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Abstract. Video scene graph generation (VidSGG) aims to parse the
video content into scene graphs, which involves modeling the spatio-
temporal contextual information in the video. However, due to the long-
tailed training data in datasets, the generalization performance of ex-
isting VidSGG models can be affected by the spatio-temporal condi-
tional bias problem. In this work, from the perspective of meta-learning,
we propose a novel Meta Video Scene Graph Generation (MVSGG)
framework to address such a bias problem. Specifically, to handle vari-
ous types of spatio-temporal conditional biases, our framework first con-
structs a support set and a group of query sets from the training data,
where the data distribution of each query set is different from that of
the support set w.r.t. a type of conditional bias. Then, by performing
a novel meta training and testing process to optimize the model to
obtain good testing performance on these query sets after training on
the support set, our framework can effectively guide the model to learn
to well generalize against biases. Extensive experiments demonstrate the
efficacy of our proposed framework.

Keywords: VidSGG, Long-tailed bias, Meta learning

1 Introduction

A scene graph is a graph-based representation, which encodes different visual en-
tities as nodes and the pairwise relationships between them as edges, i.e., in the
form of subject predicate object relation triplets [13, 29]. Correspondingly,
the task of video scene graph generation (VidSGG) aims to parse the video con-
tent into a sequence of spatio-temporal relationships between different objects of
interest [40, 29]. Since it can provide refined and structured scene understanding,
the video scene graph representation has been widely used in various higher-level
video tasks, such as video question answering [15, 35], video captioning [8, 38],
and video retrieval [16, 7].
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However, despite of the great progress of VidSGG [36, 5, 2, 22], most existing
approaches tackling this task may suffer from the problem of spatio-temporal
conditional biases. Specifically, as shown by previous works [33, 4, 19], there exist
long-tailed training data issues in existing SGG datasets. While in the context
of VidSGG, given the complex spatio-temporal nature of this task, such long-
tailed issues can lead to spatio-temporal conditional biases that affect the model
generalization performance. Here conditional biases mean the problem that once
the model detects certain context information (i.e., conditions) in the visual
content, it is likely to directly predict certain labels (i.e., biased prediction),
which however may contradict with the ground-truth. Some works [27, 43] also
refer to this problem as spurious correlation. In particular, in the VidSGG task,
this conditional bias issue can be further divided into two sub-problems: temporal
conditional bias and spatial conditional bias.

(a) Example of temporal conditional bias.

(b) Example of spatial conditional bias.

Fig. 1. Illustration of spatio-temporal
conditional biases examples from Ac-
tion Genome dataset [12]. (a) illustrates
an example of temporal conditional bias
towards person drink from bottle con-
ditioned on person hold bottle in consec-
utive video parts, and (b) presents an exam-
ple of spatial conditional bias towards the
predicate of covered by conditioned on the
subject-object pair of person and blanket.
Such spatio-temporal conditional biases can
affect the performance of VidSGG models.

For temporal conditional bias,
as shown in the example of Fig. 1
(a), if person hold bottle appears
first (i.e., temporal context) in the
video, and in most cases, person

drink from bottle happens next,
then a conditional bias can be estab-
lished towards person drink from

bottle conditioned on person hold

bottle along the temporal axis in the
video. Due to such temporal condi-
tional bias, once the previous video
part involves person hold bottle,
the trained model is very likely to
simply predict person drink from

bottle for the next part, which how-
ever can contradict with the ground
truth as in the example.

Such a conditional bias prob-
lem also exists in the spatial do-
main when tackling the VidSGG
task. For example, as shown in
Fig. 1 (b), there are many more
videos containing person covered

by blanket than person lying on

blanket in the VidSGG dataset: Ac-
tion Genome [12]. This can lead to a
conditional bias towards the predicate (covered by) given the spatial con-
texts of person and blanket. Due to such spatial conditional bias, once person
and blanket appear in the video, the model tends to directly predict person

covered by blanket that however can be incorrect.
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We observe that such spatio-temporal conditional bias problems widely exist
in VidSGG datasets [29, 12]. Meanwhile, to correctly infer the relation triplets,
VidSGG models need to effectively model the spatio-temporal context informa-
tion in the video [36, 5, 29]. Thus the models can be easily prone to exploiting
the conditional biases w.r.t. the relation triplet components (e.g., the predicate)
based on the spatio-temporal contexts during training, and then fail to general-
ize to data samples in which such conditional biases no longer hold as shown in
Fig. 1. Therefore, to address this issue for obtaining better generalization perfor-
mance, we propose a novel meta-learning based framework, Meta Video Scene
Graph Generation (MVSGG).

