
Supplementary Material for
TO-Scene: A Large-scale Dataset for
Understanding 3D Tabletop Scenes

Mutian Xu1, Pei Chen1, Haolin Liu1,2, and Xiaoguang Han1,2

1 School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen
2 The Future Network of Intelligence Institute, CUHK-Shenzhen

Outline
This supplementary document is arranged as follows:
(1) Sec. A provides more statistics, sample visualizations and discussions of TO-
Scene dataset;
(2) Sec. B describes our data acquisition framework more comprehensively;
(3) Sec. C elaborates the implementations and ablations for benchmarking on
our TO-Scene;
(4) Sec. D illustrates the details of TO-Real test set and visualizes the test results
on it.

A TO-Scene Dataset

In this section, we provide detailed statistics and visualize more examples of
three variants in TO-Scene, and discuss the current limitations of TO-Scene.

A.1 Per-category Statistics

Table III enumerates the train/val split statistics of the instance quantities, plus
semantic segmentation mIoU (seg) and object detection mAP@0.25 (det) of each
class in three variants of TO-Scene, where our TO-Scene contains a rich amount
of instances under rational train/val split, and diverse tabletop object categories
in all variants. For the description of the benchmark results, see Sec. C.3.

A.2 Example Visualizations

Fig. I presents a larger set of examples in three variants of TO-Scene. For each
sample, the surface mesh and separate object instance labels are illustrated. It
clearly shows the difference across three variants, as well as the outstanding
diversity of tabletop objects. In TO Crowd, more occlusions and reconstruction
errors can be seen (e.g., the right column in the third row of TO Crowd).

A.3 Discussions

There are two major limitations of the current TO-Scene dataset:



2 Xu et al.

(a) TO_Vanilla (b) TO_Crowd

(c) TO_ScanNet

Fig. I: A variety of example scenes in three variants of TO-Scene. Each object
instance shown with a different randomly assigned color.



TO-Scene 3

(1) The texture of the tabletop object is currently not available due to the
lack of the high-quality textured object CADs, but we believe our accessible
Web UI opens the chance to replenish our dataset, or build similar datasets for
different applications.

(2) Stacking, collision and suspension are very common in real-world table-
top scenes. For instance, toothbrushes and toothpastes are in cups, cables and
wires are connected to monitors and cellphones, and they are placed randomly
on tabletops and colliding with other objects. These scenarios are hard to be
designed by our current framework. However, compared with our acquisition
method, manually scanning and labelling real tabletop objects with stacking
and collision will become more harsh. Moreover, our framework firstly makes it
possible to build a large-scale dataset of tabletop scenes, through a new insight
of “mixing objects and scenes by crowd-sourcing”. Inspired by TO-Scene, future
works may design to improve our scalable framework and UI, to create more
complex scenes realizing stacking, collision or suspension.

B Acquisition Framework

This section states more details for specific steps in our data acquisition frame-
work.

B.1 Transfer UI

We use two open-source platforms, Three.js ∗ and Node.js †, to develop an
easy-to-use Web UI to achieve the object transfer process. As shown in Fig. II,
the operation is basically consisted of a few clicks on UI.

Source load and selection. At the beginning of each transfer, when an user
presses the button “Load” at the lower right corner to load new data, a table will
be automatically picked from ScanNet [3] and loaded. Then a Bird’s-Eye-View
(BEV) of the loaded table will be shown at left, accompanied with a 3D view
of its surroundings at right. At the same time, the semantic classes of small
objects are listed at the top of the page, which are also randomly selected from
suitable classes in ModelNet [8] and ShapeNet [1] matched with the type of
the table (pre-defined in UI according to commonsense knowledge). An user
may observe the context around the table and choose one suitable category of
the objects, and the “Instances” column will be provided at left for picking an
object instance of the chosen class.

