Supplementary Materials for DODA: Data-oriented Sim-to-Real Domain Adaptation for 3D Semantic Segmentation

Runyu Ding^{1*}, Jihan Yang^{1*}, Li Jiang², and Xiaojuan Qi^{1 \boxtimes}

¹ The University of Hong Kong ² MPI for Informatics {ryding,jhyang,xjqi}@eee.hku.hk lijiang@mpi-inf.mpg.de

Outline

This supplementary document is arranged as follows:

- Sec. S1 elaborates the visible range design in occlusion simulation of VSS;
- Sec. S2 illustrates visualization and analysis of TACM and other data-mixing methods;
- Sec. S3 presents the implementation details of benchmark setup for sim-toreal settings and cross-site settings;
- Sec. S4 presents the per-class results of tail cuboid over-sampling in TACM;
- Sec. S5 benchmarks DODA with other popular UDA methods on cross-site settings;
- Sec. S6 investigates DODA performance on 3D-FRONT \rightarrow NYU-Depth V2, which focuses on the adaptation from simulation 3D to real RGBD;
- Sec. S7 analyzes the pseudo-label quality with VSS and TACM.
- Sec. S8 presents the qualitative results of S3DIS and ScanNet on sim-to-real settings.

S1 Visible Range Design

In this section, we elaborate the visible range design. Given the camera position v and the point of interest h, the maximum visible range R_v is determined by FOV configurations encompassing the horizontal viewing angle α_h , the vertical viewing angle α_v and the viewing mode η . Specifically, the horizontal visible range $R_v[xy]$ is determined by α_h as Eq. (1):

$$R_{v}[xy] = \left\{ p \mid \frac{(p_{xy} - v_{xy})^{T}(h_{xy} - v_{xy})}{||p_{xy} - v_{xy}||_{2}||h_{xy} - v_{xy}||_{2}} > \cos\frac{\alpha_{h}}{2} \right\},\tag{1}$$

where the subscript xy stands for the coordinate vector projected onto the X-Y plane. As for the vertical visible range $R_v[z]$, it depends on α_v and η as shown in Fig. S1. Specifically, for the simplest fixed mode ($\eta =$ fixed), it selects the visible

^{*} equal contribution

 $[\]square$ corresponding author

Fig. S1. An illustration of visible range with different viewing modes η . Note that for three modes, the definition of α_h is the same thus we only show it in the fixed mode.

range lower than the horizontal plane passing through camera v if the camera look downwards (see Fig. S1 (a)); otherwise range above the horizontal plane through v will be selected. In this regard, α_v is fixed at 90°. More flexibly, the parallel mode (η =parallel) decides the upper and lower bound of vertical visible range as the intersections of marginal rays and the line through h perpendicular to the ground (See Fig. S1 (b)). The perspective mode (η =perspective) further constrains the visible range into a rectangular pyramid bounded by the camera marginal rays (see Fig. S1 (c)), which is the most sophisticated and realistic camera projection process. Formally, the vertical range R[v] with different viewing modes can be expressed as Eq. (2).

$$R_{v}[z] = \begin{cases} \{p \mid p_{z} > v_{z}\} \text{ if } h_{z} > v_{z}, \text{ otherwise } \{p \mid p_{z} < v_{z}\}, & \eta = \text{fixed}, \\ \{p \mid ||v_{xy} - h_{xy}|| \tan\left(\theta - \frac{\alpha_{v}}{2}\right) < (p_{z} - v_{z}) < ||v_{xy} - h_{xy}|| \tan\left(\theta + \frac{\alpha_{v}}{2}\right)\}, & \eta = \text{parallel}, \\ \{p \mid ||v_{xy} - p_{xy}|| \tan\left(\theta - \frac{\alpha_{v}}{2}\right) < (p_{z} - v_{z}) < ||v_{xy} - p_{xy}|| \tan\left(\theta + \frac{\alpha_{v}}{2}\right)\}, & \eta = \text{perspective}, \end{cases}$$

$$(2)$$

where θ is the camera pitch angle defined as $\arcsin\left(\frac{v_z - h_z}{||v - h||_2}\right)$ and $||\cdot||$ denotes the L_2 distance. Finally we obtain the visible range R_v as the intersection of $R_v[xy]$ and $R_v[z]$.

