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Abstract. In this paper, we explore the advantages of utilizing trans-
former structures for addressing multi-task learning (MTL). Specifically,
we demonstrate that models with transformer structures are more ap-
propriate for MTL than convolutional neural networks (CNNs), and we
propose a novel transformer-based architecture named MTFormer for
MTL. In the framework, multiple tasks share the same transformer en-
coder and transformer decoder, and lightweight branches are introduced
to harvest task-specific outputs, which increases the MTL performance
and reduces the time-space complexity. Furthermore, information from
different task domains can benefit each other, and we conduct cross-
task reasoning. We propose a cross-task attention mechanism for further
boosting the MTL results. The cross-task attention mechanism brings
little parameters and computations while introducing extra performance
improvements. Besides, we design a self-supervised cross-task contrastive
learning algorithm for further boosting the MTL performance. Extensive
experiments are conducted on two multi-task learning datasets, on which
MTFormer achieves state-of-the-art results with limited network param-
eters and computations. It also demonstrates significant superiorities for
few-shot learning and zero-shot learning.

Keywords: Multi-Task Learning, Transformer, Cross-Task Reasoning

1 Introduction

Multi-task learning (MTL) aims to improve the learning efficiency and accu-
racy by learning multiple objectives from shared representations [25,31,49]. It
is of great importance for practical applications, e.g., autonomous driving [37],
healthcare [51], agriculture [52], manufacturing [27], which cannot be addressed
by merely seeking perfection on solving individual tasks.

To tackle MTL for visual scene understanding in computer vision, various
solutions have been proposed. They simultaneously handle multiple tasks by uti-
lizing classic convolutional neural networks (CNNs) [36,25,31,49,42,4]. These ap-
proaches always meet performance drop compared to single-task learning (STL),
or they need to add extra intricate loss functions and complex network struc-
tures with large network parameters and computations to overcome the perfor-
mance decrease shortcoming. We own this phenomenon to the limited capacity
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Fig. 1: The differences between current CNN-based MTL framework (a) and our
transformer-based MTL framework (b).

of convolution operations and seek powerful structures with huge capacity like
transformers for handling the MTL problem.

In contrast to the classical CNN-based MTL framework [36,25,31,49,42,4],
in this work, we find there are significant advantages of utilizing transformers
for MTL. We illustrate the differences in Fig. 1 (a) and (b). For the traditional
framework, as in (a), multiple task-specific decoders are needed to generate task-
related predictions, resulting in considerable network parameters and computa-
tions. While for our transformer-based MTL framework named MTFormer as in
(b), both the encoder and decoder parts are constructed based on transformers,
and they are shared among different tasks. Only lightweight output branches
are utilized for harvesting task-specific outputs. Such a design can vastly reduce
the parameter number and inference time. Besides, transformer operations are
of higher-order with complex capacity, and our experiments demonstrate they
perform even better than STL methods with better performance.

Moreover, information from different tasks can benefit each other, and we
further conduct cross-task reasoning to enhance the MTL performance. We pro-
pose a cross-task attention mechanism where information inside one task could
be utilized to help the predictions of others and vice versa. For classical self-
attention-based transformers, both query, key, and value are from the same task
representation. Our design introduces similarity maps from other tasks (e.g., the
query and key are from another task) for better information aggregation. Such
cross-task attention is shown to be general for an arbitrary number of tasks and
is proved to be more effective than self-attention.

Furthermore, to fully utilize the cross-task knowledge, we design a self-
supervised cross-task contrastive learning algorithm for further enhancing the
MTL performance. As stated in [45], a powerful representation is the one that
models view-invariant factors. In the MTL framework, the feature representa-
tions of different tasks are views of the same scene. They can be treated as posi-
tive pairs, and feature representations from different scenes are negative samples.
Therefore, we innovatively propose the cross-task contrastive learning approach
to maximize the mutual information between different views of the same scene,
resulting in more compact and better feature representations. Simultaneously
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conducting multi-task learning and contrastive learning could further boost the
performance of the MTL system.

