
MonoPLFlowNet: Permutohedral Lattice
FlowNet for Real-Scale 3D Scene Flow
Estimation with Monocular Images

Runfa Li and Truong Nguyen

UC San Diego
{rul002, tqn001}@ucsd.edu

Fig. 1. Results of our MonoPLFlowNet. With only two consecutive monocular
images (left) as input, our MonoPLFlowNet estimates both the depth (middle) and
3D scene flow (right) in real scale. Right shows a zoom-in real-scale scene flow of the
two vehicles from side view with the pseudo point cloud generating from the estimated
depth map ((middle), where blue points are from frame t, red and green points are
blue points translated to frame t+1 by ground truth and estimated 3D scene flow,
respectively. The objective is to align green and red points.

Abstract. Real-scale scene flow estimation has become increasingly im-
portant for 3D computer vision. Some works successfully estimate real-
scale 3D scene flow with LiDAR. However, these ubiquitous and expen-
sive sensors are still unlikely to be equipped widely for real application.
Other works use monocular images to estimate scene flow, but their scene
flow estimations are normalized with scale ambiguity, where additional
depth or point cloud ground truth are required to recover the real scale.
Even though they perform well in 2D, these works do not provide accu-
rate and reliable 3D estimates. We present a deep learning architecture
on permutohedral lattice - MonoPLFlowNet. Different from all previous
works, our MonoPLFlowNet is the first work where only two consecutive
monocular images are used as input, while both depth and 3D scene flow
are estimated in real scale. Our real-scale scene flow estimation outper-
forms all state-of-the-art monocular-image based works recovered to real
scale by ground truth, and is comparable to LiDAR approaches. As a
by-product, our real-scale depth estimation is also comparable to other
state-of-the-art works.

Keywords: Real-scale scene flow estimation, Monocular-image based,
Permutohedral lattice, Real-scale depth estimation

2 Runfa Li, Truong Nguyen

1 Introduction

Scene flow are 3D vectors associating the corresponding 3D point-wise motion
between consecutive frames, where scene flow can be recognized as lifting up
pixel-wise 2D optical flow from the image plane to 3D space. Different to coarsely
high-level motion cues such as bounding-box based tracking, 3D scene flow fo-
cuses on precisely low-level point-wise motion cues. With such advantage, scene
flow can either serve for non-rigid motion as visual odometry and ego motion
estimation, or rigid motion as multi-object tracking, which makes it increasingly
important in motion perception/segmentation and applications in dynamic en-
vironments such as robotics, autonomous driving and human-computer interac-
tion.

3D scene flow has been widely studied using LiDAR point cloud [27, 45, 41, 3,
15, 47, 34] from two consecutive frames as input, where a few recent LiDAR works
achieve very accurate performances. However, LiDARs are still too expensive to
be equipped for real applications. Other sensors are also being explored for 3D
scene flow estimation such as RGB-D cameras [29, 16, 20] and stereo cameras[43,
40, 2, 22, 30]. However, each sensor configuration also has its own limitation, such
as RGB-D cameras are only reliable in the indoor environment, while stereo
cameras require calibration for stereo rigs.

Since Monocular camera is ubiquitous and afordable for all real applications,
it is a promising alternative to the complicated and expensive sensors. There are
many works for monocular image-based scene flow estimation[53, 55, 38, 8, 51, 28,
49, 18, 19], where CNN models are designed to jointly estimate monocular depth
and optical/scene flow. However, their estimations are all with scale ambiguity.
This problem exists in all monocular works where they estimate normalized
depth and optical/scene flow. To recover to the real scale, they require depth
and scene flow ground truth, which are possible to obtain for evaluation in labeled
datasets but impossible for a real application.

Our motivation for this work is to take the advantages and overcome the
limitations from both LiDAR-based (real-scale, accurate but expensive) and
image-based (affordable, ubiquitous but scale-ambiguous) approaches. Our key
contributions are:

– We build a deep learning architecture MonoPLFlowNet, which is the first
work using only two consecutive monocular images to simultaneously estimate
in real scale both the depth and 3D scene flow.

– Our 3D scene flow estimation outperforms all state-of-the-art monocular image-
based works even after recovering their scale ambiguities with ground truth,
and is comparable to LiDAR-based approaches.

– We introduce a novel method - “Pyramid-Level 2D-3D features alignment
between Cartesian Coordinate and Permutohedral Lattice Network”, which
bridges the gap between features in monocular images and 3D points in our
application, and inspires a new way to align 2D-3D information for computer
vision tasks which could benefit other applications.

MonoPLFlowNet 3

– As a byproduct, our linear-additive depth estimation from MonoPLFlowNet
also outperforms state-of-the-art works on monocular depth estimation.

2 Related Works

Monocular image-based scene flow estimation: Monocular 3D scene flow
estimation originates from 2D optical flow estimation [9, 49]. To get real-scale
3D scene flow from 2D optical flow, real-scale 3D coordinates are required which
could be derived from real-scale depth map. Recently, following the success from
SFM (Structure from Motion) [48, 25], many works jointly estimate monocular
depth and 2D optical flow [53, 55, 38, 8, 51, 28]. However, as seen in most SFM
models, the real scale decays in jointly training and leads to scale ambiguity.
Although [18, 19] jointly estimate depth and 3D scene flow directly, they suf-
fer from scale ambiguity, which is the biggest issue for monocular image-based
approaches.

3D Point cloud based scene flow estimation: Following PointNet [6] and
PointNet++ [36], it became possible to use CNN-based models to directly pro-
cess point cloud for different tasks including 3D scene flow estimation. Since
directly implementing on 3D points, there is no scale ambiguity. The success of
CNN-based 2D optical flow networks also boost 3D scene flow. FlowNet3D [27]
builds on PointNet++ and imitates the process used in 2D optical FlowNet [9]
to build a 3D correlation layer. PointPWC-net [47] imitates another 2D optical
flow network PWC-net [42] to build 3D cost volume layers. The most success-
ful works are “Permutohedral Lattice family”, where BCL [21], SplatNet [41],
HPLFlowNet[15], PointFlowNet [3] all belong to the family. The lattice (more
details will be provided in Section 3.1) is a very efficient representation for pro-
cessing of high-dimensional data [1], including 3D point cloud. Point cloud based
methods achieve better performance than image-based methods. However, with
LiDAR scanning as the input, they are still too expensive for real applications.