S2 Visualization Comparison and Analysis between TACM and Other Data-mixing Methods

Even though we already present experimental results in Table 8 in the main paper, to better demonstrate the priority of our TACM among other data-mixing methods, we also show some visualization examples here. As shown in Fig S2, when scenes are mixed in Mix3D [8], it leads to ambiguity and loss of semantic cues since the neighboring relationship in local areas has been disrupted by mixed points from two domains. As for Copy-paste [4] and CutMix [16], they perturb a local area with randomly sampled patches or instances, which break the local context while introducing no disruptions of the broader context. In contrast, our TACM mixes scenes with the cuboid as the smallest unit, which preserves the local context while also bringing diversity to the global context by different cuboid combinations.

DODA 3

Fig. S2. An illustration of TACM examples along with other data-mixing methods. The yellow points are from source scenes and the blue points are from target scenes.

S3 Benchmark Setup

S3.1 Comparison of Large-scale Simulation Datasets.

In our sim-to-real adaptation benchmark, we select 3D-FRONT [2] as the source domain which contains 18,968 professionally designed rooms with 13,151 CAD 3D furniture objects from 3D-FUTURE [3]. Regarding other large-scale synthetic datasets, SUNCG [10] is not publicly available. Structured3D [17] does not provide interior 3D furniture objects that populate the scenes, which cannot be used as a source dataset without instance classes and layouts. OpenRoom [6] only contains 2.5K CAD models as the objects, which constrains its diversity. Hence, 3D-FRONT is a favorable choice with adequate scenes as well as professional layouts.

S3.2 Label Mapping.

Due to the different label spaces of datasets, we need to condense common categories for each adaptation task. We manually determine the category mapping relations according to the class names and representative shapes for each class in different datasets. The selected common classes and mapping relations for 3D-FRONT \rightarrow ScanNet, 3D-FRONT \rightarrow S3DIS, 3D-FRONT \rightarrow NYU-Depth V2 and ScanNet \leftrightarrows S3DIS are shown in Table S1, S2, S3 and S4, respectively.

S3.3 Implementation Details

Network Details. We validate DODA on the sparse-convolution-based U-Net backbone [5, 1], which is a popular and high-performance network on 3D segmentation tasks. The voxel size for point cloud voxelization is set to 2cm.

Training Details. In the pretrain stage, we train source data for 11k iterations with 32 batch size on 8 GPUs. SGD optimizer is employed with 0.9 momentum and 0.0001 weight decay. The learning rate is initialized as 0.005 without decay. For pseudo label generation, we set the pseudo label confidence threshold T to 0.7 for ScanNet and to per-class 30% for S3DIS, to achieve the highest performance. In the self-training stage, we fine-tune the pertrain model for 3.8k iterations on ScanNet and 0.6k iterations on S3DIS. The initial learning rate is set as 0.005 and decayed following the polynomial policy with 0.9 power. The same batch size and optimizer are utilized as in the pretrain stage. The loss trade-off factor λ is set as 0.5. During the two stages, commonly used augmentations are applied, in terms of rotation along vertical axis, flip, elastic distortion, jittering and point shuffling. All experiments are conducted on 8 NVIDIA GTX 2080 Ti GPUs.

For the hyper-parameters of VSS, the number of cameras n_v is set to 4 by default. We set the α_h as 180°, α_v as 90° and η as fixed for FOV configuration. The point jittering intensity δ_p is set as 0.01. For cuboid mixing in TACM, the permutation probability ρ_s and domain mixing probability ρ_m are both set as 0.5. The number of partitions (n_x, n_y, n_z) is set to (2,2,1) with partition perturbations δ_{ϕ} as 0.1. Thus a total of 4 cuboids are partitioned for each scene. As for tail cuboid over-sampling, we typically set the tail cuboid queue size N_q as 256 and the number of tail classes n_r as 2. The least number of tail cuboids per scene u is set as 2.