Meta learning, also known as learning to learn, aims to enhance the model
generalization capacity by incorporating virtual testing during model training [6,
23, 11]. Inspired by this, to improve the generalization performance of VidSGG
models against the conditional biases, our framework incorporates a meta train-
ing and testing scheme. More concretely, we can split the training set to con-
struct a support set for meta training and a query set for meta testing, which
have different data distributions w.r.t. the conditional biases, i.e., creating a
virtual testing scenario where simply exploiting the conditional biases during
training would lead to poor testing performance. For example, given the same
subject-object pair of person and blanket, if the support set contains more
person covered by blanket relation triplets, the query set can contain more
person lying on blanket triplets on the contrary. We first use the support
set to train the model (i.e., meta training), and then evaluate the trained model
on the query set (i.e., meta testing). According to the evaluation performance
(loss) on the query set, we can further update the model to obtain better gener-
alization performance. Since the query set is distributionally different from the
support set w.r.t. the conditional biases, by improving the testing performance
on the query set after training on support set via meta training and testing, our
model is driven to learn to capture the “truly” generalizable features in the data
instead of relying on the biases. Thus our model can “learn to generalize” well,
even when handling the “difficult” testing samples that contradict the biases in
training data.

Moreover, there can exist various types of conditional biases besides the ones
shown in Fig. 1. For example, there can also exist a conditional bias w.r.t. the
object based on subject-predicate pair in relation triplets, if an object appears
more frequently given the same subject-predicate pair in the training data. Thus
to better handle such a range of conditional biases, we can construct a group of
query sets, where each query set is distributionally different from the support
set w.r.t. one type of conditional bias. In this manner, by utilizing all these
query sets to improve the model generalization performance via meta training
and testing, our framework can effectively address various types of conditional
biases in the video, and enhance the robustness of the VidSGG model.

Our MVSGG framework is general since it only changes the model training
scheme (i.e., via meta training and testing), and thus can be flexibly applied to
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various off-the-shelf VidSGG models. We experiment with multiple models, and
achieve consistent improvement of model performance.

The contributions of our work are summarized as follows. 1) We propose a
novel meta training and testing framework, MVSGG, for effectively addressing
the spatio-temporal conditional bias problem in VidSGG. 2) By constructing a
support set and multiple query sets w.r.t. various types of conditional biases,
our framework can enable the trained model to learn to generalize well against
various types of conditional biases simultaneously. 3) Our framework achieves
significant performance improvement when applied on state-of-the-art models
on the evaluation benchmarks [29, 12].

2 Related Work

Scene Graph Generation (SGG). Being able to provide structured graph-
based representation of an image or a video, scene graph generation (SGG)
has attracted extensive research attention [13, 34, 40, 18, 31, 10, 3, 21, 29, 36]. For
image SGG (ImgSGG), a variety of methods [34, 46, 45, 44] have been proposed.
Suhail et al. [31] proposed an energy-based framework to improve the model
performance by learning the scene graph structure. Yang et al. [41] investigated
the diverse predictions for predicates in SGG from a probabilistic view.

Besides ImgSGG, there are also increasing research efforts exploring the task
of video scene graph generation (VidSGG) [29, 20, 2, 36]. This task provides two
task settings based on the granularity of the generated video scene graphs: video-
level [29, 37, 24, 28, 20, 2] and frame-level [36, 5]. For video-level VidSGG, models
generate scene graphs based on the video clip, where each node encodes the
spatio-temporal trajectory of an object, and the connecting edge denotes the
relation between two objects. Shang et al. [29] first investigated this problem
setting, and proposed to extract improved Dense Trajectories features [39] for
handling this problem. Later on, some other methods have been proposed to
solve this video-level VidSGG problem from different perspectives, including the
fully-connected spatio-temporal graph [37], and iterative relation inference [28].
For frame-level VidSGG, a scene graph is generated for each video frame [36, 5].
To handle this problem setting, Teng et al. [36] proposed to use a hierarchical
relation tree to capture the spatio-temporal context information. Cong et al. [5]
proposed to solve this problem via a spatio-temporal transformer.