Our MonoPLFlowNet takes advantages and overcomes limitations from both
image (affordable, ubiquitous but scale-ambiguous) and LiDAR (real-scale, accu-
rate but expensive) based approaches by only using monocular images to jointly
estimate depth and 3D scene flow in real scale.

3 MonoPLFlowNet

Our MonoPLFlowNet is an encoder-decoder based model, which only takes two
consecutive monocular images as input, while both the depth and 3D scene flow
are estimated in real scale. Figure 2 shows our network architecture. While shar-
ing the same encoder, we build depth and scene flow decoders, respectively. With
our designed mechanism, we align the 2D-3D features to boost the performance,
where the real-scale 3D scene flow benefits from the depth estimation. In this
section, we present the theory of permutohedral lattice, and then discuss how
we design and align the two decoders.

4 Runfa Li, Truong Nguyen

Fig. 2. MonoPLFlowNet Architecture: It shares the same encoder for two monoc-
ular images as the only input, and jointly estimates the depth and 3D scene flow in
real scale by decoding separately with a Depth decoder (purple box) and a Sceneflow
Decoder (red box). Architectures of the two decoders are shown in Figure 3 and 4,
respectively.

3.1 Review of Permutohedral Lattice Filtering

High-Dimensional Gaussian Filtering: Value and position of the signal are
two important components of filtering. Eq. 1 shows a general form of high-
dimensional Gaussian filtering:

v⃗i =

n∑
j=1

exp−
1
2 (p⃗i−p⃗j)

T ∑−1(p⃗i−p⃗j)
T

v⃗j (1)

v⃗i = (ri, gi, bi, 1), p⃗i = (
xi

σs
,
yi
σs

) (2)

v⃗i = (ri, gi, bi, 1), p⃗i = (
xi

σs
,
yi
σs

,
Ii
σc

) (3)

v⃗i = (ri, gi, bi, 1), p⃗i = (
xi

σs
,
yi
σs

,
ri
σc

,
gi
σc

,
bi
σc

) (4)

where exp−
1
2 (p⃗i−p⃗j)

T ∑−1(p⃗i−p⃗j)
T

is a Gaussian distribution denoting the weight
of the neighbor signal value v⃗j contributing to the target signal v⃗i. Here v⃗ is the
value vector of the signal, and p⃗ is the position vector of the signal. Equations 2,
3 and 4 denote Gaussian blur filter, gray-scale bilateral filter and color bilateral
filter, respectively, where vi and pi are defined in Eq. 1. For these image filters,
the signals are pixels, the signal values are 3D homogeneous color space, and
signal positions are 2D, 3D and 5D, respectively, and the filtering processing is
on 2D image Cartesian coordinate. The dimension of the position vector can
be extended to d, which is called a d-dimensional Gaussian filter. We refer the
readers to [1, 21] and our supplementary materials for more details.

Permutohedral Lattice Network: However, a high-dimensional Gaussian fil-
ter can also be implemented on features with n dimensions rather than on pixels
with 3D color space. The filtering process can be implemented in a more effi-
cient space, the Permutohedral Lattice rather than the classical Cartesian 2D
image plane or 3D space. The d-dimensional permutohedral lattice is defined as
the projection of the scaled Cartesian (d+ 1)-dimensional grid along the vector

MonoPLFlowNet 5

Fig. 3. Depth Decoder: Pyramid-Level Linearly-Additive Depth Estimation.
Besides the accurate depth estimation, from a whole architecture view, our depth
decoder also serves as the feature/lattice position generator, which is why we design it
in linear-additive way.

1⃗ = [1, 1...1] onto the hyperplane Hd, which is the subspace of Rd+1 in which
coordinates sum to zero:

Bd =


d −1 ... −1
−1 d ... −1
...
−1 −1 ... d

 (5)

Therefore it is also spanned by the projection of the standard basis for the
original (d+1)-dimensional Cartesian space toHd. In other words, we can project
a feature at Cartesian coordinate pcart to Permutohedral Lattice coordinate plat
as:

⃗plat = Bd ⃗pcart (6)

With features embedding on lattice, [1] derived a maneuver pipeline “splatting-
convolution-slicing” for feature processing in lattice; [21] improved the pipeline
to be learnable BCL (Bilateral Convolutional Layers). Following CNN notion,
[15] improved BCL to different levels of receptive fields.

To summarize, Permutohedral Lattice Network convolves the feature values
v⃗i based on feature positions p⃗i. While it is straightforward to derive v⃗i and
p⃗i when feature positions and lattice have the same dimension, eg. 3D Lidar
points input to 3D lattice [21, 41, 15] or 2D to 2D [46, 1], it is challenging when
dimensions are different, as in the case of our 2D image input to 3D lattice. The
proposed MonoPLFlowNet is designed to overcome such a problem.

3.2 Depth Decoder

We design our depth module as an encoder-decoder based network as shown in
Figure 3. Following the success of BTS DepthNet[24], we use their same encoder
as a CNN-based feature extractor followed by the dilated convolution (ASPP)
[50, 7]. Our major contribution focuses on the decoder from three aspects.

Level-Based Decoder: First, while keeping a pyramid-level top-down reason-
ing, BTS designed “lpg” (local planar guidance) to regress depth at each level
in an ambiguous scale. In our experiments, we found that “lpg” is a block where
accuracy is sacrificed for efficiency. Instead, we replace the “lpg” with our “level-
based decoder” as shown in Figure 3, and improve the decoder to accommodate
our sceneflow task.

6 Runfa Li, Truong Nguyen

Fig. 4. 3D Scene Flow Decoder: Pyramid-Level 2D-3D features alignment
between Cartesian Coordinate and Permutohedral Lattice Network. Hori-
zontally it shows the feature embedding from Cartesian coordinate to permutohedral
lattice. Vertically, it shows how the features are upsampled and concatenated for the
next level.

