
Supplementary Materials for
MonoPLFlowNet: Permutohedral Lattice
FlowNet for Real-Scale 3D Scene Flow
Estimation with Monocular Images

Runfa Li and Truong Nguyen

UC San Diego
{rul002, tqn001}@ucsd.edu

The supplementary materials are referred at several places in the paper, and
the corresponding sections are organized in the same order as mentioned in the
paper. 1

1 Permutohedral Lattice Network Operations

Our scene decoder architecture design is based on the Hierarchical Permuto-
hedral Lattice Network (HPL) [4], which is designed on top of Bilateral Con-
volutional Layers (BCL) [7]. BCL derives the general operation for processing
features in lattice: “Splatting-Convolution-Slicing”, as we mentioned in Section
3.1 of the paper.

Splatting: After the signals are embedded to the lattice, BCL splats the signal
values to the enclosing lattice vertices by barycentric interpolation, and stores
barycentric weights at each vertex in a hash table. The splatting complexity is
in O(d2) time, which is more efficient than splatting in a traditional Cartesian
coordinate.

Convolution: BCL imitates CNN convolution and designs the permutohedral
lattice convolution the same way. [7] shows the BCL convolution on a 2D per-
mutohedral lattice with a Gaussian kernel sliding over the lattice, and further
improves it to non-separable filter kernels in learnable manner.

Slicing: With the barycentric weights stored in splatting process, the convolved
signals (features) can be sliced back to the original position. Another advantage
of slicing in permutohedral lattice is that instead of the original position, the
signals can be sliced to different positions, for example a scaled lattice.

Interested readers should refer to Figure 1 of [7] for the visual illustration
of “Splatting-Convolution-Slicing”. For more properties of the permutohedral
lattice, please refer to [1, 7, 4].

1 Table, Equation and Figure in red fonts refer to those in the supplementary materials,
while Table, Equation and Figure in red fonts refer to those in the original paper.



2 Runfa Li, Truong Nguyen

2 MonoPLFlowNet Scene Decoder Details

Both monocular-image and LiDAR based approaches mask out the occluded
and invalid pixels for training and evaluation. However, different to monocular-
image based approaches using all pixels after masking [5, 6], the LiDAR based
approaches randomly select a specific number N of 3D points. For the estimation
in 3D, we follow the same strategy as of the LiDAR based approaches [8, 12, 4,
10], and randomly choose N = 8, 192 pixels from the two consecutive input
images.

Following Eq. 9 in the paper, we first project the 8,192 randomly chosen
pixels from the estimated depth map to 3D points, and then project 3D points
to permutohedral lattice. With these 8,192 points in the lattice, we build the
pyramid-level lattice layers with scale 1, 0.5 and 0.25 corresponding to level
1, 2 and 4 in Figure 2 of the paper. In the figure, N2, N3, N4 are the number
of activated lattice vertices corresponding to level 1, 2 and 4. This is similar
to the Hierarchical design of HPL [4]. The lattice with smaller scale (deeper
level) have larger receptive field in each cell. This is also similar to traditional
CNN in Euclidean grid, which means that with larger receptive field in lattice
cell, features need fewer lattice vertices to store their barycentric weights, i.e.,
N4 < N3 < N2 < N1 = 8, 192. In Eq. 9 of the paper, we show that scaling
the feature position in permutohedral lattice leads to a same scale to the feature
depth map at 2D Cartesian coordinate. Since our specific-designed depth decoder
also estimates the depth at scale 1, 0.5 and 0.25 (last three levels), we label the
2D coordinates of the 8,192 pixels in the depth map corresponding to 8,192
points in the lattice, and derive the corresponding 2D coordinates of n2, n3, n4

number of pixels at scale 1, 0.5 and 0.25 by bilinear interpolation, so that n1 =
8, 192 ≈ 4n2 ≈ 16n3 ≈ 64n4. Then we splat and slice the high-dimensional
features at the 2D coordinates of the depth map to the corresponding level of
permutohedral lattice, namely splat and slice n4 features from depth map to N4

lattice vertices, n3 to N3 and n2 to N2. Note that n1 = N1 = 8, 192 does not
mean that n2, n3, n4 and N2, N3, N4 are exactly equal. With more features from
different depth levels concatenated to different lattice levels, the performance
improves as shown in the ablation study (Table 5 of the paper).