Class	ScanNet	3D-FRONT			
		wallInner; wallOuter; baseboard; wallTop;			
wall		customizedBackgroundModel; wallbottom;			
wall	wall	customizedFeatureWall;			
		extrusion Customized Background Model			
floor	floor	floor			
		children cabinet; wardrobe; sideboard/side cabinet/			
$\operatorname{cabinet}$	cabinet	console table; wine cabinet; wardrobe; TV stand;			
		drawer chest/corner cabinet			
bed	bed	king-size bed; bunk bed; bed frame; single bed; kids bed			
ahain	abain	dining chair; lounge chair/cafe chair/office chair;			
chair	chair	dressing chair; classic Chinese chair; barstool			
a a fa	ach	three-seat/multi-seat sofa; armchair; loveseat sofa;			
sola	sola	L-shapped sofa; lazy sofa; chaise longue sofa			
4 - 1-1 -	4 - 1-1 -	coffee table; round end table; dressing table;			
table table		dining table			
door	door	door; pocket			
window	window	window; baywindow			
bookshelf	bookshelf	bookcase/jewelry armoire			
desk	desk	desk			

Table S1. Label mapping for 3D-FRONT \rightarrow ScanNet.

S3.4 UDA Baselines.

We reproduce 7 popular 2D UDA methods and 1 3D outdoor UDA method as our baselines, encompassing MCD [9], AdaptSegNet [11], CBST [18], MinEnt [12], AdvEnt [12], Noisy Student [14] APO-DA [15] and SqueezeSegV2 [13]. Similar to DODA, for each baseline, we adopt a sparse-convolution-based U-Net backbone [5, 1] and a linear fully-connected point-wise classification head as the overall segmentation network. Besides, some modifications are made for adapting to the 3D vision task as below. For MCD, the U-Net is used as the generator and the point-wise classification head is used as two-branch classifiers. For Adapt-SegNet, we employ its single-level adversarial training performed on the output space. Since the output of the segmentation network is the point-wise predictions, we implement the discriminator as a PointNet-like neural network with 3-layer shared MLP and point random downsampling. For MinEnt, we perform pointwise entropy minimization on target data. For AdvEnt, the same discriminator is utilized as in AdaptSegNet to discriminate outputs from different domains. For APO-DA, we also use the UNet as the generator and only attack the linear

ceiling

beam

column

ceiling

beam

column

beam

column

Class	S3DIS	3D-FRONT
		wallInner; wallOuter; baseboard; wallTop;
		customizedBackgroundModel; wallBottom;
wall	wall	customizedFeatureWall;
		extrusion Customized Background Model
floor	floor	floor
ahain	chair	dining chair; lounge chair/cafe chair/office chair;
chair		dressing chair; classic Chinese chair; barstool
aafa	sofa	three-seat/multi-seat sofa; armchair; loveseat sofa;
sola		L-shapped sofa; lazy sofa; chaise longue sofa
tabla	table	coffee table; round end table; dressing table;
table		dining table; desk
door	door	door; pocket
window	window	window; baywindow
bookcase	bookshelf	bookcase/jewelry armoire
aailimm	a ailim m	customizedCeiling; smartCustomizedCeiling; ceiling;

Table S2. Label mapping for 3D-FRONT \rightarrow S3DIS.

Table S3. Label mapping for 3D-FRONT \rightarrow NYU-Depth V2.

extrusion Customized Ceiling Model

Class	NYU-Depth V2	3D-FRONT				
		wallInner; wallOuter; baseboard; wallTop;				
we 11		customizedBackgroundModel; wallBottom;				
wall	wall	customizedFeatureWall;				
		extrusion Customized Background Model				
floor	floor	floor				
		children cabinet; wardrobe; sideboard/side cabinet/				
cabinet	cabinet	console table; wine cabinet; wardrobe; TV stand;				
		drawer chest/corner cabinet				
had	had	king-size bed; bunk bed; bed frame; single bed;				
bea	bed	kids bed				
ahain ahain		dining chair; lounge chair/cafe chair/office chair;				
chair	chair	dressing chair; classic Chinese chair; barstool				
cofo cofo		three-seat/multi-seat sofa; armchair; loveseat sofa;				
sola	sola	L-shapped sofa; lazy sofa; chaise longue sofa				
tabla	tabla	coffee table; round end table; dressing table;				
table	table	dining table				
door	door	door; pocket				
window	window	window; baywindow				
bookshelf	bookshelf	bookcase/jewelry armoire				
desk desk		desk				
	: 1:	customizedCeiling; smartCustomizedCeiling;				
ceiling	cening	ceiling; extrusionCustomizedCeilingModel				