Last but not least, we also explore the ability of MTFormer for knowledge
transfer under few-shot learning and zero-shot learning settings. With shared
feature extractors like shared encoder and decoder, the identical feature repre-
sentations are expressive enough, and they can be easily transferred for few-shot
learning where annotations are limited for specific tasks, and for zero-shot learn-
ing where no annotations are available for a dataset and knowledge from other
datasets could be transferred. We conduct extensive experiments on two public
datasets with various task numbers and task categories, including NYUD-v2 [40]
and PASCAL VOC [15], on which our MTFormer harvest the state-of-the-art
results on both MTL and knowledge transfer. We give all implementation de-
tails and will make our code and trained models publicly available. Our main
contribution is three-fold:

– We investigate the advantages of transformers for MTL. We conduct an in-
depth analysis and propose a novel MTL architecture named MTFormer,
which performs better with smaller parameters and computations.

– We explore cross-task reasoning where both a cross-task attention mecha-
nism and a cross-task contrastive learning algorithm are proposed, which
further enhance the performance of MTL.

– We conduct extensive experiments on two competitive datasets. The state-
of-the-art performance on MTL and transfer learning demonstrates the ef-
fectiveness and generality of the proposed MTFormer.

2 Related Work

Multi-task learning. Multi-task learning is concerned with learning multi-
ple tasks simultaneously, while exerting shared influence on model parame-
ters [25,17,62,16,3,43,56,29,28,42,4,12]. The potential benefits are manifold and
include speed-up training or inference, higher accuracy, and lower parameters.

Many MTL methods perform multiple tasks by a single forward pass, using
shared trunk [26,2,33,47,31,13], cross talk [36], or prediction distillation [54,59,60].
A recent work of MTI-Net [49] proposes to utilize the task interactions between
multi-scale features. Another stream of MTL is based on task-conditional net-
works [24,34], which perform a separate forward pass and activate some task-
specific modules for each task. Although the transformer-based MTL frame-
works have been studied in the language-related domain [35,21,48], existing MTL
frameworks for vision tasks mainly adopt CNNs while have not explored the ef-
fectiveness of vision transformers.
Vision transformers. CNNs have dominated the computer vision field for
many years and achieved tremendous successes [10,19,20,22,39,44]. Recently,
the pioneering work ViT [14] demonstrates that transformer-based architectures
can also achieve competitive results. Built upon the success of ViT, many ef-
forts have been devoted to designing better transformer-based architectures for
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various vision tasks, including low-level image processing [6], image classifica-
tion [11,18,23,46,50,53], object detection [5,63], semantic segmentation [41,61],
depth estimation [38,55], saliency detection [30,57], etc. Rather than concentrat-
ing on one special task, some recent works [32,50,58] try to design a general
vision transformer backbone for general-purpose vision tasks.

3 Method

In this section, we will first describe the details of our MTFormer in Sec. 3.1.
Next, we will detail the cross-task attention in Sec. 3.2. Furthermore, the self-
supervised cross-task contrastive learning algorithm and the final loss function
of the framework will be depicted in Secs. 3.3 and 3.4.

3.1 MTFormer

Our MTL framework consists of only transformer blocks, and its visual illustra-
tion is shown in Fig. 2. It consists of two parts, i.e., the shared feature extractor
and the lightweight task-specific branches. Their details are summarized below.

Shared feature extractor. The shared feature extractor consists of an encoder
and a decoder. As illustrated in Fig. 2, the shared encoder is built based on
a pre-trained transformer with a stack of down-sampling operations, e.g., the
Swin-Transformer [32]. And the shared decoder consists of a stack of shared
transformer blocks (with self-task attention only) with a flexible module design.

Lightweight task-specific branches. The task-specific branch consists of two
parts, i.e., the transformer-based feature transformation branch and the output
head with non-linear projection. For different tasks, its related feature transfor-
mation follows the shared decoder, consisting of only a few transformer blocks
thus is lightweight. The first part in each transformation branch includes only
self-task attention modules to obtain unique representations. And the second
part is a stack of transformer blocks with cross-task attention that will be de-
tailed in Sec. 3.2. At the end of each branch, an output head with a non-linear
projection is utilized to harvest the final prediction for the related task.

