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1 Analysis of Our MVSGG Framework

The meta-optimization objective of our MVSGG framework is the following (see
Eqn. 4 in our main paper):
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Also note that the first-order Taylor expansion can be summarized as:

f(x) ≈ f(x0) + f
′
(x0) · (x− x0) (2)

where x0 is close to x. Then inspired by the previous work [1], we can apply the
first-order Taylor expansion to the second term in Eqn. 1. Specifically, we can
let x = ω − α∇ωLm tr(ω) and x0 = ω. Then, we can get:
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By substituting the above Taylor expansion into Eqn. 1, the optimization objec-
tive of our framework can then be approximately formulated as:
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The first two terms in the above optimization objective aim to minimize the
model losses on both meta-training data (the support set) and meta-testing data
(the query sets), which is similar to conventional model training. Meanwhile, the
last term is to maximize the dot product of the model gradients on meta-training
data and meta-testing data.
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Specifically, as studied by the previous work [3], maximizing the dot product
of gradients will encourage a higher direction similarity of the gradients. This
means that here the last term in Eqn. 4 can regularize and encourage the model
to reach a higher direction similarity of the gradients on meta-training data
and meta-testing data, and thus encourages the model to learn features that are
shared across the both sets of data. Meanwhile, since the data distributions w.r.t
the biases are quite different across the meta-training and meta-testing data, by
driving the model to learn the shared features across different data distributions,
the model is guided to learn more generalizable features, instead of exploiting
data biases.

Our experiments also show the efficacy of our meta-optimization scheme (see
Table 7 of our main paper).

2 Additional Ablation Study

Impact of query sets construction strategy. In our framework, after ran-
domly selecting a part of the training data as the support set, we use the remain-
ing training data to construct various query sets where the data distribution of
each query set is different from that of the support set w.r.t. one type of condi-
tional bias. To investigate the efficacy of such a query sets construction strategy,
we further evaluate the following two variants. The first variant (Random Query
Sets) totally randomly selects data samples to construct each query set. We
also evaluate another variant (Uniform Query Sets), in which each constructed
query set follows an uniform data distribution w.r.t. the corresponding condi-
tional bias. In this variant, for example, considering the query set for handling
the spatial conditional bias w.r.t. the predicate based on the subject, the prob-
ability of the occurrence of each predicate given the same subject is nearly the
same (i.e., uniform distribution).

As shown in Table 1, the second variant (Uniform Query Sets) outperforms
the first one (Random Query Sets). We analyze that in the first variant, since the
support set and query sets are both randomly constructed, the data distributions
of the support set and query sets can be relatively close. However, compared to
the first variant, the difference between the data distributions of the support
set and query sets w.r.t. the biases is larger in the second variant, which thus
benefits the model learning of more generalizable features so as to obtain better
generalization performance.

Similarly, our method obtains the best performance compared to these two
variants. This can be credited to that in our method, we make the difference
between the data distributions of each query set and the support set as large as
possible w.r.t. a type of conditional biases, i.e., such data distribution difference
in our method is obviously larger than those of the both variants.

These experiment results demonstrate that our query sets construction strat-
egy can effectively help our framework to well handle various types of conditional
biases for better performance.
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Table 1. We evaluate two variants to investigate the impact of query sets construction
strategy in our framework.

Method Relation Detection Relation Tagging

mAP R@50 R@100 P@1 P@5 P@10

Random Query Sets 29.47 19.77 23.10 72.00 54.80 40.85
Uniform Query Sets 30.30 20.18 23.45 74.50 55.20 41.10

Ours 31.57 21.16 24.57 79.00 57.60 43.20

Table 2. We evaluate a variant to investigate the impact of meta training and testing.
The optimization objective for this variant is to minimize Lm tr(ω) +

∑N
n=1 L

n
m te(ω)

w.r.t. ω, i.e., replacing ω′ with ω in Eqn. 4 in our paper.