For SGG, there often exists the long-tailed data bias issue that hinders models
from obtaining better performance. To solve this problem, various debiasing
methods have been proposed. Tang et al. [33] introduced a debiasing framework
by utilizing the Total Direct Effect (TDE) analysis. Guo et al. [10] proposed
a balance adjustment method to handle this issue. Li et al. [19] explored a
causality-inspired interventional approach to reduce the data bias in VidSGG.
Differently, to cope with the spatio-temporal conditional bias problem in SGG,
from the perspective of meta learning, we propose a novel learning framework
that can train the SGG model to learn to better generalize against biases.
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Fig. 2. Overview of our framework. (a) illustrates our meta training and testing
scheme. 1) We first train the model (with parameters ω) on the support set (Ds) by
optimizing the loss function (Lm tr), and thus obtain the model with updated param-
eters (ω′), i.e., meta training process. 2) We evaluate the updated model on a group
of query sets ({Dn

q }Nn=1), by computing the losses ({Ln
m te(ω

′)}Nn=1) on these query
sets (i.e., meta testing process). 3) Finally, based on the evaluation losses, we perform
meta-optimization to update the model to improve its generalization performance. (b)
shows that to address various types of spatial level and temporal level conditional
biases, we construct a support set and a group of query sets for meta training and
testing. The data distribution of each query set (see right side of (b)) is different from
that of the support set (see left side of (b)) w.r.t. a type of conditional bias.

Meta Learning. As a group of representative works in meta learning,
MAML [6] and its following works [23, 32, 26] mainly tackle the few-shot learning
problem. These approaches often need to perform test-time model update for fast
adaptation to new few-shot tasks. While recently, meta learning techniques have
also been explored in other tasks [1, 17, 11, 9, 25] to improve the model perfor-
mance without the need of test-time update, such as in domain generalization [1]
and point cloud classification [11]. Different from existing works, here to address
the challenging spatio-temporal conditional bias problem in SGG, we propose
a framework that optimizes the model via meta training and testing over the
constructed support set and query sets with different data distributions w.r.t.
the conditional biases.
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3 Method

As discussed above, affected by the conditional biases in the dataset, the VidSGG
model can fail to generalize to the data samples where the biases do not hold. To
address this problem, we aim to train the model to learn generalizable features
in the data instead of exploiting biases. Here generalizable features refer to the
learned features that can enable the model to make unbiased predictions, i.e.,
obtaining robust performance. How to achieve this goal? We notice that some
meta-learning works [6, 23, 32] propose to boost the model learning ability via
meta training and testing. Concretely, these works use meta training and test-
ing to mimic the model training and testing for improving model generalization
performance. Inspired by this, we propose a novel MVSGG framework, that opti-
mizes the VidSGG model via meta training and testing for robust generalization
performance against the biases.

More specifically, our framework first splits the training set (Dtrain) into a
support set (Ds) for meta training, and a group of (N) query sets ({Dn

q }Nn=1)
for meta testing, where each query set is distributionally different from the sup-
port set w.r.t. one type of conditional bias. Then we first train the model us-
ing the support set (i.e., meta training), and then evaluate the model testing
performance on each of the query sets (i.e., meta testing). Since the biases in
meta-training data (support set) do not hold in meta-testing data (query sets)
due to their different data distributions, if the model trained on the support
set can still obtain good testing performance under this condition, it indicates
the model has learned more generalizable features rather than biases during the
training process. As a result, we can optimize the model performance in meta
testing, which can serve as a generalization feedback, to drive and adjust the
model training on the support set towards learning more generalizable features.
Below, we first introduce the meta training and testing scheme in our framework,
and then describe how to construct the support set and query sets.