Self-task attention for MTL. Suppose T1, ..., Th are h input feature tokens,
we flatten T1, ..., Th into 1D features, and the transformer block with self-task
attention is processed as

q = k = v = LN([T1, ..., Th]), [T̂1, ..., T̂h] = MSA(q, k, v) + [T1, ..., Th],

[T1, ..., Tm] = FFN(LN([T̂1, ..., T̂h])) + [T̂1, ..., T̂h],
(1)

where LN denotes layer normalization,MSA denotes the multi-head self-attention
module, q, k, and v denote the query, key, and value vector to complete the com-
putation ofMSA, FFN represents the forward module in the transformer block.
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Fig. 2: The illustration of the proposed MTFormer framework.

Now we describe the self-task attention computation process, e.g., theMSA().
Suppose the head number is B for MSA, the b-th head self-attention calculation
Attentionb in one transformer block is formulated as

Qb = qW q
b ,Kb = kW k

b ,Vb = vW v
b , Attentionb(Qb,Kb,Vb) = SoftMax(

QbK
T
b√

db
)Vb, (2)

where q, k, v are features in Eq. 1;W q
b ,W

k
b ,W

v
b represent the projection matrices

for the b-th head; Qb, Kb, Vb are the projected query, key, and value features,
respectively. The cross-task attention for MTL will be introduced in Sec. 3.3.

Superiority analysis. We summarize the structure of current MTL structures
with CNNs and our transformer-only framework (MTFormer) as displayed in
Fig. 1. The main difference is that the MTL framework with transformer allows
the deep shared network module, including the shared encoder as well as the
shared decoder. And as suggested by recent works [11,18,23,46,50,53,41,61], the
transformer has strength in the computation of long-range attention and the
general representation ability for various tasks. Such advantage is essential since
the individual branches start from the same feature in MTL and need various
long-range attention and a joint representation strategy.

Especially, as proved in Sec. 4.2, these advantages in the structures lead to
significant superiority. 1) The superiority in the performance: combined with
the simple MTL loss function (e.g., the uncertainty loss in [25]), the CNN-based
MTL has worse performance than STL. On the other hand, the performance of
the transformer-only MTL is better than STL on all tasks. 2) The superiority
in the model parameters: we find that transformer-only MTL has a smaller
parameter number ratio between MTL and STL, meaning that the superiority
of the model parameter is more prominent for transformer-only MTL. This is
because different tasks in MTFormer have a deeply shared backbone.

3.2 Cross-Task Attention for MTL

To achieve feature propagation across different tasks, previous methods mainly
build the inter-task connections among different task-specific branches [36,49].
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Fig. 3: Detailed structure of the proposed cross-task attention for MTL.

However, such a propagation mechanism has two significant drawbacks. First,
different branches need to learn the task-common feature besides the task-specific
part, which will impede the learning of each branch in MTL compared with STL
since STL just needs to learn the task-specific feature. Second, the connections
between different branches will increase the parameter number of the MTL sys-
tem. To achieve the feature propagation among different tasks efficiently, we
propose the cross-task attention, as shown in Fig. 3, novelly modifying the at-
tention computation mechanism in the transformer block by merging attention
maps from different tasks.

As shown in Fig. 3, suppose there are n tasks and thus corresponding n
task features. The input features of the j-th transformer block with cross-task
attention are denoted as F j

1 , ..., F
j
n. Without loss of generality, suppose we aim

to compute the cross-task attention for F j
i (the computations of cross-task at-

tention for F j
1 , ..., F

j
i−1, F

j
i+1, ..., F

j
n are similar). For F j

1 , ..., F
j
n, we can obtain

n attention maps as Aj
1, ..., A

j
n, and how to fuse different attention maps, i.e.,

self-task attention map and the other attention maps, is the vital problem in the
cross-task attention module. The combination of different attention maps can
be achieved with n mapping functions (M1,...,Mn) to adjust the dimension and
one MLP (Mf ) to fuse the adjusted outputs (as shown in Fig. 3), as

F̄ j
1 = LN(F j

1 ), ..., F̄
j
n = LN(F j

n),

Aj
1 = MSA(F̄ j

1 , F̄
j
1 , F̄

j
1 ), ..., A

j
n = MSA(F̄ j

n, F̄
j
n, F̄

j
1 ),

Âj
1 = M1(A

j
1), ..., Â

j
n = Mn(A

j
n),

Āj
i = Mf ([Â

j
1, ..., Â

j
n]).