Class	ScanNet	S3DIS		
wall	wall	wall		
floor	floor	floor		
chair	chair	chair		
\mathbf{sofa}	sofa	sofa		
table	table	table		
door	door	door		
window	window	window		
bookshelf	bookshelf	bookcase		

Table S4. Label mapping for ScanNet \rightarrow S3DIS and S3DIS \rightarrow ScanNet.

classification head to generate point-wise adversarial features. As for the selftraining pipeline including CBST and Noisy Student, no other modifications are needed. For the 3D baseline SqueezeSegV2, without official implementations, we self-implement the geodesic alignment and domain calibration modules for our indoor UDA task. The intensity rendering module is discarded since it is specified for outdoor data.

S4 Per-class Results of Tail Cuboid Over-sampling

We present per-class results of Tail Cuboid Over-Sampling (TCOS) on 3D-FRONT \rightarrow ScanNet in Table S5 to demonstrate that the performance gain mainly comes from boosting tail categories. From target pseudo label statistics, the tail classes for this setting are bookshelf and desk with sampling ratios around 25% and 75%, respectively. For desk, the significant improvements around 6% verifies the effectiveness of our method in addressing the long-tail issue in pseudo labels.

Table S5. Supplementary adaptation results of 3D-FRONT \rightarrow ScanNet in terms of mIoU (%). We indicate the best adaptation results in **bold**. \dagger denotes DODA results without tail cuboid over-sampling.

Method	mIoU	wall	floor	cab.	bed	chair	sofa	table	door	wind.	bksf.	desk
DODA w/o TCOS [†]	50.55	72.63	93.98	28.11	65.88	71.43	53.17	57.40	08.53	21.76	57.10	26.09
DODA	51.42	72.71	93.86	27.61	64.31	71.64	55.30	58.43	08.21	24.95	56.49	32.06

S5 Experimental Results on Cross-site Adaptation Tasks

In real-to-real cross-site adaptation tasks, scenes collected from different sites or room types suffer considerable domain discrepancies. To verify the effectiveness of TACM in bridging the real-world domain gaps, we compare DODA (only TACM) with other popular UDA methods on ScanNet \rightarrow S3DIS and S3DIS \rightarrow ScanNet in Table S6 and Table S7, respectively. Results show that DODA (only TACM) outperforms other methods by a large margin around 6% \sim 16% on ScanNet \rightarrow S3DIS and 4% \sim 18% on S3DIS \rightarrow ScanNet. It verifies that our TACM can serve as a general module to eliminate source context bias through target cuboid-level contextual patterns complement.

Besides, to evaluate unsupervised domain adaptation methods, we argue that S3DIS is unsuitable as a source dataset since the per-class results of DODA on real-to-real S3DIS \rightarrow ScanNet are even worse than its counterpart on the sim-to-real 3D-FRONT \rightarrow ScanNet setting (see Table 1 of the main paper). Although real-to-real adaptation theoretically shows smaller domain gaps than sim-to-real settings, S3DIS is rather simple with a small sample size and limited diversity as its scenes are collected only in three buildings of mainly office and educational use, thus resulting in poor performance of adaptation. It illustrates the importance of carefully selecting real-world datasets as the source domain. Simulated datasets, on the other hand, can be a consistently appealing choice as a source domain with arbitrarily large size, diverse samples and free annotations.

Table S6. Adaptation results of ScanNet \rightarrow S3DIS in terms of mIoU (%). We indicate the best adaptation result in **bold**. \dagger denotes the self-training results with TACM based on CBST.