3.1 Meta Training and Testing

Meta training. Using the support set Ds, we first train a VidSGG model (with
parameters ω), via conventional gradient update. Specifically, we compute the
model loss on the support set as:

Lm tr(ω) = L(Ds;ω) (1)

where L(·) denotes the loss function (e.g., cross-entropy loss) for training the
VidSGG model. Then we update the model parameters via gradient descent as:

ω′ = ω − α∇ωLm tr(ω) (2)

where α is the learning rate for meta training. Note that the parameters update
in this step is virtual (i.e., the updated parameters ω′ is merely intermediate
parameters), and the actual update for parameters ω will be performed in the
meta-optimization step.

Meta testing. Aftermeta training on the support set (Ds), we then evaluate
the generalization performance of the model with the updated parameters (ω′),
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on the query sets ({Dn
q }Nn=1). In particular, for each query set Dn

q , we compute
the model loss Ln

m te on this query set as:

Ln
m te(ω

′) = L(Dn
q ;ω

′) (3)

This computed loss can measure the model generalization performance on the
query set after training on the support set, and will be used to provide feedback
on how the model should be updated so that it can generalize to different data
distributions against the biases in the following meta-optimization step.

Meta-optimization. As discussed above, we aim to optimize the model
parameters (ω), so that after the training (update) on the support set (i.e., ω →
ω′), it can also obtain good testing performance (i.e., lower Ln

m te(ω
′)) on all

the query sets against the biases in training data. Towards this goal, inspired by
MAML [6], the meta-optimization objective can be formulated as:

min
ω

Lm tr(ω) +

N∑
n=1

Ln
m te(ω

′)

=min
ω

Lm tr(ω) +

N∑
n=1

Ln
m te

(
ω − α∇ωLm tr(ω)

) (4)

where the first term denotes the model training performance, while the second
term denotes the model generalization performance (with the updated param-
eters ω′). Note that the above meta-optimization is performed over the initial
model parameters ω, while ω′ is merely intermediate parameters for evaluating
the model generalization performance (Ln

m te(ω
′)) during meta testing. Based on

the meta-optimization objective in Eqn. 4, we can update the model parameters
ω as:

ω ← ω − β∇ω

(
Lm tr(ω) +

N∑
n=1

Ln
m te

(
ω − α∇ωLm tr(ω)

))
(5)

where β denotes the learning rate for meta-optimization. Via such optimization,
the model is driven to learn to capture more generalizable features to generalize
well against biases.

Here we provide an intuitive analysis of such meta-optimization. During the
above “learning to learn” process, the model is first trained (updated) over the
support set (i.e., ω → ω′). In this step, the biases in meta-training data (support
set) can be learned by the model, since such biases can contribute to model per-
formance on meta-training data. However, to generalize well to the meta-testing
data (query sets) where biases in meta-training data (support set) no longer
hold, the model needs to learn to avoid learning biases and instead capture more
generalizable features during meta training. This means that the second term
in Eqn. 5 that involves the second-order gradients of ω (i.e., meta-gradients):
∇ωL

n
m te

(
ω − α∇ωLm tr(ω)

)
, serves as a generalization feedback to the model

learning process (ω → ω′) on the support set about how to learn more general-
izable features.

From the above analysis, we can also conclude that the efficacy of our frame-
work for debiasing lies in the simulated difficult testing scenarios where training
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data biases no longer hold. This also implies that we are not using the query
sets to simulate the data distribution of the real testing set, which is unknown
during model training. Instead, we only need to make the difference between the
data distribution of meta-testing data (query sets) and that of meta-training
data (support set) to be as large as possible w.r.t. the biases, so as to drive the
model learning to learn more generalizable features. We also provide theoreti-
cal analysis of the efficacy of this framework for alleviating the bias learning in
the supplementary. We perform the above three steps (i.e., meta training, meta
testing and meta-optimization) iteratively until the model converges.

3.2 Dataset Split

As mentioned above, to handle various types of conditional biases, we split the
original training set to construct a support set and a group of N query sets for
meta training and testing. In this way, the purpose of the following dataset split
strategy is to make each query set distributionally different from the support set
w.r.t. one type of conditional bias. Under the guidance of this strategy, we can
easily construct the support set and query sets. Below we first discuss the details
of the support set and query sets, and then introduce the strategy for construct-
ing each query set by selecting the data samples, of which the data distributions
have the largest KL divergences to the support set w.r.t. the corresponding type
of conditional bias. Some visualization examples of data distributions of the
support set and query sets can refer to supplementary.