(3)

Especially, we find that the self-task attention output should take the primary
role (Âj

i ∈ RB×L×C) while the cross-task attention outputs should take the
auxiliary role (with smaller feature channel number, as B × L × C

n−1 ). This is
verified by the ablation experiments in Sec. 4.
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Fig. 4: Framework of self-supervised cross-task contrastive learning for MTL.

3.3 Cross-Task Contrastive Learning

As stated in [45], a powerful representation is one that models view-invariant
factors. In MTFormer, the outputs are indeed multiple views of an input image,
e.g., the depth value and semantic segmentation of the image on NYUD-v2 [40].
Therefore, we design a contrastive learning strategy by adopting the feature
representations of different tasks for the same scene as positive pairs, and the
representations from different scenes as negative pairs.

Suppose there are n tasks, and we take every two of them for contrastive
learning. We set the features obtained from the intermediate representation in
the task-specific branch as the inputs to compute the contrastive loss. The de-
tails of the contrastive loss can be viewed in Fig. 4. As we can see, for the
intermediate features F j

1 , ..., F
j
n, we apply the global average pooling operation,

and then a set of mapping functions for the processing, which is combined with
an L2 normalization operation. Note that the global average pooling operation,
mapping functions, and the L2 normalization operation are no longer needed
during the inference of MTL. Suppose there are D negative samples, the loss for
the task y and task z (the contrastive loss is computed for every two tasks) is

Ly
contrast = −E[log g(F̂y, F̂z)∑D

d=1 g(F̂y, F̂z,d)
], Lz

contrast = −E[log g(F̂z, F̂y)∑D
d=1 g(F̂z, F̂y,d)

], (4)

Ly,z
contrast = Ly

contrast + Lz
contrast, g(F̂y, F̂z) = exp(

F̂y · F̂z

||F̂y|| × ||F̂z||
), (5)

where g() is the function to measure similarity, E is the average operation, F̂z,d

and F̂y,d are the d-th negative sample for F̂z and F̂y, respectively. And the
overall contrastive loss can be written as

Lcontrast =
∑

1≤y≤n,1≤z≤n

Ly,z
contrast. (6)
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3.4 Loss Function

Different from existing MTL methods, our framework can achieve SOTA per-
formance on different datasets without complex loss functions. We utilized the
classical MTL loss function, which weighs multiple loss functions by considering
the homoscedastic uncertainty of each task [25]. To implement such loss, we add
the trainable values σ1, ..., σn to estimate the uncertainty of each task. And the
final loss function can be written as

L(σ1, ..., σn) =
1

r1σ2
1

L1 + ...+
1

r2σ2
n

Ln + logσ1 + ...+ logσn + Lcontrast, (7)

where L1 to Ln are n loss functions for n different tasks, r1 to rn belongs to {1, 2}
and their values are decided whether the corresponding outputs are modeled with
Gaussian likelihood or softmax likelihood [25].

4 Experiments

4.1 Experimental Setting

Dataset.We follow the experimental setting of the recent MTL method [49], and
perform the experimental evaluations on two competitive datasets, i.e. NYUD-
v2 [40] and PASCAL VOC [15]. The NYUD-v2 dataset contains both semantic
segmentation and depth estimation tasks, and it has 1449 images in total, with
795 images for training and the remaining 654 images for validation. For the
PASCAL dataset, we use the split from PASCAL-Context [9], which has anno-
tations for semantic segmentation, human part segmentation, and composited
saliency labels from [34] that are distilled from pre-trained state-of-the-art mod-
els [1,8]. The dataset contains 10103 images, with 4998 and 5105 images for
training and validation, respectively.
Evaluation metric. The semantic segmentation, saliency estimation, and hu-
man part segmentation tasks are evaluated with the mean intersection over
union (mIoU). The depth estimation task is evaluated using the root mean
square error (rmse). Besides the metric for each task, we measure the multi-
task learning performance ∆m as in [34], where the MTL performance is defined
as ∆m = 1