3 Evaluation Details

LiDAR-based Evaluation Standard: In Section 4.2 of the paper, we show the
Image-based Evaluation Standard, and use it for the comparison of monocular-
image based approaches in Tables 3, 4 and 5 of the paper. Here we show the
original LiDAR-based Evaluation Standard [4, 2], which is used for Table 6 of
the paper.

– EPE3D(m): 3D end point error averaged over each point in meters.
– Acc3DS: the percentage of points with EPE3D < 0.05m or relative error <

5%.



MonoPLFlowNet 3

Dataset Method Input Scale Size Device Runtime (ms)

KITTI

EPC[15]

Mono-RGB

✗

-
-

50
EPC++[9] 50

Mono-SF-old[3] 41000
Mono-SF[5]

image = (256, 832)
90

Multi-Mono-SF[6] 63
Ours-depth

✓
image = (352, 1216)

points = 8192
1080 Ti

73
Ours-lattice 183
Ours-scene 6

Ours ≈ 262

Flyingthings3D

FlowNet3D[8]

LiDAR

✓

points = 8192
Titan V

130.8
HPLFlowNet[4] 98.4

PointPWC-net[13] 1080Ti 117.4
Self-HPLFlowNet[11] - 491.3

Ours-depth

Mono-RGB
image = (544, 960)

points = 8192
1080 Ti

65
Ours-lattice 103
Ours-scene 11

Ours ≈ 179

Table 1. Inference Speed Comparison. ✓denotes in real scale, ✗ denotes with scale
ambiguity.

– Acc3DR: the percentage of points with EPE3D < 0.1m or relative error <
10%.

– Outliers3D: the percentage of points with EPE3D > 0.3m or relative error >
10%.

– EPE2D(px): 2D end point error obtained by projecting point clouds back to
the image plane.

– Acc2D: the percentage of points whose EPE2D < 3px or relative error < 5%.

Scale and 3D Scene Flow Recovery: In Section 4.2 of the paper, in order to
evaluate other monocular-image based approaches, we need to recover the depth
and scene flow scale. There are two cases:

Case 1. Since approaches in [5, 6] directly estimate 3D scene flow vectors,
then we need to recover the scale of depth and scene flow. To recover the depth
scale:

Si = d̄i/
¯̃
di

di = Sid̃i
(1)

where di and d̃i are the ground truth and the estimated depth map at frame i.
S is used to recover to real scale which is the ratio between the average ground

truth at that frame d̄i to the average estimated depth
¯̃
di. For scene flow recovery,

we just need to recover the scale similarly:

Si = ¯sfzi/
¯̃

sfzi

sfi = Sis̃fi
(2)

where sfi and s̃fi are the ground truth and the estimated 3D scene flow at frame
i. S is used to recover to real scale which is the ratio between the average ground



4 Runfa Li, Truong Nguyen

truth of the scene flow in Z axis (depth dimension) at that frame ¯sfzi to the

average estimated one
¯̃

sfzi.
Case 2. Since other work [14] only estimates 2D optical flow, we need to use

the depth (Eq. 1) and 2D optical flow to recover the 3D scene flow:

xy
z

 =

(z + ez)/fu 0 (−cuz + ex)/fu
0 (z + ez)/fv (−cuz + ey)/fv
0 0 z


u+ sfx
v + sfy

1

 (3)

sf3d =

xy
z

−

xy
z

 (4)

where (sfx, sfy) is the 2D optical flow, (ex, ey, ez) are camera extrinsic parame-
ters, (x, y, z) are 3D point in the first frame projected from the 2D image pixel
(u, v), defined by Eq. 8 in the paper. (x, y, z) is the end 3D point corresponding
to (x, y, z). The rest of notations are consistent to Eq. 8 of the paper. Note that
Eq. 8 is the simplified version of Eq. 3 where the 2D optical flow and camera
extrinsic parameters are set to zero. Camera extrinsic parameters are not con-
sidered for Flyingthings3D dataset, but considered for KITTI dataset because
there is a relative transformation between the camera and LiDAR when data is
collected. The parameters of the transformation is available in the dataset.