Pyramid-Level Linearly-Additive mechanism: BTS concatenates the es-
timated depth at each level and utilizes a final convolution to regress the final
depth in a non-linear way, implying that the estimated depth at each level is not
in a determined scale. Instead, we propose a “Pyramid-Level Linearly-Additive
mechanism” as:

dfinal =
1

4
(1× dlev1 + 2× dlev2 + 4× dlev4 + 8× dlev8) (7)

such that the final estimation is a linear combination over each level depth, where
we force dlev1, dlev2, dlev4, dlev8 to be in 1, 1

2 ,
1
4 ,

1
8 scale of the real-scale depth.

To achieve this, we also derive a pyramid-level loss corresponding to the level of
the decoder architecture to supervise the depth at each level as Eq. 11.

Experiments show that with our improvement, our depth decoder outper-
forms the baseline BTS as well as other state-of-the-art works. More importantly,
the objective is to design the depth decoder to generate feature/lattice for the
scene flow decoder, which is our major contribution. More details are provided
in the next section.

3.3 Scene Flow Decoder

Our scene flow decoder is designed as a two-stream pyramid-level model which
decodes in parallel in two domains - 2D Cartesian coordinate and 3D permutal-
hedral lattice, as shown in Figure 4. As mentioned in Section 3.1, feature values
and positions are two key factors in filtering processing. For the feature values,
we use the features decoded by level-based decoder from depth module as shown
in Figure 3, the features as the input to scene decoder (32 dimensions) are be-
fore regressing to the corresponding level depth (purple arrow), which means

MonoPLFlowNet 7

that the input features to the scene decoder are the high-level feature represen-
tation of the corresponding level depth. While values are trivial, positions are
not straightforward. As the challenge mentioned in Section 3.1, the 2D feature
position from our depth is not enough to project the feature values to 3D permu-
tohedral lattice. We overcome it by projecting the estimated depth estimation
into 3D space to generate real-scale pseudo point cloud. Since pseudo point cloud
has real-scale 3D coordinates, we can first project the feature values from the
2D depth map to 3D point cloud in Cartesian coordinate, and then embed to
the corresponding position in 3D permutohedral lattice. A 2D to 3D projection
is defined as: xy

z

 =

z/fu 0 −cuz/fu
0 z/fv −cvz/fv
0 0 z

uv
1

 (8)

where z is the estimated depth, (u, v) is the corresponding pixel coordinate in
the depth map, (fu, fv) are horizontal and vertical camera focal lengths, (cu, cv)
are the coordinate of camera principle point. (x, y, z) is the coordinate of the
projected 3D point.

So far we have successfully derived the projection in the real scale, where the
complete projection pipeline consisting of 2D to 3D (Eq. 8) and 3D to lattice
(Eq. 6) is shown in Figure 4. Due to the linear property of the projection, the
proposed projection pipeline holds at different scales in the overall system. Using
this property, we prove a stronger conclusion: scaling the feature depth from
Cartesian coordinate leads to a same scale to the corresponding feature position
in permutohedral lattice. Eq. 9 summarizes the mapping where (px, py, pz) is the
permutohedral lattice coordinate of the feature corresponding to its 2D Cartisian
coordinate in the depth map. pxpy

pz

 = Bd

xy
z


= Bd

z/fu 0 −cuz/fu
0 z/fv −cuz/fu
0 0 z

uv
1


= Bd

λz/λfu 0 −λcuλz/λfu
0 λz/λfv −λcuλz/λfu
0 0 λz

uv
1


= Bd

z/fu 0 −cuλz/fu
0 z/fv −cuλz/fu
0 0 λz

λuλv
1


= Bd

λz/fu 0 −cuλz/fu
0 λz/fv −cuλz/fu
0 0 λz

uv
1



(9)

Bd is defined in Eq. 5, λ is the scale, a “prime” sign denotes scaling the original
value with λ. Comparing the final result of Eq. 9 to Eq. 8, the only difference

8 Runfa Li, Truong Nguyen

is to replace z with λz, hence only scaling the depth in Cartesian coordinate
will lead to a same scale to the position in permutohedral lattice. Using the
proposed “Pyramid-Level 2D-3D features alignment” mechanism, we can embed
the features from 2D Cartesian coordinate to 3D Permutohetral lattice, and then
implement splating-convolution-slicing and concatenate different level features
directly in the permutohedral lattice network. Please see the supplementary ma-
terials for more explanation. For the basic operations in permutohedral lattice,
we directly refer to [15].

We further analysis into the motivation and intuition of model design . We
design the explicit “linear regression” depth decoder (Eq. 7) to produce deep
features and depth at each level for scene branch, implying that the depth esti-
mation at level 2 is at scale 1/2 to the final depth, at level 4 is 1/4 and so on,
which guarantees that we can embed the features at level n from the depth map
to the corresponding level n lattice (Proved by Eq. 9). However, for the implicit
“non-linear regression” in BTS 3, the depth estimation at level 2 is not 1/2 but
an arbitrary and ambiguous scale to the final depth and so as other levels, which
means that the features cannot be safely embedded to the lattice coordinate cor-
responding to the Euclidean coordinate. Note that this cannot be achieved by a
simple concatenation of depth and scene branch, because not only the depth but
also the deep features at corresponding position in 2D map are needed for scene
branch. In other words, scene branch cannot work alone without depth module,
and thus we take the two modules as a whole model rather than two inde-
pendent models. This is the ”Pyramid-Level 2D-3D features alignment between
Cartesian Coordinate and Permutohedral Lattice Network” explained in Fig.4.
Our model design also considers the meta information aggregation, monocular
input (like Mono-SF [18]) contains RGB, X, Y information, point cloud input
(like HPLFlowNet [15]) contains X, Y, Z information, while our real-scale depth
estimation from monocular input plus deep features extracted from the depth
decoder contains information RGB, X, Y, Z. Moreover, the proposed network has
advantage over Mono-SF/MonoSF-Multi [19] since our estimation is in real-scale
whereas their estimation has scale ambiguity.