n

∑n
i=1(−1)li(Mm,i −Ms,i)/Ms,i, where Mm,i and Ms,i are the MTL

and STL performance on the i-th task, li = 1 if a lower value means better
performance for task i, and 0 otherwise.
Implementation detail. Theoretically speaking, the individual branch for each
task can have an arbitrary number of cross-task attention modules. More cross-
task attention modules mean more feature propagation, leading to better MTL
performance. However, due to the limitation of computation resources, we only
set m = ms = mp = 2 in the experiments. We adopt the Swin-Transformer [32]
as the shared encoder for transformer-based MTL, ResNet50 [19] for CNN-based
MTL. And for the transformer block in the decoder, we employ the strategy of
W-MSA and SW-MSA in the Swin-Transformer [32] as the MSA module. For the
individual branch in the CNN-based transformer, we use the ASPP in [7]. For
the baseline STL with transformer, it consists of the shared encoder, decoder,
one lightweight branch, and one head in Fig. 2.
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Table 1: Results on NYUD-v2 of STL
and MTL with CNN (C) and trans-
former (T). Cross-task attention and
contrastive learning are not utilized.

Method Seg↑ Dep↓ δm% ↑
STL (C) 43.11 0.507 +0.00
MTL (C) 42.05 0.521 -2.61
STL (T) 47.96 0.497 +0.00
MTL (T) 50.04 0.490 +2.87

Table 2: Results on PASCAL of STL
and MTL with CNN (C) and trans-
former (T). Cross-task attention and
contrastive learning are not utilized.

Method Seg↑ Part↑ Sal↑ δm% ↑
STL (C) 69.06 62.12 66.42 +0.00
MTL (C) 61.87 60.97 64.68 -4.96
STL (T) 71.17 63.90 66.71 +0.00
MTL (T) 73.52 64.26 67.24 +1.55

Table 3: Resource analysis for Table 1.
R-Params and R-FLOPS mean the ratio
with the Params and FLOPs of STL.

Method Params (M) FLOPS (G) R-Params R-FLOPS
STL (C) 79.27 384.35 1.0 1.0
MTL (C) 55.77 267.10 0.704 0.695
STL (T) 114.26 157.52 1.0 1.0
MTL (T) 62.45 94.62 0.547 0.639

Table 4: Resource analysis for Table 2.
R-Params and R-FLOPS mean the ratio
with the Params and FLOPs of STL.

Method Params (M) FLOPS (G) R-Params R-FLOPS
STL (C) 118.91 491.93 1.0 1.0
MTL (C) 71.89 291.83 0.605 0.593
STL (T) 171.43 201.76 1.0 1.0
MTL (T) 67.80 94.42 0.395 0.519

4.2 MTFormer Superiority

The results of CNN-based and transformer-based STL/MTL frameworks on
NYUD-v2 and PASCAL are shown in Tables 1 and 2, respectively. As we can
see, combined with the simple MTL loss, the CNN-based MTL has worse per-
formance than STL, while transformer-based MTL algorithm MTL (T) (a.k.a,
vanilla MTFormer without cross-task reasoning) is better than STL on all tasks.
Specifically, on NYUD-v2 and PASCAL, we observe a significant decrease of 2.61
and 4.96 percentage points from STL to MTL for the CNN-based framework,
while an improvement of 2.87 and 1.55 percentage points from STL to MTL for
the transformer-based framework MTFormer. We provide the qualitative analy-
sis in Fig. 5 by providing the visual comparison for the transformer-based STL
and the proposed MTFormer framework. As we can see, our MTFormer can
bring noticeable improvement on all tasks compared with STL. We also conduct
the resource analysis by computing the number of parameters, and computa-
tion FLOPS for different models, as displayed in Tables 3 and 4. Significantly,
for the ratio between MTL’s parameter-number/FLOPS and STL’s parameter-
number/FLOPS, the transformer-based MTL has a smaller value. Therefore, the
transformer-based MTL has a more prominent advantage in reducing model pa-
rameters and computations w.r.t. STL. In conclusion, transformers have a larger
capacity and are more suitable for MTL, and our proposed MTFormer achieves
the best results with reduced parameters and computations.