Since [14] only estimates 2D optical flow without depth estimation, we use
Mono-SF [5] depth (recovered to real scale by Eq. 1) and our depth to recover
the 3D scene flow, and scale it with ground truth by Eq. 2, as shown in Table 4
of the paper. For 3D scene flow evaluation on KITTI flow 2015, to be consistent
to the evaluations in other LiDAR-based works [4, 13], we evaluate on the same
142 frames of the complete 200 frames.

Domain Generalization: Since we use fully supervised training with ground
truth 3D scene flow labels, we only train on synthetic dataset Flyingthings3D
and use it directly on real dataset KITTI. Such a domain generalization strategy
is widely used in LiDAR based works [8, 4, 13]. However, these LiDAR based
approaches achieve better performance on KITTI than ours, because scene flow
ground truth is generated in different ways for different datasets.

In LiDAR approaches [4, 2], point cloud of the first frame is generated in
same way for both datasets by using first frame depth ground truth, as shown in
Eq. 8. For Flyingthings3D dataset, the point cloud of second frame is generated
by the first frame depth and 2D optical flow ground truth - strategy A, as in
Eq. 3. While for KITTI dataset, the second frame’s point cloud is generated by
using second frame’s ground truth depth - strategy B, as in Eq. 8. Then the
scene flow ground truth are generated as the translation between the two point
clouds.



MonoPLFlowNet 5

Such difference does not have negative impact on LiDAR based approaches,
because in evaluation the input to the model is still point cloud. However, it
has more negative impact on our image-based model, because with strategy A,
the model is trained to estimate the scene flow that is not associating to the
second image but the point cloud translated by 2D optical flow ground truth.
To improve our domain generalization from synthetic to real dataset, we will
train on Flyingthings3D with strategy B for future work.

Inference Speed: Table 1 summarizes the inference speed of both LiDAR and
monocular-image based works and our work on both KITTI flow 2015 and Fly-
ingthings3D evaluation datasets. From the table, it is clear that monocular-image
based approaches are faster than LiDAR based approaches, at the expense of
accuracy and real scale. Our total run time simply consists of three major parts,
depth decoder, scene flow decoder, and the process of generating permutohe-
dral lattice. Although we estimate the depth, the depth decoder only needs to
run once for consecutive frames, where features from the depth decoder at cur-
rent frame can be stored for the next frame pairs to estimate scene flow, so the
total run time is approximately the overall time over these three parts. Using
GTX 1080Ti without further optimizing the code, our inference speed shows the
potential to be used for real-time application.

4 Visual Results

Demo Video: We include two demo videos on KITTI and Flyingthings3D re-
spectively, please check the supplementary materials submission.

Original RGB Input: In Figure 5 of the paper, the last three columns show
the visual results on Flyingthings3D dataset. We show the corresponding RGB
image (first frame) input as Figure 1.

Qualitative visual results: We show visual comparison of our depth and 3D
scene flow estimation to the two strongest baseline works Mono-SF[5] and Mono-
SF-Multi[6], where Figures 2 to 5 are on Flyingthings3D, and Figures 6 to 9 are
on KITTI. For 3D scene flow visualization, blue points are from frame t, red
and green points are blue points translated to frame t+1 by ground truth and
estimated 3D scene flow, respectively.