3.4 Loss

Depth Loss: Silog (scale-invariant log) loss is a widely-used loss [10] for depth
estimation supervision defined as:

Lsilog(d̃, d) = α

√
1

T

∑
i

(gi)2 −
λ

T 2
(
∑
i

gi)2 (10)

where gi = log d̃i − log di, d̃ and d are estimated and ground truth depths, T
is the number of valid pixels, λ and α are constants set to be 0.85 and 10.
Since our depth decoder decodes a fixed-scale depth at each level, we do not
directly supervise on final depth. Instead, we design a pyramid-level silog loss
corresponding to our depth decoder to supervise the estimation from each level.

Ldepth =
1

15
(8× L1 + 4× L2 + 2× L4 + 1× L8) (11)

MonoPLFlowNet 9

where Llevel = Lsilog(d̃level, dlevel/n). Higher weight is assigned to low-level loss
to stabilize the training process.

Scene Flow Loss: Following most LiDAR-based work, we first use a traditional
End Point Error (EPE3D) loss as Lepe = ||s̃f − sf ||2, where s̃f and sf are
estimated and ground truth scene flows, respectively. To bring two sets of point
clouds together, some self-supervised works leverage the Chamfer distance loss
as:

Lcham(P,Q) =
∑
p∈P

min
q∈Q

||p− q||22 +
∑
q∈Q

min
p∈P

||p− q||22 (12)

where P and Q are two sets of point clouds that optimized to be close to each
other. While EPE loss supervises directly on scene flow 3D vectors, we improved
canonical Chamfer loss to a forward-backward Chamfer distance loss supervising
on our pseudo point cloud from depth estimates as:

Lcham total = Lcham f + Lcham b

Lcham f = Lcham(P̃f , P2)

Lcham b = Lcham(P̃b, P1)

P̃f = P1 + s̃ff , P̃b = P2 + s̃f b

(13)

where P1 and P2 are pseudo point clouds generated from the estimated depth of
two consecutive frames. s̃ff and s̃f b are estimated forward and backward scene
flows.

4 Experiments

Datasets: We use Flyingthings3D [31] and KITTI [13] dataset in this work for
training and evaluation. Flyingthings3D is a synthetic dataset with 19,460 pairs
of images in its training split, and 3,824 pairs of images in its evaluation split. We
use it for training and evaluation of both depth and scene flow estimation. For
KITTI dataset, following most previous works, for depth training and evaluation,
we use KITTI Eigen’s [10] split which has 23,488 images of 32 scenes for training
and 697 images of 29 scenes for evaluation. For scene flow evaluation, we use
KITTI flow 2015 [32] split with 200 pairs of images labeled with flow ground
truth. We do not train scene flow on KITTI.

4.1 Monocular Depth

We train the depth module in a fully-supervised manner using the pyramid-
level silog loss derived in Eq. 11. For training simplicity, we first train the depth
module free from scene flow decoder. Our model is completely trained from
scratch.

KITTI: We first train on KITTI Eigen’s training split, Table 1 shows the depth
comparison on KITTI Eigen’s evaluation split. We classify the previous works
into two categories, joint-estimate monocular depth and flow, and single-estimate

10 Runfa Li, Truong Nguyen

Method Output Scale
higher is better lower is better

δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Sq Rel RMSE RMSE log

Make3D[39] D ✓ 0.601 0.820 0.926 0.280 3.012 8.734 0.361
Eigen et al.[10] D ✓ 0.702 0.898 0.967 0.203 1.548 6.307 0.282

Liu et al.[26] D ✓ 0.680 0.898 0.967 0.201 1.584 6.471 0.273
LRC (CS + K)[14] D ✓ 0.861 0.949 0.976 0.114 0.898 4.935 0.206

Kuznietsov et al.[23] D ✓ 0.862 0.960 0.986 0.113 0.741 4.621 0.189
Gan et al.[12] D ✓ 0.890 0.964 0.985 0.098 0.666 3.933 0.173

DORN[11] D ✓ 0.932 0.984 0.994 0.072 0.307 2.727 0.120
Yin et al.[52] D ✓ 0.938 0.990 0.998 0.072 - 3.258 0.117

BTS (DenseNet-121)[24] D ✓ 0.951 0.993 0.998 0.063 0.256 2.850 0.100
BTS (ResNext-101)[24] D ✓ 0.956 0.993 0.998 0.059 0.245 2.756 0.096

DPT-hybrid[37] D ✓ 0.959 0.995 0.999 0.062 0.256 2.573 0.092

GeoNet[53] D + 2DF ✗ 0.793 0.931 0.973 0.155 1.296 5.857 0.233
DFNet[55] D + 2DF ✗ 0.818 0.943 0.978 0.146 1.182 5.215 0.213

CC[38] D + 2DF ✗ 0.826 0.941 0.975 0.140 1.070 5.326 0.217
GLNet[8] D + 2DF ✗ 0.841 0.948 0.980 0.135 1.070 5.230 0.210
EPC[51] D + 2DF ✗ 0.847 0.926 0.969 0.127 1.239 6.247 0.214

EPC++[28] D + 2DF ✗ 0.841 0.946 0.979 0.127 0.936 5.008 0.209
Mono-SF[18] D + 3DF ✗ 0.851 0.950 0.978 0.125 0.978 4.877 0.208

Ours (DenseNet-121) D + 3DF ✓ 0.960 0.993 0.998 0.059 0.236 2.691 0.095

Table 1. Monocular depth results comparison on KITTI Eigen’s split. In
the column Output, D denotes depth, 2DF and 3DF denote 2D optical flow and 3D
scene flow. In the column Scale, ✓denotes in real scale, ✗ denotes with scale ambiguity.
DenseNet-121 as backbone more efficient than ResNext-101.

monocular depth alone. It is clearly from the table that the single estimation out-
performs the joint estimation on average, and the joint estimation has scale am-
biguity. With a similar design to our strongest single-estimate baseline BTS[24],
our depth outperforms BTS with the same backbone DenseNet-121[17] as well
as the best BTS with ResNext-101 backbone. The joint-estimate works fail to
estimate in real scale because they regress depth and scene flow together in self-
supervised manner, which sacrifices the real depth. We design our model with
separate decoders in a fully-supervised manner, and succeed to jointly estimate
depth and scene flow in real scale, where our depth achieves a clear improvement
to the strongest joint-estimate baseline Mono-SF [18]. The monocular depth eval-
uation metrics cannot show the difference of a normalized and real-scale depth,
but real-scale depth is required for real-scale 3D scene flow estimation.