4.3 Cross-task Reasoning

The information inside different task domains can benefit the understanding
of each other, and we conduct cross-task reasoning, which includes cross-task
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Fig. 5: Visual comparisons between the predictions of STL and our MTFormer.
Regions highlighted by red rectangle show more clear differences.

attention and cross-task contrastive learning. To demonstrate the effectiveness
of our designed algorithms, we compare the results of the proposed MTFormer
framework with self-task attention or cross-task attention, and with or without
cross-task contrastive learning. The results on NYUD-v2 and PASCAL are shown
in Tables 5 and 6 respectively.

Cross-task attention. Our cross-task attention mechanism is designed that at-
tention maps and similarity relationships from other tasks are introduced to help
the prediction of the current task. Comparing the two methods named “Ours
wo CA&CL” and “Ours wo CL” in Tables 5 and 6, we can see that method
with cross-task attention can get extra 0.5 percentage points improvement for
δm, which proves the effectiveness of the cross-task attention. We compute the
parameter number/FLOPS for MTL frameworks with cross-task attention or
with self-task attention only, and the results are shown in Tables 7 and 8. Com-
pared with the framework with only self-task attention (“Ours w/o CA&CL”),
the framework with cross-task attention (“Ours w/o CL”) only increases a small
number of model parameters (2.5% for NYUD-v2, 9.3% for PASCAL).

Ablation study. To fuse the attention maps from different tasks, we first utilize
feature mapping functions (M1, ...Mn) for attention outputs and then use an
MLP (Mf ) for feature fusion. Alternatively, we can use only an MLP instead
of the mapping functions, and this setting is called “Ours w/o FM&CL”; if we
remove the MLP for fusion, we can just add the outputs from mapping functions
for fusion, and this setting is denoted as “Ours w/o FF&CL”. The results are
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Table 5: Cross-task reasoning on
NYUD-v2. ‘CA’ and ‘CL’ stand for
cross-task attention and contrastive
learning, ‘FM’, ‘FF’, and ‘FB’ denote
feature mapping, fusion, and balance.

Method Seg↑ Dep↓ δm% ↑
STL (T) 47.96 0.497 +0.00
Ours w/o CA&CL 50.04 0.490 +2.87
Ours w/o FM&CL 50.34 0.487 +3.49
Ours w/o FF&CL 50.33 0.488 +3.38
Ours w/o FB&CL - - -
Ours w/o CL 50.31 0.486 +3.56
Ours (MTFormer) 50.56 0.483 +4.12

Table 6: Cross-task reasoning on PAS-
CAL. ‘CA’ and ‘CL’ stand for cross-
task attention and contrastive learn-
ing, ‘FM’, ‘FF’, and ‘FB’ denote feature
mapping, fusion, and balance.

Method Seg↑ Part↑ Sal↑ δm% ↑
STL (T) 71.17 63.90 66.71 +0.00
Ours w/o CA&CL 73.52 64.26 67.24 +1.55
Ours w/o FM&CL 73.74 64.37 66.97 +1.58
Ours w/o FF&CL 73.84 64.42 67.14 +1.74
Ours w/o FB&CL 73.98 64.41 66.95 +1.70
Ours w/o CL 73.77 64.47 67.49 +1.91
Ours (MTFormer) 74.15 64.89 67.71 +2.41

Table 7: Resource analysis for Table 5.

Method Params (M) FLOPS (G)
Ours w/o CA&CL 62.45 94.62
Ours w/o CL 64.03 117.73

Table 8: Resource analysis for Table 6.

Method Params (M) FLOPS (G)
Ours w/o CA&CL 67.80 94.42
Ours w/o CL 74.12 128.77

shown in Tables 5 and 6, and they are all weaker than our original strategy. As
stated in Sec. 3.2, the self-task attention output takes the primary role while the
cross-task attention outputs take the auxiliary position. And we have feature
dimension adaptation to balance their contributions. We conduct experiments
to prove this claim by setting the feature channel of all attention outputs as
B×L×C, and then use MLP for fusion. This setting is represented as “Ours w/o
FB&CL”, and the results are shown in Table 6, demonstrating the correctness of
our claim since a decrease of 0.2 percentage points for δm is caused by adopting
“Ours w/o FB&CL” compared with “Ours w/o CL”.