Support Set and Query Sets. We first randomly select a part of the training
set data as the support set (Ds), and the remaining part of the training set
will be used to construct various query sets ({Dn

q }Nn=1), where each query set is
designed to address one type of conditional bias. Since the conditional biases in
VidSGG can be roughly grouped into the spatial level and the temporal level, we
correspondingly construct our query sets based on these two levels, as follows.

Spatial level. There can exist conditional biases between a part of the re-
lation triplet (e.g., the predicate) and the remaining parts (i.e., the spatial con-
texts). For example, as shown in Fig. 1 (b), given the same subject-object pair of
human and blanket, the corresponding predicate is covered by in most triplets.
To reduce such spatial conditional bias w.r.t. the predicate conditioned on
subject-object pair, we can construct a query set, in which the distribution
of the predicates conditioned on the same subject-object pair is different from
the support set, as shown in Fig. 2.

Similarly, conditional bias can also exist w.r.t. the predicate conditioned
on subject. For instance, if there are many more triplets containing bear play

than the triplets containing bear bite in the dataset, a conditional bias can
be established towards the predicate play given the subject bear. Thus we
can build a query set where the distribution of the predicates (e.g., play, bite)
conditioned on the same subject (e.g., bear) is different from that of the support
set. In a similar way, we can also construct a query set to handle the conditional
bias w.r.t. the predicate conditioned on object.
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Therefore, 3 query sets can be constructed to handle the corresponding 3
types of conditional biases w.r.t. the predicate (predicate-centered) conditioned
on other parts of the relation triplet (i.e., the subject-object pair, or the subject,
or the object), as discussed above. Similarly, when considering the conditional
biases w.r.t. the subject (subject-centered) conditioned on other parts of the
triplet, we can also construct 3 query sets, and the same goes for the object-
centered scenario. Thus we will construct a total of 9 query sets for handling
these different types of spatial conditional biases.

Temporal level. In VidSGG, when predicting a relation triplet, besides spa-
tial contexts, there can also exist conditional biases between the current triplet
and its temporal contexts. Specifically, temporal conditional bias can exist be-
tween the current triplet and the triplets that appear before it, and for simplicity,
we refer to this case as forward case. Similarly, conditional bias can also exist
between the current triplet and the triplets that appear after it (backward case).
For these two cases, the query set construction procedures are similar, and below
we take the forward case as the example to describe such procedures.

For example, as shown in Fig. 1 (a), if human hold bottle happens first
in the video, and then human drink from bottle follows in most cases, then
there can exist temporal conditional bias between the previous predicate (e.g.,
hold) and current predicate (e.g., drink from), based on the subject-object
pair (e.g., human and bottle). To handle such temporal conditional bias, we can
construct a query set, in which the distribution w.r.t. the temporal change of
predicates, conditioned on the same subject-object pair, is different from that
in the support set. For example, if the support set has more videos contain-
ing human hold bottle→human drink from bottle, the query set will involve
more videos containing other cases w.r.t. the temporal change of predicates, such
as human hold bottle→human wipe bottle.

Similarly, temporal conditional bias can also exist between the previous
subject and current subject, and we can construct a query set for handling
this type of conditional bias. In a similar manner, we can also construct a query
set for handling the temporal conditional bias between the previous object
and current object. Therefore, we construct 3 query sets to handle the above
3 types of temporal conditional biases in the forward case. Similarly, we can also
construct 3 query sets for the backward case, and thus a total of 6 query sets for
handling various types of temporal conditional biases can be obtained.

As a result, considering both spatial-level and temporal-level conditional bi-
ases, we construct 9+6=15 query sets (N=15) in total from the training data.

Query Sets Construction Strategy. For constructing each query set, we need
to select suitable video samples from the candidate video samples, so that the
difference between the data distribution of the triplets in the selected videos
(i.e., query sets) and that of the support set is as large as possible w.r.t. the
corresponding type of conditional bias. Here to achieve this goal, we adopt an
efficient and generalizable strategy by maximizing the KL divergence between
the data distributions of the query set and support set w.r.t. the biases, which
can be applied to construct each of the 15 query sets. Below we take the process
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of constructing the query set for handling the spatial conditional biases w.r.t. the
predicate conditioned on subject as an example, to describe such a strategy.