Object placement. Notably, when placing an object, the user does not
need to perceive the height to place it in 3D. The only thing to do is just
clicking at somewhere on the table in BEV, then the selected object will

∗ https://threejs.org
† https://nodejs.org

https://threejs.org
https://nodejs.org


4 Xu et al.

xxx ExitBag Bottle Can Cap Clock Keyboard Display Earphone Lamp ChargerBookAlarmPrinterMug MicrophoneLaptop Calculator

Notebook PencilHatGlobeEye 

Comb

Plant RulerRadio

Camera

Laptop1

Instances

Laptop2

Laptop3

Laptop4

Laptop5

Laptop6

Laptop7

Laptop8

Laptop9

Laptop10

Laptop11

Laptop12

Laptop13

Laptop14

Laptop15

Eye Glasses5

Book6

Pencil4

Laptop9

Can2

Mug10

Mug8

Can3

Laptop5

Delete

Save

New

Load

Selected

Position

Scale

RotationView

Eraser

xxx

Position

Scale

Rotation

Fig. II: Our web-based crowdsourcing interface for transferring CADs onto real
tabletops, where the user chooses “Laptop” from the category list on the top,
then pick “Laptop5” from “Instances” column at left, and click somewhere on
Bird’s-Eye-View (BEV) (left) for placing it above 3D tables (right).

Management

Room Scan

Table Type

Object CAD

Object Type

User Submissions

User Scene Semantic Instance Object List Time Operation

Export

View

View

View

View

View

View

Delete

Delete

Delete

Delete

Delete

Delete

Delete All

Fig. III: The backend management system in our UI, where the user submission
interface is shown here.



TO-Scene 5

be automatically placed on the position as the user suggests. We integrate
a precise algorithm inside the UI to achieve this, where the height is cal-
culated by the maximum height of the local region on the table within the
suggested location to place the object, which ensures the object is transferred
as precise as possible, with no gap nor intersection between the table and object.

Transfer completion. Simultaneously with each click on BEV, the produced
object placement will also be shown in 3D scenes at right, where user is able to
drag the 3D scene at right to check the transferred object from comprehensive
views, so that its position is able to be adjusted by some simple re-clicks on
BEV. Moreover, the toolbar listed at the bottom of the page assist the users to
fine-tune the scale, position and orientation (operated by modifying the pitch,
yaw and roll angles) of the object, arranging the objects in a way that closer
to real life scenarios. After finish transferring, the calibration, alignment and
other parameters that can re-realize the final transferred result are all saved
in a configuration file indicated by the sudo-mappings between different tables
and CADs. The average transfer time on a table per crowd worker is 1.8 min
for TO Vanilla, and 4.5 min for TO Crowd.

Backend management. To enable high scalability of our data acquisition
framework, and continual transparency into the transfer progress, we also endow
our UI with a backend management system to track and organize the data (see
Fig. III). The left column provides the icon to manage (i.e., revise or delete)
the source data of room scans paired with table categories [3], and object CADs
coupled with object classes [8,1], as well as the user submissions of transferred
tabletop scenes. This management significantly guarantees the data quality.

B.2 Real-scene Simulation

To eliminate the domain gap between synthetic tabletop objects and real-world
scans, we simulate the CADs into realistic data.

We run Blender [2] on several CPUs to render CAD objects into averaged
50-100 RGB-D sequences, with mean time 9.8 sec on each tabletop scene.

We select average 26.5 RGB-D frames to reconstruct each scene by imple-
menting TSDF fusion [10] ‡ in a multiprocessing manner, where the mean re-
construction time per sample is 50 sec.

C Benchmark Tasks

This section presents more experimental details and ablations for benchmarking
the state-of-the-arts on our dataset.

‡ https://github.com/andyzeng/tsdf-fusion-python

https://github.com/andyzeng/tsdf-fusion-python


6 Xu et al.

C.1 Implementation

As described in the main paper, we follow the original training strategies and
data augmentations of all selected methods. Commonly, we run different deep
networks using PyTorch [5] via several Nvidia GeForce RTX 3090 GPUs.

When running experiments on TO Vanilla and TO Crowd, the semantic la-
bels (52 categories) of tabletop objects in our dataset are all recognized during
training for thorough exploitation. For TO ScanNet, besides keep using all 52-
classes labels on tabletop objects, we use NYU2 labels [7] on the big furniture
extracted from ScanNet [3], following the original settings in ScanNet.