Method Relation Detection Relation Tagging

mAP R@50 R@100 P@1 P@5 P@10

Training w/o meta 29.79 20.08 23.21 72.00 54.20 40.80

Ours 31.57 21.16 24.57 79.00 57.60 43.20

Impact of meta training and testing. To investigate the efficacy of our
meta training and testing scheme, we test a variant (training w/o meta) that
trains the model on both the support set and query sets in the conventional
manner without meta training and testing. Note that this variant still constructs
the support set and query sets as in our framework. As shown in Table 2, our
method outperforms this variant obviously, showing that by performing meta
training over the support set followed by meta testing over the query sets and
then leveraging the meta-optimization to update the model, our framework can
effectively enhance model generalization performance.

Impact of the size of support set. In our framework, we randomly se-
lect 60% of the training set as the support set (60% for support set), and the
remaining 40% of training set is used to construct query sets. Here we further
evaluate the following two variants. One variant (50% for support set) uses 50%
of the training set to construct the support set, and the remaining 50% part to
construct the query sets. While another variant (70% for support set) uses 70%
of the training set to construct the support set, and the remaining 30% part
to construct the query sets. As shown in Table 3, our method and these two
variants all outperform the baseline model (i.e., VidVRD-II [2]), demonstrating
the robustness of our framework w.r.t the varying size of the support set.

Training time. We test the training time of our framework that trains the
baseline network (TRACE [4]) with meta training and testing, and compare it to
the training time of the baseline that trains the same network in the conventional
training manner without meta training and testing, on AG dataset, as shown
in Table 4. We conduct our experiments on an RTX-3090 GPU. Though our
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Table 3. We evaluate different variants that use different proportions of the training
set to construct the support set and query sets.

Method Relation Detection Relation Tagging

mAP R@50 R@100 P@1 P@5 P@10

Baseline (VidVRD-II) 29.37 19.63 22.92 70.40 53.88 40.16

50% for support set 31.44 20.99 24.41 78.50 57.30 43.05
60% for support set 31.57 21.16 24.57 79.00 57.60 43.20
70% for support set 31.42 21.06 24.38 78.00 57.50 42.95

method achieves much better performance, it brings only relatively little increase
(15.79%) of the training time.

Table 4. Comparison of the training time. Note that our method achieves significantly
better performance than the baseline (see Table 4 and Table 5 in our main paper).

Method Training Time

Baseline 38 hours
Ours 44 hours

3 Discussion of Our Meta Framework and
Train-Validation

In our proposed framework, we first train the model using the support set (i.e.,
meta training), and then evaluate the model performance on the query sets
(i.e., meta testing). Then the model evaluation performance on the query sets
is utilized to provide a generalization feedback and regularization to drive the
model training towards learning more generalizable features.

Meanwhile, in a classical train-validation scheme that is often used for hyper-
parameter selection, we often train the model over the training set, and then
evaluate and observe the model performance on the validation set.

From this perspective, our meta framework shares some similarities in con-
cepts with the train-validation scheme, but it is worth noting that, our meta
framework is totally different from the classical train-validation scheme, as dis-
cussed below.

In our work, we aim to optimize the model learning process, i.e., optimizing
the network parameter training towards learning more generalizable features.
This goal is not feasible to be achieved via a simple train-validation scheme
which is often used for hyper-parameter selection. Meanwhile, in our framework,
to achieve this goal, we get inspiration from meta learning (i.e., “learning to
learn”), and design a novel meta learning-based training scheme. Concretely,
we utilize the model generalization performance on the query sets to provide a
generalization feedback that involves the second-order gradients, to the model
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learning process. Via such a feedback, the model is driven to learn to automati-
cally adjust the learning process to learn more generalizable features.

Moreover, to further drive the model to generalize well against various types
of conditional biases, our framework splits the original training set to construct a
support set (meta-training data) and multiple query sets (meta-testing data), so
that the difference between the distributions of each constructed query set and
the support set is as large as possible w.r.t. a type of conditional bias. This can
help ensure that the biases in meta-training data no longer hold in meta-testing
data, and thus the model needs to more focus on learning generalizable features
during our meta training and testing scheme.

Due to the effectiveness of our meta framework with the above designs, our
framework achieves superior performance on the evaluated benchmarks.