Flyingthings3D: Similarly, we train another version on Flyingthings3D from
scratch and use it to train the scene flow decoder on Flyingthings3D. Since
Flyingthings3D is not a typical dataset for depth training, very few previous
works reported results. Because scene flow estimation is related to depth, we
also evaluated two strongest baselines on Flyingthings3D as shown in Table 2.
Then we use the trained depth module to train the scene flow decoder.

4.2 Real-Scale 3D Scene Flow

Most image-based scene flow works are trained on KITTI in a self-supervised
manner, which leads to the scale ambiguity. We train our scene flow decoder in a

MonoPLFlowNet 11

Method Train on Scale
higher is better lower is better

δ < 1.25 δ < 1.252 δ < 1.253 Abs Rel Sq Rel RMSE RMSE log

Mono-SF[18] K ✗ 0.259 0.483 0.648 0.943 19.250 14.676 0.667
Mono-SF-Multi[19] K ✗ 0.273 0.492 0.650 0.931 19.072 14.566 0.666

Ours F ✓ 0.715 0.934 0.980 0.188 1.142 4.400 0.235

Table 2. Monocular depth results comparison on Flyingthings3D dataset.
In the column Train on, K denotes KITTI, F denotes Flyingthings3D. In the column
Scale, ✓denotes in real scale, ✗ denotes with scale ambiguity.

Method Train on Scale EPE3D(m) ACC3DS ACC3DR Outlier3D EPE2D(px) ACC2D

Mono-SF[18] K ✗ 1.1288 0.0525 0.1017 0.9988 58.2761 0.2362
Mono-SF-Multi [19] K ✗ 1.5864 0.0020 0.0050 0.9988 48.3099 0.3162

Ours F ✓ 0.3915 0.5424 0.6911 0.8279 22.4226 0.6659

Table 3. Monocular 3D scene flow results comparison on Flyingthings3D
dataset.(image based evaluation standard) In the column Train on, K denotes
KITTI, F denotes Flyingthings3D. In the column Scale, ✓denotes in real scale, ✗

denotes with scale ambiguity.

Method Train on Scale EPE3D(m) ACC3DS ACC3DR Outlier3D EPE2D(px) ACC2D

[18]depth + Mono-Exp[49] K ✗ 2.7079 0.0676 0.1467 0.9982 181.0699 0.2777
Our depth + Mono-Exp[49] K ✗ 1.6673 0.0838 0.1815 0.9953 78.7245 0.2837

Mono-SF[18] K ✗ 1.1288 0.0525 0.1017 0.9988 58.2761 0.2362
Mono-SF-Multi[19] K ✗ 0.7828 0.1725 0.2548 0.9477 35.9015 0.4886

Ours F ✓ 0.6970 0.2453 0.3692 0.8630 33.4750 0.4968

Table 4. Monocular 3D scene flow results comparison on KITTI flow 2015
dataset.(image based evaluation standard) In the column Train on, K denotes
KITTI, F denotes Flyingthings3D. In the column Scale, ✓denotes in real scale, ✗

denotes with scale ambiguity.

12 Runfa Li, Truong Nguyen

Dataset Method Input EPE3D(m) ACC3DS ACC3DR Outlier3D EPE2D(px) ACC2D

LDOF[5] RGBD 0.498 - - - - -
OSF[33] RGBD 0.394 - - - - -

PRSM[44] RGBD 0.327 - - - - -
PRSM[44] Stereo 0.729 - - - - -

K Ours Mono 0.6970 0.0035 0.0255 0.9907 33.4750 0.0330
ICP(rigid)[4] LiDAR 0.5185 0.0669 0.1667 0.8712 27.6752 0.1056

FGR(rigid)[54] LiDAR 0.4835 0.1331 0.2851 0.7761 18.7464 0.2876
CPD(non-rigid)[35] LiDAR 0.4144 0.2058 0.4001 0.7146 27.0583 0.1980

FlowNet-C[9] Depth 0.7887 0.0020 0.0149 - - -
FlowNet-C[9] RGBD 0.7836 0.0025 0.0174 - - -

Ours Mono 0.3915 0.0125 0.0816 0.9874 22.4226 0.0724
ICP(global)[4] LiDAR 0.5019 0.0762 0.2198 - - -

F ICP(rigid)[4] LiDAR 0.4062 0.1614 0.3038 0.8796 23.2280 0.2913
FlowNet3D-EM[27] LiDAR 0.5807 0.0264 0.1221 - - -
FlowNet3D-LM[27] LiDAR 0.7876 0.0027 0.0183 - - -

FlowNet3D[27] LiDAR 0.1136 0.4125 0.7706 0.6016 5.9740 0.5692

Table 5. 3D scene flow results comparison with different input data form on
KITTI flow 2015 and Flyingthings3D. (LiDAR based evaluation standard)
Since we also compare the LiDAR approaches here, we use the strict LiDAR-based
evaluation standard. In the column Dataset, K denotes KITTI, F denotes Flyingth-
ings3D. All works in the table are in real scale. Since our work is the first image-based
work thoroughly evaluating 3D scene flow with 3D metrics, we lack of some 3D results
from previous image-based works, but it is already enough to see our Monocular-image
based work is comparable to LiDAR approaches

fully-supervised manner with the EPE3D and forward-backward loss proposed in
Section 3.4, which is able to estimate real-scale depth and scene flow. While real
dataset like KITTI lacks 3D scene flow label, we only train our depth decoder
on synthetic dataset Flyingthings3D.