According to [3] and the state-of-the-arts [9,13,11,4], we do not use RGB
input. Additionally, for parsing tabletop scenes of TO Vanilla and TO Crowd,
taking table classes in one-hot format as an additional input prior may help
learning, but here we ignore it for simplification.

C.2 Ablations of Tabletop-aware Learning.

The tabletop-aware learning strategy is proposed to tackle the difficulty of
perceiving the small tabletop objects under indoor environments, which is espe-
cially challenging on TO ScanNet with lots of big furniture surroundings. Thus,
we explore more about our tabletop-aware learning strategy on TO ScanNet for
3D semantic segmentation task.

λ on Ldis. As stated in Sec. 4 of the main paper, by introducing tabletop-object
discriminator, the loss can be written as: Ltotal = Lseg or det + λLdis, where λ is
the weight on the discriminator loss Ldis. We apply feature vector of tabletop-
object discriminator on Point Transformer [13], and conduct experiments under
different λ. As listed in Table I, the model performs best when choosing 0.01 as λ,
which provides a decent learning balance. The result also degrades under 1.0 λ,
which may caused by the over optimization on the tabletop-object discriminator.

Sampling methods. A derived dynamic sampling is proposed in the main
paper. To make a more complete comparison, we also employ random sampling
and grid sampling (i.e., voxelization) on Point Transformer [13]. Table II
summarizes the results, where our dynamic sampling improves baseline with
1.17%↑. Grid sampling has no obvious effect, while random sampling hurts the
performance.

Tasks are still challenging. Although under the help of our tabletop-aware
learning strategies, the tasks are still difficult because:

(1) Discriminator itself is challenging : Discriminator is not 100% accurate
especially on the joint areas of objects and tables (Paper Fig. 7 (b)), and will
also misguide the learning of downstream networks, leaving the tasks difficult.

(2) Clustering is not easy even based on perfect discriminator : We extract
tabletop objects from scenes (i.e., equivalent to perfect discrimination) then use
DBSCAN, a popular point cloud cluster method. However, it performs not well



TO-Scene 7

Table I: Ablations on λ.

λ Segmentation mIoU (%)

0.0 (Baseline) 67.17

1.0 66.12

0.1 67.96

0.01 69.09

0.001 67.58

Table II: Ablations on sampling.

Sampling Segmentation mIoU (%)

FPS (Baseline) 67.17

grid 67.18

random 65.52

dynamic (Ours) 68.34

Same cluster->Diff obj

Fig. IV: Cluster result.

Ground Truth Point Transformer

Fig.V: A failure case.

G
ro
un
d

Tr
ut
h

Po
in
t

Tr
an
sf
or
m
er

Fig.VI: Visualization of 3D semantic segmentation results on our dataset. The
first row is the ground truth, and the second row is the scenes segmented by
Point Transformer [13]. Each column indicates a scene. The colors in the bottom
colorbar represent categories consistently across all scenes.

Fig. VII: Visualization of 3D object detection results by VoteNet [6] on our
dataset. Each column denotes a scene. Each object instance shown with a dif-
ferent randomly assigned color.



8 Xu et al.

due to the squeeze of objects (Fig. IV). Such failure is naturally expected when
introducing big furniture from TO ScanNet.

(3) Segmentation/detection is not easy even based on perfect clustering : Gen-
erally speaking, an ideal cluster algorithm can cluster the points of a same object,
but it can NOT infer instance categories. For example in Fig. V, even applying
a powerful deep network on simple TO Vanilla for semantic segmentation, two
objects are yet misclassified while the instances are successfully clustered.

C.3 Results.

Table III exhaustively itemizes the train/val split statistics of the instance quan-
tities, plus semantic segmentation mIoU (seg) and object detection mAP@0.25
(det) of each category in three variants of TO-Scene.

Moreover, Fig. VI and Fig. VII intuitively visualize the results on our dataset
for semantic segmentation and object detection tasks using Point Transformer
[13] and VoteNet [6], respectively. As you can see, our dataset successfully drives
the state-of-the-arts to perform stably well on both tasks.

D TO-Real

The main paper introduces TO-Real that is scanned from real world for verifying
the practical value of our TO-Scene.