Failure Cases: Figure 10 shows a representative failure case of our method-
ology. Outside of the white box, our 3D scene flow estimation still shows good
performance, but inside the white box, the estimated flow is not enough to com-
pensate the motion. This is a typical problem for most scene flow works, where
rigid-object motions have larger error. In Figure 10, the white box shows a vehi-
cle moving in the opposite direction to the ego motion, which has large relative
motion to the background. While the vehicles align at the right side are static
to the background, which have zero relative motion to the background, this is



6 Runfa Li, Truong Nguyen

Fig. 1. Corresponding RGB image input to the paper Figure. 5 Flyingth-
ings3D.

the reason that the vehicle inside of the white box has large error. In our future
work, we will study rigid and non-rigid motion separately to further boost the
performance.

5 Limitation and Future Works

Besides the common failure case described above, our current model has the
limitation that the depth/3D scene flow estimation has to be trained to test in
the similar domain, for the model tested in different domain to the training set,
it fails to estimate in high accuracy. For a different dataset, the model requires
enough labels from the domain to train. Another limitation is the performance
gap of our monocular image-based model to the SOTA LiDAR-based models.

For future works, we aim to strengthen the generalization ability of the model,
and explore self-supervised training to overcome the lack of data. We will also
further improve the accuracy to be competitive to SOTA LiDAR-based work
and enhance the efficiency for real-time application.



MonoPLFlowNet 7

Fig. 2. Comparison on Flyingthings3D. 1st column: depth estimation. 2nd column:
3D scene flow estmation. 1st row: Mono-SF[5]. 2nd row: Mono-SF-Multi[6]. 3rd row:
Ours, EPE3D = 0.2979 m.



8 Runfa Li, Truong Nguyen

Fig. 3. Comparison on Flyingthings3D. 1st column: depth estimation. 2nd column:
3D scene flow estmation. 1st row: Mono-SF[5]. 2nd row: Mono-SF-Multi[6]. 3rd row:
Ours, EPE3D = 0.1343 m.



MonoPLFlowNet 9

Fig. 4. Comparison on Flyingthings3D. 1st column: depth estimation. 2nd column:
3D scene flow estmation. 1st row: Mono-SF[5]. 2nd row: Mono-SF-Multi[6]. 3rd row:
Ours, EPE3D = 0.1399 m.



10 Runfa Li, Truong Nguyen

Fig. 5. Comparison on Flyingthings3D. 1st column: depth estimation. 2nd column:
3D scene flow estmation. 1st row: Mono-SF[5]. 2nd row: Mono-SF-Multi[6]. 3rd row:
Ours, EPE3D = 0.1212 m.



MonoPLFlowNet 11

Fig. 6. Comparison on KITTI. 1st column: depth estimation. 2nd column: 3D
scene flow estmation. 1st row: Mono-SF[5]. 2nd row: Mono-SF-Multi[6]. 3rd row: Ours,
EPE3D = 0.4010 m.

Fig. 7. Comparison on KITTI. 1st column: depth estimation. 2nd column: 3D
scene flow estmation. 1st row: Mono-SF[5]. 2nd row: Mono-SF-Multi[6]. 3rd row: Ours,
EPE3D = 0.3909 m.



12 Runfa Li, Truong Nguyen

Fig. 8. Comparison on KITTI. 1st column: depth estimation. 2nd column: 3D
scene flow estmation. 1st row: Mono-SF[5]. 2nd row: Mono-SF-Multi[6]. 3rd row: Ours,
EPE3D = 0.3022 m.



MonoPLFlowNet 13

Fig. 9. Comparison on KITTI. 1st column: depth estimation. 2nd column: 3D
scene flow estmation. 1st row: Mono-SF[5]. 2nd row: Mono-SF-Multi[6]. 3rd row: Ours,
EPE3D = 0.3168 m.



14 Runfa Li, Truong Nguyen

Fig. 10. Failure case on KITTI. 1st column: depth estimation. 2nd column: 3D
scene flow estmation. 1st row: Mono-SF[5]. 2nd row: Mono-SF-Multi[6]. 3rd row: Ours,
EPE3D = 0.3326 m.White box shows the failure case of our 3D scene flow estimation
on the non-rigid motion, inside the box is a moving vehicle with high relative speed to
the background.