Previous image-based scene flow works mostly use d1, d2, f1, sf1 for evalua-
tion, but these metrics are designed for evaluating 2D optical flow or normalized
scene flow, which themselves have the scale ambiguity. Instead, we use the met-
rics directly for evaluating real-scale 3D scene flow [27, 15, 47], which we refer
as LiDAR-based evaluation standard (details in supplementary materials).
However, since this LiDAR standard is too strict to image-based approaches,
we slightly relax the LiDAR standard and use an image-based evaluation
standard, EPE (end point error) 3D/2D are same to LiDAR standard:

– Acc3DS: the percentage of points with EPE3D < 0.3m or relative error < 0.1.
– Acc3DR: the percentage of points with EPE3D < 0.4m or relative error < 0.2.
– Outliers3D: the percentage of points with EPE3D > 0.5m or relative error >

0.3.
– Acc2D: the percentage of points whose EPE2D < 20px or relative error < 0.2.

Since we are the only monocular image-based approach estimating in real
scale, to evaluate other works with our monocular approach, we need to recover
other works to the real scale using the depth and scene flow ground truth (details
in supplementary materials).

MonoPLFlowNet 13

Flyingthings3D: Table 4 shows the monocular 3D scene flow comparison
on Flyingthings3D. Even recovering [18, 19] to real scale with ground truth,
our result still outperforms the two strongest state-of-the-art baseline works by
an overwhelming advantage. More importantly, we only need two consecutive
images without any ground truth.

KITTI: We also directly evaluate scene flow on KITTI without any fine-
tuning as shown in Table 4. The table also includes state-of-the-art 2D approach
Mono-Expansion [49]. We first recover its direct output 2D optical flow to 3D
scene flow, and then recover the scale. To recover 2D to 3D, Mono-Expansion
proposed a strategy using LiDAR ground truth to expand 2D to 3D specifically
for its own usage, but it is not able to extend to all works. For comparison, we
recover 3D flow and scale in the same way with ground truth. In the table, the
proposed approach still outperforms all state-of-the-art strong baseline works
without any fine-tuning on KITTI. Since Mono-Expansion does not estimate
depth, we use our depth and Mono-SF depth to help recovering 3D scene flow.
Note that our scene flow decoder does not use the depth directly, but share the
features and regress in parallel. In the table, by using our depth to recover Mono-
Exp, it greatly outperforms by using depth from Mono-SF [18]. This comparison
also shows the superiority of our depth estimation over others.

Ablation Study: We perform the ablation study for our scene flow decoder.
The ablation study verifies the 2D-3D features alignment process, discussed in
Section 3.3. As our MonoPLFlowNet architecture (Figure 2) shows, we perform
three-level 2D-3D features alignment in our full model and decode in parallel,
which are level 1, 2, 4. In the ablation study, we train the model only with
level1 and level1+level2, and compare to the full model trained to the same
epoch. The results indicate that the performances get better with deeper levels
involved, hence the concatenation of features from different levels in the lattice
boost the training, which proves our 2D-3D features alignment mechanism.

Method EPE3D(m) Scale ACC3DS ACC3DR Outlier3D EPE2D(px) ACC2D

MonoPLFlowNet-lev1 0.4781 ✓ 0.4587 0.6146 0.8935 26.3133 0.6092
MonoPLFlowNet-lev1-lev2 0.4439 ✓ 0.4689 0.6333 0.8605 24.3198 0.6366
MonoPLFlowNet-full 0.4248 ✓ 0.5099 0.6611 0.8595 23.7657 0.6456

Table 6. Ablation study on our MonoPLFlowNet by changing level of the
scene decoder.(image based evaluation standard) lev1 denotes only using the
last level, lev1-lev2 denotes using the last two levels, full denotes using all levels. For
fair comparison, we show all results after training epoch 22.

4.3 Visual Results

We show our visual results of depth and real-scale scene flow in Figure 5. 3D scene
flow are visualized with the pseudo point cloud generating from the estimated
depth map, where blue points are from 1st frame, red and green points are blue

14 Runfa Li, Truong Nguyen

Fig. 5. Qualitative depth and real-scale 3D scene flow results of the pro-
posed MonoPLFlowNet on KITTI and Flyingthins3D for a single pair of
two consecutive frames. For KITTI (column 1&2), 1st row: 1st frame of the RGB
input image, recovered scene flow of [49] by our depth. From 2nd to 4th row: depth
and scene flow by Mono-sf[18], Mono-sf-multi[19] and ours. For Flyingthings3D (col-
umn3&4&5), from top to down: depth of the 1st frame, scene flow, zoom-in view scene
flow by [18, 19] and ours, original input RGB is shown in supplementary materials.
Depth and scene flow of [18, 19] are recovered to the real scale before generating point
cloud.

points translated to 2nd frame by ground truth and estimated 3D scene flow,
respectively. The goal of the algorithm is to match the green points to the red
points. Different to LiDAR-based works that have same shape of point cloud,
the shapes of point cloud are different here because generating from different
depth estimation. More visual results are provided in supplementary materials.

5 Conclusion

We present MonoPLFlowNet in this paper. It is the first deep learning architec-
ture that can estimate both depth and 3D scene flow in real scale, using only
two consecutive monocular images. Our depth and 3D scene flow estimation out-
performs all the-state-of-art baseline monocular based works, and is comparable
to LiDAR based works. In the future, we will explore the usage of more real
datasets with specifically designed self-supervised loss to further improve the
performance.