As mentioned before, for handling this conditional bias, we aim to construct
a query set, of which the distribution of the predicates (e.g., play, bite) given
the same subject (e.g., bear), is different from the support set. For simplicity,
we use ϕq to denote such a distribution of the query set, and ϕs to denote this
distribution of the support set. Then since the KL divergence can be used to
measure the difference of two distributions, we here aim to construct a query
set, so that the KL divergence between ϕq and ϕs (i.e., DKL(ϕq ∥ ϕs)) is large.

To this end, we perform the following four steps. (1) We first compute the
distribution ϕs, i.e., computing the probability of the occurrence of each predi-
cate conditioned on the same subject (e.g., p(play|bear), p(bite|bear)) in the
support set. (2) Then, assuming we have a total of Nc candidate video samples
for constructing the query sets, since each candidate video sample (i) contains
multiple relation triplets, we can also compute its corresponding data distribu-
tion (ϕi

c, i ∈ {1, ..., Nc}). (3) Since we aim to select a set of video samples to
construct the query set, so that ϕq is different from ϕs (i.e., large DKL(ϕq ∥ ϕs)),
we compute the KL divergence between ϕi

c of each candidate video sample and
ϕs (i.e., DKL(ϕ

i
c ∥ ϕs)) that can be computed efficiently. (4) Finally, we can

select the set of video samples that have the largest KL divergences w.r.t. ϕs, to
construct the query set.

In a similar manner, we can apply the above strategy to automatically con-
struct other query sets. Note that different query sets can share common data
samples. Moreover, to help cover the wide range of possible conditional biases
in the dataset, instead of fixing the support set and query sets during the whole
training process, at the beginning of each training epoch, we randomly select
a part of the training set to re-construct the support set, and use the remain-
ing part to automatically re-construct various query sets via the above strategy.
In this way, by performing meta training and testing, during the whole train-
ing process, our model can learn to effectively handle various types of possible
conditional biases.

3.3 Training and Testing

We can flexibly apply our framework to train the off-the-shelf VidSGG models.
During training, at each epoch, we first split the training set to construct a
support set and a group of query sets as discussed above. Then we perform meta
training and testing over the support set and query sets, to iteratively optimize
the VidSGG model. During testing, we can evaluate the trained model on the
testing set in the conventional manner.

4 Experiments

We evaluate our framework on two datasets for two evaluation settings in VidSGG
respectively: ImageNet-VidVRD [29] for video-level VidSGG, and Action Genome
[12] for frame-level VidSGG. More experiment results are in supplementary.
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ImageNet-VidVRD (VidVRD).VidVRD dataset [29] contains 1000 video
samples with 35 object categories and 132 predicate categories. For each video
in VidVRD dataset, the model needs to predict a set of relation instances, and
each relation instance contains a relation triplet with the subject and object
trajectories. Following [29, 28], we use two evaluation protocols on this dataset:
relation detection and relation tagging. For relation detection, we count a pre-
dicted relation instance as a correct one, if its relation triplet is the same with a
ground truth, and their trajectory vIoU (volume IoU) of the subject and object
are both larger than the threshold of 0.5. In the same way as [29, 28], we adopt
Mean Average Precision (mAP), Recall@50 (R@50) and Recall@100 (R@100) to
evaluate the model performance on relation detection. While in relation tagging,
for a predicted relation instance, following [29, 28] we only consider the correct-
ness of its relation triplet, and ignore the precision of its subject and object
trajectories. The evaluation metrics of Precision@1 (P@1), Precision@5 (P@5)
and Precision@10 (P@10) are used in relation tagging [29, 28].

Action Genome (AG). AG dataset [12] provides scene graph annotation
for each video frame, i.e., the model needs to predict the scene graph of each
frame. AG dataset contains 234253 video frames with 35 object categories and 25
predicate categories. Following [36, 5, 12], we evaluate models on three standard
sub-tasks on this dataset: predicate classification (PredCls), scene graph classi-
fication (SGCls) and scene graph detection (SGDet). For these three sub-tasks,
in line with [36], we use Recall (R@20, R@50), Mean Recall (MR@20, MR@50),
mAPrel and wmAPrel to measure model performance.