D.1 Data

Here we present more details of TO-Real dataset. To achieve the diversity, we
employ 52 people of various ages from different professions to place the objects
following their daily habits, where half of them are guided to arrange crowded
objects. The whole process are taken place at diverse indoor rooms (e.g., kitchen,
conference room, bedroom, bathroom, lobby, living room) in several offices or
homes. After finishing the object placement, we employ 10 experts to scan the
tabletop scenes using Microsoft Kinect [12] and annotate the data with both
point-wise segmentation and object bounding boxes manually, which produc-
ing Real Vanilla and Real Crowd. Similarly, the experts also manually scan and
label the whole rooms holding the tables, yielding Real Scan. When collecting
Real Scan, expert workers may walk close to tabletops and scan the small table-
top objects from different views, avoiding the severely undesirable data quality
of tabletop objects.

Fig. VIII illustrates more samples in TO-Real. For each reconstruction, the
surface mesh with colors is shown, as well as a visualization of separate object
instance labels are also available to indicate multiple instances. It conspicu-
ously shows that the characteristics of three variants (Real Vanilla, Real Crowd,
Real Scan) exactly match their counterparts in TO-Scene shown in Fig. I.

Tab. IV shows the instance distributions of several classes, on which
Real Scan and TO ScanNet are similar, which minimizes the gap between the
two datasets.



TO-Scene 9

Table III: Per-category train/val instance quantities and benchmark results on
the three variants of TO-Scene. “seg” denotes segmentation mIoU (%), “det”
indicates detection mAP@0.25 (%).

Category TO Vanilla TO Crowd TO ScanNet
train/val seg det train/val seg det train/val seg det

Tabletop object:

bag 1.6k/368 94.8 87.8 1.4k/341 95.5 85.8 1.8k/346 91.2 87.3
bottle 3.2k/670 90.1 64.2 2.2k/378 87.9 72.4 3.2k/584 85.3 77.5
bowl 694/93 94.6 75.4 550/84 87.5 77.0 681/84 85.7 69.8
camera 881/183 87.1 81.0 1k/234 85.3 74.7 1k/188 81.1 81.6
can 5.3k/1k 93.6 70.4 4.4k/869 96.2 76.0 6.2k/1k 90.2 82.2
cap 995/225 93.5 87.1 772/207 87.8 88.2 979/235 85.4 90.5
clock 242/40 31.1 28.6 152/39 28.9 18.8 255/45 14.6 20.5
keyboard 169/49 86.4 51.2 260/56 89.3 37.7 163/45 81.0 39.0
display 337/104 94.4 93.9 336/77 91.4 84.8 331/105 89.7 92.5
earphone 576/164 93.2 79.7 859/181 96.7 85.8 670/181 91.8 73.1
jar 335/47 63.9 39.5 262/43 61.7 53.5 334/36 64.6 60.0
knife 88/14 39.1 19.0 103/22 53.3 17.5 85/13 36.9 28.9
lamp 679/149 88.9 84.6 744/150 90.0 85.6 670/129 72.1 83.3
laptop 973/185 94.6 90.3 969/223 96.9 96.8 946/179 95.5 91.8
microphone 26/5 5.6 40.9 21/6 0.0 1.3 34/6 16.3 0.9
microwave 133/26 94.6 96.7 111/21 94.3 83.0 119/26 87.1 93.4
mug 5.4k/1k 95.0 81.7 4.2k/788 96.4 90.1 5.5k/950 92.0 86.6
printer 198/56 89.7 94.3 163/47 87.4 88.5 211/56 84.7 76.8
remote control 467/85 49.0 19.4 385/85 51.7 29.4 558/86 33.5 24.4
phone 4k/815 76.4 24.6 3k/655 68.8 32.7 4.3k/748 61.3 27.6
alarm 783/155 74.3 59.2 714/107 66.0 48.9 743/173 51.4 71.4
book 1.5k/354 81.6 60.0 1.5k/334 67.3 62.7 1.6k/349 68.5 59.5
cake 254/40 83.4 83.6 282/66 76.5 68.2 309/38 85.7 57.1
calculator 1k/239 76.8 47.7 1.1k/197 65.7 38.4 1.2k/223 65.2 33.6
candle 268/66 88.6 62.1 190/35 40.7 53.4 306/62 78.9 75.8
charger 1.7k/394 88.2 34.3 1.7k/347 85.2 36.9 2.2k/438 72.0 39.9
chessboard 121/20 92.1 82.0 112/13 87.2 69.3 115/27 87.9 89.4
coffee machine 118/20 92.2 91.5 100/27 86.8 91.2 108/16 97.4 86.5
comb 1k/239 91.4 40.2 322/51 70.0 32.7 622/142 74.3 27.7
cutting board 126/21 89.9 70.8 102/20 96.3 41.3 108/16 75.6 50.2
dishes 231/26 92.7 53.1 241/40 96.1 70.5 213/23 88.9 88.5
doll 126/24 65.0 50.9 49/17 60.3 61.1 121/31 13.5 27.1
eraser 1k/258 65.8 9.7 1.5k/298 71.4 12.1 1.3k/291 34.0 9.1
eye glasses 2.3k/502 93.4 68.0 1.7k/342 94.8 78.6 2.5k/483 90.4 77.0
file box 168/55 93.0 84.2 117/42 95.8 87.0 198/56 92.1 87.0
fork 357/42 34.5 31.1 361/43 38.2 16.8 375/35 37.5 6.7
fruit 2.7k/466 94.2 76.0 2.5k/463 88.7 77.9 3.2k/449 81.6 75.3
globe 371/88 98.1 87.9 264/52 98.0 95.9 375/74 96.3 94.1
hat 196/43 54.0 76.8 160/32 39.4 52.9 202/41 36.9 67.6
mirror 90/19 59.5 43.5 43/11 73.7 20.0 44/12 21.8 33.3
notebook 1.5k/331 69.7 28.4 1.4k/321 62.4 32.7 1.6k/313 54.5 30.5
pencil 1.1k/278 71.9 14.5 1.5k/344 75.8 15.1 1.3k/289 58.5 6.9
plant 1.5k/306 94.0 87.7 1.3k/251 96.9 89.7 1.4k/288 91.9 89.9
plate 390/52 93.8 34.6 314/57 98.2 47.7 375/38 90.4 67.6
radio 288/51 52.0 50.8 283/47 50.5 60.1 280/37 37.4 27.4
ruler 858/190 73.4 13.5 832/16 67.4 10.0 899/189 55.8 8.9
saucepan 153/23 94.2 73.5 121/25 87.1 57.5 127/16 69.9 75.9
spoon 429/58 60.4 32.6 365/56 46.9 19.9 456/43 49.5 16.9
tea pot 1.1k/201 97.5 89.7 1k/198 95.7 93.4 1.1k/203 94.5 83.4
toaster 93/12 83.2 66.1 62/6 45.6 41.2 91/8 86.9 46.3
vase 1.2k/243 89.5 71.5 638/141 83.4 79.1 1k/188 71.7 79.3
vegetables 73/11 3.89 34.9 85/12 9.0 10.5 79/13 20.1 7.4

Continued at next page



10 Xu et al.

Table III: Per-category train/val instance quantities and benchmark results on
the three variants of TO-Scene. “seg” denotes segmentation mIoU (%), “det”
indicates detection mAP@0.25 (%). (Continued)

Category TO Vanilla TO Crowd TO ScanNet
train/val seg det train/val seg det train/val seg det

Big furniture:

wall - - - - - - 19.6k/4.1k 76.7 -
floor - - - - - - 9.8k/2.1k 94.8 -
cabinet - - - - - - 6.8k/1.3k 59.4 49.3
bed - - - - - 943/218 80.3 88.8
chair - - - - - - 15.9k/3.8k 86.7 82.2
sofa - - - - - - 2.1k/331 75.2 89.5
table - - - - - - 6.5k/1.3k 71.9 61.8
door - - - - - - 6.8k/1.4k 55.6 45.8
window - - - - - - 3.5k/863 59.4 37.1
bookshelf - - - - - - 961/306 63.9 31.7
picture - - - - - - 2.2k/628 20.8 5.2
counter - - - - - - 1k/165 58.5 45.9
desk - - - - - 2.9k/567 62.7 70.6
curtain - - - - - - 878/137 58.3 48.9
refrigerator - - - - - - 887/166 61.8 61.2
shower curtain - - - - - - 349/95 71.3 70.4
toilet - - - - - - 522/121 85.9 88.6
sink - - - - - - 1.3k/284 58.1 37.5
bathtub - - - - - - 344/104 82.6 90.0
other furniture - - - - - - 7.5k/1.5k 45.0 41.3