MonoPLFlowNet 15

References

1. Adams, A., Baek, J., Davis, M.A.: Fast high-dimensional filtering using the per-
mutohedral lattice. Computer Graphics Forum 29 (2010)

2. Behl, A., Jafari, O.H., Mustikovela, S.K., Alhaija, H.A., Rother, C., Geiger, A.:
Bounding boxes, segmentations and object coordinates: How important is recog-
nition for 3d scene flow estimation in autonomous driving scenarios? In: 2017
IEEE International Conference on Computer Vision (ICCV). pp. 2593–2602 (2017).
https://doi.org/10.1109/ICCV.2017.281

3. Behl, A., Paschalidou, D., Donné, S., Geiger, A.: Pointflownet: Learning repre-
sentations for rigid motion estimation from point clouds. In: 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 7954–7963
(2019). https://doi.org/10.1109/CVPR.2019.00815

4. Besl, P., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 14(2), 239–256 (1992).
https://doi.org/10.1109/34.121791

5. Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in vari-
ational motion estimation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 33(3), 500–513 (2011). https://doi.org/10.1109/TPAMI.2010.143

6. Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J.: Pointnet: Deep learning
on point sets for 3d classification and segmentation. In: 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 77–85 (2017).
https://doi.org/10.1109/CVPR.2017.16

7. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Se-
mantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 40(4), 834–848 (2018). https://doi.org/10.1109/TPAMI.2017.2699184

8. Chen, Y., Schmid, C., Sminchisescu, C.: Self-supervised learning with geometric
constraints in monocular video: Connecting flow, depth, and camera. In: 2019
IEEE/CVF International Conference on Computer Vision (ICCV). pp. 7062–7071
(2019). https://doi.org/10.1109/ICCV.2019.00716

9. Dosovitskiy, A., Fischer, P., Ilg, E., Häusser, P., Hazirbas, C., Golkov, V., Smagt,
P.v.d., Cremers, D., Brox, T.: Flownet: Learning optical flow with convolutional
networks. In: 2015 IEEE International Conference on Computer Vision (ICCV).
pp. 2758–2766 (2015). https://doi.org/10.1109/ICCV.2015.316

10. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single
image using a multi-scale deep network. In: Ghahramani, Z., Welling, M.,
Cortes, C., Lawrence, N., Weinberger, K.Q. (eds.) Advances in Neural
Information Processing Systems. vol. 27. Curran Associates, Inc. (2014),
https://proceedings.neurips.cc/paper/2014/file/7bccfde7714a1ebadf06c5f4cea752c1-
Paper.pdf

11. Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal re-
gression network for monocular depth estimation. In: 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 2002–2011 (2018).
https://doi.org/10.1109/CVPR.2018.00214

12. Gan, Y., Xu, X., Sun, W., Lin, L.: Monocular depth estimation with affinity, ver-
tical pooling, and label enhancement. In: Proceedings of the European Conference
on Computer Vision (ECCV) (September 2018)

13. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti
vision benchmark suite. In: Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2012)

16 Runfa Li, Truong Nguyen

14. Godard, C., Aodha, O.M., Brostow, G.J.: Unsupervised monocular depth
estimation with left-right consistency. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 6602–6611 (2017).
https://doi.org/10.1109/CVPR.2017.699

15. Gu, X., Wang, Y., Wu, C., Lee, Y.J., Wang, P.: Hplflownet: Hierarchical permuto-
hedral lattice flownet for scene flow estimation on large-scale point clouds. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp.
3249–3258 (2019). https://doi.org/10.1109/CVPR.2019.00337

16. Hornácek, M., Fitzgibbon, A., Rother, C.: Sphereflow: 6 dof scene flow from rgb-d
pairs. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition.
pp. 3526–3533 (2014). https://doi.org/10.1109/CVPR.2014.451

17. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely
connected convolutional networks. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 2261–2269 (2017).
https://doi.org/10.1109/CVPR.2017.243

18. Hur, J., Roth, S.: Self-supervised monocular scene flow estimation. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
pp. 7394–7403 (2020). https://doi.org/10.1109/CVPR42600.2020.00742

19. Hur, J., Roth, S.: Self-supervised multi-frame monocular scene flow. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 2684–2694 (June 2021)

20. Jaimez, M., Souiai, M., Stückler, J., Gonzalez-Jimenez, J., Cremers, D.:
Motion cooperation: Smooth piece-wise rigid scene flow from rgb-d im-
ages. In: 2015 International Conference on 3D Vision. pp. 64–72 (2015).
https://doi.org/10.1109/3DV.2015.15

21. Jampani, V., Kiefel, M., Gehler, P.V.: Learning sparse high dimensional filters:
Image filtering, dense crfs and bilateral neural networks. In: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). pp. 4452–4461 (2016).
https://doi.org/10.1109/CVPR.2016.482

22. Jiang, H., Sun, D., Jampani, V., Lv, Z., Learned-Miller, E., Kautz, J.: Sense:
A shared encoder network for scene-flow estimation. In: 2019 IEEE/CVF In-
ternational Conference on Computer Vision (ICCV). pp. 3194–3203 (2019).
https://doi.org/10.1109/ICCV.2019.00329

23. Kuznietsov, Y., Stückler, J., Leibe, B.: Semi-supervised deep learning for
monocular depth map prediction. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 2215–2223 (2017).
https://doi.org/10.1109/CVPR.2017.238

24. Lee, J.H., Han, M.K., Ko, D.W., Suh, I.H.: From big to small: Multi-scale local
planar guidance for monocular depth estimation. arXiv preprint arXiv:1907.10326
(2019)

25. Li, R., Nguyen, T.: Sm3d: Simultaneous monocular mapping and 3d detection. In:
2021 IEEE International Conference on Image Processing (ICIP). pp. 3652–3656
(2021). https://doi.org/10.1109/ICIP42928.2021.9506302

26. Liu, F., Shen, C., Lin, G., Reid, I.: Learning depth from single monoc-
ular images using deep convolutional neural fields. IEEE Transactions
on Pattern Analysis and Machine Intelligence 38(10), 2024–2039 (2016).
https://doi.org/10.1109/TPAMI.2015.2505283

27. Liu, X., Qi, C.R., Guibas, L.J.: Flownet3d: Learning scene flow in 3d point clouds.
In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 529–537 (2019). https://doi.org/10.1109/CVPR.2019.00062

MonoPLFlowNet 17

28. Luo, C., Yang, Z., Wang, P., Wang, Y., Xu, W., Nevatia, R., Yuille, A.: Every pixel
counts ++: Joint learning of geometry and motion with 3d holistic understanding.
IEEE Transactions on Pattern Analysis and Machine Intelligence 42(10), 2624–
2641 (2020). https://doi.org/10.1109/TPAMI.2019.2930258