Method	mIoU	wall	floor	chair	sofa	table	door	wind.	bkcase.
Source Only	54.09	64.38	94.39	76.15	25.46	70.55	28.98	28.52	44.31
MCD [9]	49.83	61.38	95.47	73.51	32.04	75.24	36.95	08.01	16.02
AdaptSegNet [11]	50.28	67.75	94.47	69.13	24.77	67.71	36.32	13.54	28.57
CBST [18]	60.13	68.66	96.02	84.61	55.04	63.80	33.47	35.61	43.84
MinEnt [12]	55.31	71.31	94.70	68.10	39.86	68.23	35.98	22.03	42.24
AdvEnt [12]	49.86	68.83	93.87	67.37	20.77	68.11	32.67	13.74	33.50
Noisy student [14]	58.82	66.76	95.84	83.56	52.05	64.39	36.36	37.51	34.08
APO-DA [15]	53.47	68.70	95.62	76.69	43.01	70.53	26.22	11.63	35.37
DODA (only TACM) [†]	66.52	73.81	95.94	85.82	70.71	64.64	42.93	48.25	42.09
Oracle	72.51	84.89	97.63	83.72	55.26	81.47	53.94	44.61	78.55

S6 Experimental Results on Sim $3D \rightarrow \text{Real RGBD task}$

S6.1 Datasets.

NYU-Depth V2 [7] is a popular RGBD dataset for semantic segmentation. It contains 1,449 densely annotated RGBD images, *i.e.* 795 training samples and 654 validation samples. Each image has a resolution of 640×480 , which can be back-projected to a 3D point cloud containing 3077,200 points. It provides 40 semantic categories.

Table S7. Adaptation results of S3DIS \rightarrow ScanNet in terms of mIoU (%). We indicate the best adaptation result in **bold**. \dagger denotes the self-training results with TACM based on Noisy Student.

Method	mIoU	wall	floor	chair	sofa	table	door	wind.	bksf.
Source Only	33.43	37.87	84.01	55.26	18.32	36.15	11.43	08.58	15.81
MCD [9]	30.65	39.50	92.76	43.74	00.00	40.57	09.67	06.03	12.88
AdaptSegNet [11]	36.14	58.48	91.61	35.47	21.35	44.23	07.18	09.17	21.62
CBST [18]	43.08	45.43	90.11	67.53	35.48	56.51	16.94	09.65	22.97
MinEnt [12]	39.40	58.11	90.31	51.18	24.86	44.20	08.10	10.27	28.19
AdvEnt [12]	38.09	58.83	90.24	41.73	28.96	40.68	10.58	08.11	25.59
Noisy student $+$ [14]	44.81	55.61	92.75	65.72	37.77	57.77	12.54	15.25	21.09
APO-DA [15]	38.67	63.85	90.18	49.86	22.34	41.89	06.44	04.64	30.15
DODA (only TACM)	48.47	65.03	94.25	69.23	43.13	58.79	03.58	13.86	29.91
Oracle	80.06	86.78	96.02	89.98	84.24	82.15	51.19	64.99	85.16

S6.2 Main Results.

In the main paper, our experiments focus on the sim-to-real adaptation with target scenes reconstructed by RGBD sequences. However, in real-world scenarios, the real scene can be a single RGBD image captured by the depth camera without reconstructions. Therefore, we also investigate the performance of DODA in such a more challenging setting, *i.e.* sim 3D \rightarrow real RGBD. As demonstrated in Table S3, DODA significantly outperforms source only by around 14.3% and improves CBST by around 8.5%, largely reducing the cross-modal gaps between 3D-FRONT and NYU-Depth V2. Even only equipping source only with VSS, our DODA (only VSS) also shows its superiority, obtaining 6.3% and 0.6% gains compared to source only and CBST separately, which demonstrates the effectiveness of VSS in alleviating the point pattern gaps between simulation 3D and real RGBD. Compared to DODA w/o TACM, TACM further enhances the performance by around 3.4%, largely bridging the context gaps.

Table S8. Adaptation results of 3D-FRONT $[2] \rightarrow$ NYU-Depth V2 in terms of mIoU (%). We indicate the best adaptation result in **bold**. \dagger denotes our pretrain generalization results only with VSS.

Method	mIoU
Source Only	17.80
CBST [18]	23.58
DODA (only VSS) ^{\dagger}	24.14
DODA w/o TACM	28.74
DODA	32.12
Oracle	52.88

S7 Analysis of Pseudo label quality

Self-training relies on both pseudo label accuracy and covering ratio (Eq. (3)) for diversity. As shown in Table S9, DODA (only VSS) generates pseudo labels with around 15.6% higher mIoU and 7.7% larger label covering ratio compared to source only, which benefits the follow-up self-training stage. Besides, TACM also improves the pseudo label quality after the first self-training round by about 3.6% mIoU and 0.5% covering ratio, which is supposed to further boost the iterative self-training if applied.

covering ratio =
$$\frac{\# \text{ pseudo-labeled points}}{\# \text{ all points}} \times 100\%$$
 (3)

Mathad	pseudo label				
Method	mIoU	covering ratio (%)			
Source Only	35.16	59.85			
DODA (only VSS)	50.73	67.54			
DODA (w/o TACM)	53.24	81.51			
DODA	56.85	82.05			

Table S9. Results of pseudo label quality with threshold T = 0.7.