Cross-task contrastive learning. We conduct cross-task contrastive learning
to further enhance the MTL performance. We combine the contrastive loss with
the supervised loss for MTL and optimize these two loss terms simultaneously.
The results are in Tables 5 and 6 and our framework with contrastive learning is
called “Ours (MTFormer)”. We can see that extra cross-task contrastive learning
introduces 0.56 and 0.50 percentage points improvements for δm on NYUD-
v2 and PASCAL, compared to those without cross-task contrastive learning
(“Ours wo CL”). These results reveal the effectiveness of the proposed cross-
task contrastive learning algorithm.

4.4 Comparison with Others

We conduct method comparisons with existing state-of-the-art MTL frameworks,
which adopt various complex network structures and loss terms. The compared
approaches on NYUD-v2 and PASCAL are MTL-A [31], Cross-stitch [36], MTI-
Net [49], Switching [42], ERC [4], NDDR-CNN [17], PAD-Net [54], Repara [24],
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Table 9: Results on NYUD-v2 for com-
parison with SOTA MTL methods.

Method Seg↑ Dep↓ δm% ↑
STL (T) 47.96 0.497 +0.00
AST [34] 42.16 0.570 -13.39
Auto [3] 41.10 0.541 -11.58
Cross-stitch [36] 41.01 0.538 -11.37
NDDR-CNN [17] 40.88 0.536 -11.30
MTL-A [31] 42.03 0.519 -8.40
Repara [24] 43.22 0.521 -7.36
PAD-Net [54] 50.20 0.582 -6.22
ERC [4] 46.33 0.536 -5.62
Switching [42] 45.90 0.527 -5.17
MTI-Net [49] 49.00 0.529 -2.14
MTFormer 50.56 0.483 +4.12

Table 10: Results on PASCAL for com-
parison with SOTA MTL methods.

Method Seg↑ Part↑ Sal↑ δm% ↑
STL (T) 71.17 63.90 66.71 +0.00
Repara [24] 56.63 55.85 59.32 -14.70
Switching [42] 64.20 55.03 63.31 -9.59
NDDR-CNN [17] 63.22 56.12 65.16 -8.56
MTL-A [31] 61.55 58.89 64.96 -7.99
Auto [3] 64.07 58.60 64.92 -6.99
PAD-Net [54] 60.12 60.70 67.20 -6.60
Cross-stitch [36] 63.28 60.21 65.13 -6.41
ERC [4] 62.69 59.42 67.94 -5.70
AST [34] 68.00 61.12 66.10 -3.24
MTI-Net [49] 64.98 62.90 67.84 -2.86
MTFormer 74.15 64.89 67.71 +2.41

Table 11: Results on PASCAL of few-shot learning with different tasks.

Method Few-Shot Data Seg↑ Part↑ Sal↑ δm% ↑
Single task Seg 3.34 63.90 66.71 +0.00
Ours Seg 35.26 64.26 67.26 + 319.03

Single task Part 71.17 11.27 66.71 +0.00
Ours Part 73.36 51.74 67.64 +121.19

Single task Sal 71.17 63.90 44.39 +0.00
Ours Sal 76.00 66.89 55.55 +12.20

AST [34], and Auto [3]. The comparison results between our MTFormer frame-
work and all the others on NYUD-v2 are shown in Table 9. It can be seen that
our MTFormer’s results are superior to the baselines in terms of both semantic
segmentation and depth estimation results. The comparisons on PASCAL, as
displayed in Table 10, also demonstrate the effectiveness of our MTFormer.

4.5 MTFormer for Few-Shot Learning

In Natural Language Processing (NLP) applications [35], it is observed that
MTL’s improvements (compared to STL) are usually focused on tasks that have
fewer training samples. Here we explore the ability of MTFormer for transfer
learning. And we demonstrate that our MTFormer can boost the few-shot learn-
ing performance on vision tasks without complex few-shot learning loss, which
is due to the beneficial feature propagation among different tasks.