29. Lv, Z., Kim, K., Troccoli, A., Sun, D., Rehg, J., Kautz, J.: Learning rigidity in
dynamic scenes with a moving camera for 3d motion field estimation. In: ECCV
(2018)

30. Ma, W.C., Wang, S., Hu, R., Xiong, Y., Urtasun, R.: Deep rigid instance scene
flow. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). pp. 3609–3617 (2019). https://doi.org/10.1109/CVPR.2019.00373

31. Mayer, N., Ilg, E., Häusser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T.:
A large dataset to train convolutional networks for disparity, optical flow, and scene
flow estimation. In: 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). pp. 4040–4048 (2016). https://doi.org/10.1109/CVPR.2016.438

32. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3061–3070
(2015). https://doi.org/10.1109/CVPR.2015.7298925

33. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). pp. 3061–3070
(2015). https://doi.org/10.1109/CVPR.2015.7298925

34. Mittal, H., Okorn, B., Held, D.: Just go with the flow: Self-supervised
scene flow estimation. In: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 11174–11182 (2020).
https://doi.org/10.1109/CVPR42600.2020.01119

35. Myronenko, A., Song, X.: Point set registration: Coherent point drift. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 32(12), 2262–2275 (2010).
https://doi.org/10.1109/TPAMI.2010.46

36. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space. NIPS (2017)

37. Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer.
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI) (2020)

38. Ranjan, A., Jampani, V., Balles, L., Kim, K., Sun, D., Wulff, J., Black, M.J.:
Competitive collaboration: Joint unsupervised learning of depth, camera mo-
tion, optical flow and motion segmentation. In: 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 12232–12241 (2019).
https://doi.org/10.1109/CVPR.2019.01252

39. Saxena, A., Sun, M., Ng, A.Y.: Make3d: Learning 3d scene structure from a single
still image. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(5),
824–840 (2009). https://doi.org/10.1109/TPAMI.2008.132

40. Schuster, R., Wasenmuller, O., Kuschk, G., Bailer, C., Stricker, D.: Sceneflowfields:
Dense interpolation of sparse scene flow correspondences. In: 2018 IEEE Winter
Conference on Applications of Computer Vision (WACV). pp. 1056–1065 (2018).
https://doi.org/10.1109/WACV.2018.00121

41. Su, H., Jampani, V., Sun, D., Maji, S., Kalogerakis, E., Yang, M.H., Kautz, J.:
Splatnet: Sparse lattice networks for point cloud processing. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 2530–2539 (2018).
https://doi.org/10.1109/CVPR.2018.00268

42. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow
using pyramid, warping, and cost volume. In: 2018 IEEE/CVF Confer-

18 Runfa Li, Truong Nguyen

ence on Computer Vision and Pattern Recognition. pp. 8934–8943 (2018).
https://doi.org/10.1109/CVPR.2018.00931

43. Taniai, T., Sinha, S.N., Sato, Y.: Fast multi-frame stereo scene flow with motion
segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR). pp. 6891–6900 (2017). https://doi.org/10.1109/CVPR.2017.729

44. Vogel, C., Schindler, K., Roth, S.: 3D scene flow estimation with a piecewise rigid
scene model. International Journal of Computer Vision 115(1), 1–28 (Oct 2015)

45. Wang, Z., Li, S., Howard-Jenkins, H., Prisacariu, V.A., Chen, M.: Flownet3d++:
Geometric losses for deep scene flow estimation. In: 2020 IEEE Winter Con-
ference on Applications of Computer Vision (WACV). pp. 91–98 (2020).
https://doi.org/10.1109/WACV45572.2020.9093302

46. Wannenwetsch, A.S., Kiefel, M., Gehler, P.V., Roth, S.: Learning task-specific gen-
eralized convolutions in the permutohedral lattice. In: Pattern Recognition - 41st
DAGM German Conference, DAGM GCPR 2019, Dortmund, Germany, Septem-
ber 10-13, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11824, pp.
345–359. Springer (2019). https://doi.org/10.1007/978-3-030-33676-9 24

47. Wu, W., Wang, Z.Y., Li, Z., Liu, W., Fuxin, L.: Pointpwc-net: Cost volume on
point clouds for (self-) supervised scene flow estimation. In: European Conference
on Computer Vision. pp. 88–107. Springer (2020)

48. Xu, Y., Wang, Y., Guo, L.: Unsupervised ego-motion and dense depth es-
timation with monocular video. In: 2018 IEEE 18th International Con-
ference on Communication Technology (ICCT). pp. 1306–1310 (2018).
https://doi.org/10.1109/ICCT.2018.8600039

49. Yang, G., Ramanan, D.: Upgrading optical flow to 3d scene flow
through optical expansion. In: 2020 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 1331–1340 (2020).
https://doi.org/10.1109/CVPR42600.2020.00141

50. Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: Denseaspp for semantic segmentation
in street scenes. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 3684–3692 (2018). https://doi.org/10.1109/CVPR.2018.00388

51. Yang, Z., Wang, P., Wang, Y., Xu, W., Nevatia, R.: Every pixel counts: Unsuper-
vised geometry learning with holistic 3d motion understanding (2018)

52. Yin, W., Liu, Y., Shen, C., Yan, Y.: Enforcing geometric constraints
of virtual normal for depth prediction. In: 2019 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV). pp. 5683–5692 (2019).
https://doi.org/10.1109/ICCV.2019.00578

53. Yin, Z., Shi, J.: Geonet: Unsupervised learning of dense depth, optical flow and
camera pose. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 1983–1992 (2018). https://doi.org/10.1109/CVPR.2018.00212

54. Zhou, Q.Y., Park, J., Koltun, V.: Fast global registration. In: Leibe, B., Matas, J.,
Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016. pp. 766–782. Springer
International Publishing, Cham (2016)

55. Zou, Y., Luo, Z., Huang, J.B.: Df-net: Unsupervised joint learning of depth and
flow using cross-task consistency. In: European Conference on Computer Vision
(2018)