Class chair table window bookshelf counter sink bottle camera cap fruit

Real 32.6 9.15 6.15 1.54 1.54 1.54 10.23 3.21 3.40 11.22
TO 27.3 10.75 6.02 1.75 1.65 2.27 9.64 3.09 3.08 9.34

Table IV: Instance distributions (%) in Real Scan and TO ScanNet.

D.2 Tabletop-aware Learning on TO-Real.

Tab. V shows the improvements (segmentation mIoU) on several categories after
applying the proposed strategies (+FV+DS) in real scans.

D.3 Visualization of Segmentation.

Fig. IX visualizes the semantic segmentation result on TO-Real, where Point
Transformer [13] is trained on the training set of TO-Scene, and is directly tested
on TO-Real. Although purely trained on TO-Scene and tested on realistic data,
the model still get acceptable result. This intuitively proves the practical value
of our TO-Scene dataset.



TO-Scene 11

(a) Real_Vanilla (b) Real_Crowd

(c) Real_Scan

Fig.VIII: A variety of example scenes in three variants of TO-Real. Each sam-
ple is shown with the original reconstructed mesh at left, and object instance
assigned with random color at right.

Class bottle bowl cap keyboard lamp mug alarm book fruit

+FV+DS 0.43↑ 0.44↑ 1.02↑ 0.54↑ 0.45↑ 1.36↑ 0.74↑ 0.94↑ 0.65↑
Table V: Per-category mIoU improvements (%) on TO-Real.

G
ro
un
d

Tr
ut
h

Po
in
t

Tr
an
sf
or
m
er

Fig. IX: Visualization of 3D semantic segmentation test results on TO-Real. The
first row is the ground truth, and the second row is the TO-Real scenes segmented
by Point Transformer [13] that trained on our TO-Scene. Each column indicates
a scene. The colors in the bottom colorbar indicate classes consistently across
all scenes.



12 Xu et al.

References

1. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: Shapenet: An
information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)

2. Community, B.O.: Blender - a 3D modelling and rendering package. Blender Foun-
dation, Stichting Blender Foundation, Amsterdam (2018), http://www.blender.
org

3. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: CVPR (2017)

4. Liu, Z., Zhang, Z., Cao, Y., Hu, H., Tong, X.: Group-free 3d object detection via
transformers. In: ICCV (2021)

5. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala, S.:
Pytorch: An imperative style, high-performance deep learning library. In: NeurIPS
(2019)

6. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep hough voting for 3d object detec-
tion in point clouds. In: ICCV (2019)

7. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support
inference from rgbd images. In: ECCV (2012)

8. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets:
A deep representation for volumetric shapes. In: CVPR (2015)

9. Xu, M., Ding, R., Zhao, H., Qi, X.: Paconv: Position adaptive convolution with
dynamic kernel assembling on point clouds. In: CVPR (2021)

10. Zeng, A., Song, S., Nießner, M., Fisher, M., Xiao, J., Funkhouser, T.: 3dmatch:
Learning local geometric descriptors from rgb-d reconstructions. In: CVPR (2017)

11. Zhang, Z., Sun, B., Yang, H., Huang, Q.: H3dnet: 3d object detection using hybrid
geometric primitives. In: ECCV (2020)

12. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE MultiMedia (2012)
13. Zhao, H., Jiang, L., Jia, J., Torr, P., Koltun, V.: Point transformer. In: ICCV

(2021)

http://www.blender.org
http://www.blender.org

	Supplementary Material for TO-Scene: A Large-scale Dataset for Understanding 3D Tabletop Scenes