We take PASCAL dataset as an example. Annotating images with the accu-
rate human segmentation ground truth label is more accessible than the human
part segmentation, since human part segmentation needs more details. Therefore,
we can set the human part segmentation’s annotation as the few-shot samples.
Specifically, for the PASCAL dataset, we take all the annotations for semantic
segmentation and saliency detection, while randomly sampling only about 1%
(40 out of 4998) human part segmentation annotations. We set the baseline as
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Table 12: Simultaneously training multiple datasets for zero-shot learning (‘ZSL’)
does not affect the performance much.

Method Seg↑
(NYUD-v2)

Dep↓
(NYUD-v2)

Seg↑
(PASCAL)

Part↑
(PASCAL)

Sal↑
(PASCAL)

Ours w/o ZSL 50.03 0.488 73.70 64.36 67.82
Ours w ZSL 48.26 0.480 70.18 61.47 67.59
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Fig. 6: Our MTFormer framework can be utilized for achieving zero-shot learning.

the STL with such few-shot samples. As shown in Tables 11, our MTFormer can
significantly improve the performance on the few-shot learning task compared
with STL (i.e., the accuracy is improved more than 40 percentage points for hu-
man part segmentation), while keeping the performance on other tasks almost
unchanged (compared to the results in Tables 10). And the few-shot learning
settings for other tasks are also included in Tables 11. This shows MTFormer’s
strong ability to handle few-shot learning problems.

4.6 MTFormer for Zero-Shot Learning

Further, our MTFormer can also perform well on zero-shot learning. As exhibited
in Fig. 6, MTFormer can be utilized to transfer the knowledge of one dataset
to another dataset. Take the dataset of NYUD-v2 and PASCAL as an exam-
ple. The NYUD-v2 dataset has the annotation of semantic segmentation and
depth, and the PASCAL dataset has the annotation of semantic segmentation,
human part segmentation, and saliency. We can simultaneously use the data
of NYUD-v2 and PASCAL to train the proposed MTFormer, whose output in-
cludes semantic segmentation, depth estimation, human part segmentation, and
saliency detection. In the framework, we use the annotation of each dataset to
train the corresponding output branch.

We are surprised to find that the trained framework can have comparable
performances on the tasks which have annotations as shown in Table 12, i.e., the
semantic segmentation and depth prediction on NYUD, the semantic segmen-
tation, human part segmentation, and saliency detection on PASCAL. Mean-
while, the trained network can predict the outputs with no annotations, e.g.,
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Input Seg(P)* Part* Sal* DepSeg(N)

(a) The zero-shot learning performance on NYUD-v2.
Input Seg(P) Part Sal Dep*Seg(N)*

(b) The zero-shot learning performance on PASCAL.

Fig. 7: Visual illustration of MTFormer for zero-shot learning on PASCAL and
NYUD-v2. ‘Seg(P)’ and ‘Seg(N)’ denote the segmentation with PASCAL class
and NYUD-v2 class, respectively. ‘*’ means there is no training ground truth.

the saliency detection results on NYUD and the depth prediction on PASCAL
VOC, as displayed in Fig. 7.

Such great property can be achieved because different tasks in our frame-
work have a deeply shared backbone, and the branches for individual tasks are
lightweight. Thus, different tasks can have a shared representation even with
samples from various datasets. Besides, combined with our cross-task attention,
the feature propagation can be implemented across different tasks, which also
contributes to the zero-shot learning for the MTL framework.

5 Conclusion

In this paper, we first explore the superiority of using transformer structures for
MTL and propose a transformer-based MTL framework named MTFormer. It
is proved that MTL with deeply shared network parameters for different tasks
can better reduce the time-space complexity and increase the performance com-
pared with STL. Moreover, we also conduct cross-task reasoning and propose the
cross-task attention mechanism to improve the MTL results, which can achieve
effective feature propagation among different tasks. Besides, a contrastive learn-
ing algorithm is proposed to further enhance the MTL results. Extensive ex-
periments on NYUD-v2 and PASCAL show that the proposed MTFormer can
achieve state-of-the-art performance with fewer parameters and computations.
And MTFormer also shows great superiorities for transfer learning tasks.
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