
Compared to self-training baselines, our DODA can segment instances better
and generate more accurate and smooth predictions.
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Ground-Truth Self-Training DODAInput

Fig. S3. Qualitative results of 3D-FRONT → ScanNet (top) and 3D-FRONT →
S3DIS (bottom). Note that the third column is the prediction of self-training baselines,
i.e. Noisy Student for ScanNet and CBST for S3DIS. The red bounding boxes indicate
the specific areas where our DODA significantly outperforms self-training baselines.
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