S8 Visualization

We provide some qualitative results of DODA on sim-to-real adaptation tasks of 3D-FRONT \rightarrow ScanNet and 3D-FRONT \rightarrow S3DIS as illustrated in Fig. S3. Compared to self-training baselines, our DODA can segment instances better and generate more accurate and smooth predictions.

Fig. S3. Qualitative results of 3D-FRONT \rightarrow ScanNet (top) and 3D-FRONT \rightarrow S3DIS (bottom). Note that the third column is the prediction of self-training baselines, *i.e.* Noisy Student for ScanNet and CBST for S3DIS. The red bounding boxes indicate the specific areas where our DODA significantly outperforms self-training baselines.

References

- Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3075–3084 (2019)
- Fu, H., Cai, B., Gao, L., Zhang, L.X., Wang, J., Li, C., Zeng, Q., Sun, C., Jia, R., Zhao, B., et al.: 3d-front: 3d furnished rooms with layouts and semantics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 10933–10942 (2021)
- Fu, H., Jia, R., Gao, L., Gong, M., Zhao, B., Maybank, S., Tao, D.: 3d-future: 3d furniture shape with texture. International Journal of Computer Vision pp. 1–25 (2021)
- Ghiasi, G., Cui, Y., Srinivas, A., Qian, R., Lin, T.Y., Cubuk, E.D., Le, Q.V., Zoph, B.: Simple copy-paste is a strong data augmentation method for instance segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2918–2928 (2021)
- Graham, B., Engelcke, M., Van Der Maaten, L.: 3d semantic segmentation with submanifold sparse convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 9224–9232 (2018)
- Li, Z., Yu, T.W., Sang, S., Wang, S., Song, M., Liu, Y., Yeh, Y.Y., Zhu, R., Gundavarapu, N., Shi, J., et al.: Openrooms: An open framework for photorealistic indoor scene datasets. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7190–7199 (2021)
- 7. Nathan Silberman, Derek Hoiem, P.K., Fergus, R.: Indoor segmentation and support inference from rgbd images. In: ECCV (2012)
- Nekrasov, A., Schult, J., Litany, O., Leibe, B., Engelmann, F.: Mix3d: Out-ofcontext data augmentation for 3d scenes. In: 2021 International Conference on 3D Vision (3DV). pp. 116–125. IEEE (2021)
- Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3723–3732 (2018)
- Song, S., Yu, F., Zeng, A., Chang, A.X., Savva, M., Funkhouser, T.: Semantic scene completion from a single depth image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1746–1754 (2017)
- Tsai, Y.H., Hung, W.C., Schulter, S., Sohn, K., Yang, M.H., Chandraker, M.: Learning to adapt structured output space for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 7472–7481 (2018)
- Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: Adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 2517–2526 (2019)
- Wu, B., Zhou, X., Zhao, S., Yue, X., Keutzer, K.: Squeezesegv2: Improved model structure and unsupervised domain adaptation for road-object segmentation from a lidar point cloud. In: 2019 International Conference on Robotics and Automation (ICRA). pp. 4376–4382. IEEE (2019)
- Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10687–10698 (2020)

- Yang, J., Xu, R., Li, R., Qi, X., Shen, X., Li, G., Lin, L.: An adversarial perturbation oriented domain adaptation approach for semantic segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence. pp. 12613–12620 (2020)
- Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: Regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 6023–6032 (2019)
- Zheng, J., Zhang, J., Li, J., Tang, R., Gao, S., Zhou, Z.: Structured3d: A large photo-realistic dataset for structured 3d modeling. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16. pp. 519–535. Springer (2020)
- Zou, Y., Yu, Z., Vijaya Kumar, B., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: European Conference on Computer Vision. pp. 289–305 (2018)