MonoPLFlowNet 15

References

1. Adams, A., Baek, J., Davis, M.A.: Fast high-dimensional filtering using the per-
mutohedral lattice. Computer Graphics Forum 29 (2010)

2. Behl, A., Paschalidou, D., Donné, S., Geiger, A.: Pointflownet: Learning repre-
sentations for rigid motion estimation from point clouds. In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 7954–7963
(2019). https://doi.org/10.1109/CVPR.2019.00815

3. Brickwedde, F., Abraham, S., Mester, R.: Mono-sf: Multi-view geometry meets
single-view depth for monocular scene flow estimation of dynamic traffic scenes.
In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV). pp.
2780–2790 (2019). https://doi.org/10.1109/ICCV.2019.00287

4. Gu, X., Wang, Y., Wu, C., Lee, Y.J., Wang, P.: Hplflownet: Hierarchical permuto-
hedral lattice flownet for scene flow estimation on large-scale point clouds. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp.
3249–3258 (2019). https://doi.org/10.1109/CVPR.2019.00337

5. Hur, J., Roth, S.: Self-supervised monocular scene flow estimation. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 7394–7403 (2020). https://doi.org/10.1109/CVPR42600.2020.00742

6. Hur, J., Roth, S.: Self-supervised multi-frame monocular scene flow. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 2684–2694 (June 2021)

7. Jampani, V., Kiefel, M., Gehler, P.V.: Learning sparse high dimensional filters:
Image filtering, dense crfs and bilateral neural networks. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 4452–4461 (2016).
https://doi.org/10.1109/CVPR.2016.482

8. Liu, X., Qi, C.R., Guibas, L.J.: Flownet3d: Learning scene flow in 3d point clouds.
In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 529–537 (2019). https://doi.org/10.1109/CVPR.2019.00062

9. Luo, C., Yang, Z., Wang, P., Wang, Y., Xu, W., Nevatia, R., Yuille, A.: Every pixel
counts ++: Joint learning of geometry and motion with 3d holistic understanding.
IEEE Transactions on Pattern Analysis and Machine Intelligence 42(10), 2624–
2641 (2020). https://doi.org/10.1109/TPAMI.2019.2930258

10. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow
using pyramid, warping, and cost volume. In: 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 8934–8943 (2018).
https://doi.org/10.1109/CVPR.2018.00931

11. Tishchenko, I., Lombardi, S., Oswald, M.R., Pollefeys, M.: Self-supervised learning
of non-rigid residual flow and ego-motion. In: 2020 International Conference on 3D
Vision (3DV). pp. 150–159 (2020). https://doi.org/10.1109/3DV50981.2020.00025

12. Wang, Z., Li, S., Howard-Jenkins, H., Prisacariu, V.A., Chen, M.: Flownet3d++:
Geometric losses for deep scene flow estimation. In: 2020 IEEE Winter Con-
ference on Applications of Computer Vision (WACV). pp. 91–98 (2020).
https://doi.org/10.1109/WACV45572.2020.9093302

13. Wu, W., Wang, Z.Y., Li, Z., Liu, W., Fuxin, L.: Pointpwc-net: Cost volume on
point clouds for (self-) supervised scene flow estimation. In: European Conference
on Computer Vision. pp. 88–107. Springer (2020)

14. Yang, G., Ramanan, D.: Upgrading optical flow to 3d scene flow
through optical expansion. In: 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 1331–1340 (2020).
https://doi.org/10.1109/CVPR42600.2020.00141



16 Runfa Li, Truong Nguyen

15. Yang, Z., Wang, P., Wang, Y., Xu, W., Nevatia, R.: Every pixel counts: Unsuper-
vised geometry learning with holistic 3d motion understanding (2018)