4 Qualitative Results

We present some qualitative results w.r.t. various types of spatio-temporal con-
ditional biases in Fig 1. As shown, when handling testing samples where the
spatio-temporal conditional biases do not hold, our framework performs better
than the baseline model [2], demonstrating that our framework can effectively
optimize the model to well generalize against various types of conditional biases.

5 Query Sets Visualization

In our framework, we construct a support set and various query sets for meta
training and testing, where each query set is designed to address a type of con-
ditional bias. As shown in Fig. 2, we present a visualization of an example query
set that is constructed to handle the spatial conditional bias w.r.t. the pred-
icate conditioned on subject-object pair. We can observe that conditioned on
each subject-object pair, the distribution of predicates in this query set is quite
different from that of the support set. Similarly, we present a visualization of
another example query set for handling the spatial conditional bias w.r.t. the
object conditioned on subject-predicate pair in Fig. 3. As shown, conditioned
on each subject-object pair, the distribution of objects in this query set is also
quite different from that of the support set.

In this manner, by improving the model generalization performance on these
two query sets after training on the support set, the trained model is encouraged
to learn to generalize against the corresponding two types of conditional biases.
Similarly, by enhancing the model performance on various query sets where
each query set is distributionally different from the support set w.r.t a type
of conditional bias, our framework can effectively train the model to learn to
capture more generalizable features against various types of conditional biases.
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Ground truth: <sofa, beneath, dog>
VidVRD-II result: <sofa, beneath, domestic cat>
Ours result: <sofa, beneath, dog>

... ...30

540

<sofa, beneath, dog>

<sofa, beneath, domestic cat>

(a) Results w.r.t spatial conditional bias
(object-centered).

Ground truth: <fox, sit behind, fox>
VidVRD-II result: <fox, stand behind, fox>
Ours result: <fox, sit behind, fox>

... ...30

750

<fox, sit behind, >

<fox, stand behind, >

(b) Results w.r.t spatial conditional bias
(predicate-centered).

Ground truth: <dog, jump front, person>
VidVRD-II result: <dog, walk front, person>
Ours result: <dog, jump front, person>

... ...
30

180

<dog, jump front, person>

<dog, walk front, person>

(c) Result w.r.t. spatial conditional bias.
(predicate-centered).

Ground truth: <giant panda, walk right, giant panda>
VidVRD-II result: <dog, walk right, giant panda>
Ours result: <giant panda, walk right, giant panda>

... ...
390

2490

<giant panda, walk right, >

<dog, walk right, >

(d) Results w.r.t spatial conditional bias
(subject-centered).

... ...
2

11

<giant panda, play→stand above, giant panda>

<giant panda, play→sit next to, giant panda>

Ground truth: <giant panda, play→stand above, giant panda>
VidVRD-II result: <giant panda, play→sit next to, giant panda>
Ours result: <giant panda, play→stand above, giant panda>

... ...

(e) Results w.r.t temporal conditional bias
(forward case).

... ...
4

23

<person, stand front→touch, elephant>

<person, stand front→stand left, elephant>

Ground truth: <person, stand front→touch, elephant>
VidVRD-II result: <person, stand front→stand left, elephant>
Ours result: <person, stand front→touch, elephant>

... ...

(f) Results w.r.t temporal conditional bias
(forward case).

... ...
3

19

<bird, walk past→walk front, bird>

<bird, stand next to→walk front, bird>

Ground truth: <bird, walk past→walk front, bird>
VidVRD-II result: <bird, stand next to→walk front, bird>
Ours result: <bird, walk past→walk front, bird>

... ...

(g) Results w.r.t temporal conditional bias
(backward case).

Fig. 1. Qualitative results of our method and the baseline model [2]. As shown, our
method demonstrates better performance against various types of spatio-temporal con-
ditional biases.
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Fig. 2. Visualization of an example query set for handling the spatial conditional bias
w.r.t. the predicate conditioned on subject-object pair. As shown above, con-
ditioned on each subject-object pair, the distribution of predicates in the query set is
different from that of the support set.
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Fig. 3. Visualization of an example query set for handling the spatial conditional bias
w.r.t. the object conditioned on subject-predicate pair. As shown above, con-
ditioned on each subject-predicate pair, the distribution of objects in the query set is
different from that of the support set.
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