4.1 Implementation Details

We conduct our experiments on an RTX 3090 GPU. For experiments of video-
level VidSGG on VidVRD dataset, we use the VidVRD-II network [28] as the
backbone of our framework, which exploits the spatio-temporal contexts via iter-
ative relation inference. For experiments of frame-level VidSGG on AG dataset,
we use TRACE network [36] as the backbone of our framework, which adaptively
aggregates contextual information to infer the scene graph.

On these two datasets, at each training epoch, we randomly select 60% of the
training samples as the support set, and the remaining training samples are used
to construct the query sets. We set the size of each query set to 100 on VidVRD,
and 200 on AG. Note that in AG dataset, since the subject of all relation triplets
is fixed to “person”, we skip the query sets for handling the conditional biases
w.r.t. the prediction of subject (e.g., subject-centered group) in this dataset. We
set the learning rate (α) for meta training to 0.0005, and the learning rate (β)
for meta-optimization to 0.01.

4.2 Experimental Results

On VidVRD dataset, compared to existing approaches, our method achieves the
best performance across all metrics on both relation detection and relation tag-
ging as shown in Table 1. This demonstrates that by reducing various types of
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Table 1. Comparison with state-of-the-arts on VidVRD dataset.

Method Relation Detection Relation Tagging

mAP R@50 R@100 P@1 P@5 P@10

VidVRD [29] 8.58 5.54 6.37 43.00 28.90 20.80
GSTEG [37] 9.52 7.05 8.67 51.50 39.50 28.23

VRD-GCN [24] 14.23 7.43 8.75 59.50 40.50 27.85
VRD-GCN+siamese [24] 16.26 8.07 9.33 57.50 41.00 28.50

VRD-STGC [20] 18.38 11.21 13.69 60.00 43.10 32.24
VidVRD+MHA [30] 15.71 7.40 8.58 40.00 26.70 18.25

VRD-GCN+MHA [30] 19.03 9.53 10.38 57.50 41.40 29.45
TRACE [36] 17.57 9.08 11.15 61.00 45.30 33.50

Social Fabric [2] 20.08 13.73 16.88 62.50 49.20 38.45
IVRD [19] 22.97 12.40 14.46 68.83 49.87 35.57

VidVRD-II [28] 29.37 19.63 22.92 70.40 53.88 40.16
VidVRD-II [28] + Reweight [33] 29.52 19.80 22.96 71.50 54.30 40.20
VidVRD-II [28] + TDE [33] 29.78 19.90 23.04 72.50 54.50 40.65
VidVRD-II [28] + DLFE [4] 29.92 19.98 23.16 73.50 54.90 41.10

Ours 31.57 21.16 24.57 79.00 57.60 43.20

Table 2. We apply our framework on var-
ious models, and obtain consistent perfor-
mance improvement on VidVRD dataset.

Method Relation Detection Relation Tagging

mAP R@50 R@100 P@1 P@5 P@10

VRD-STGC[20] 18.38 11.21 13.69 60.00 43.10 32.24
VRD-STGC + Ours 20.76 12.62 15.78 65.50 44.90 33.15

Independent baseline[28] 27.49 18.18 21.28 67.10 50.18 38.02
Independent baseline + Ours 30.02 19.86 23.10 75.50 53.60 40.80

VidVRD-II[28] 29.37 19.63 22.92 70.40 53.88 40.16
VidVRD-II + Ours 31.57 21.16 24.57 79.00 57.60 43.20

Table 3.We apply our framework on differ-
ent SOTA models for image SGG, and ob-
tain consistent performance improvement.

Method SGGen SGCls PredCls

mR@20 mR@50 mR@100 mR@20 mR@50 mR@100 mR@20 mR@50 mR@100

VCTree [34] 5.2 7.1 8.3 9.1 11.3 12.0 14.1 17.7 19.1
VCTree+Ours 10.1 13.1 15.4 16.9 19.6 20.6 25.7 29.8 31.4

BGNN [18] - 10.7 12.6 - 14.3 16.5 - 30.4 32.9
BGNN + Ours 11.1 14.2 16.4 15.9 17.4 18.6 27.3 31.6 34.1

conditional biases, our method can effectively enhance the model performance.
Moreover, we also compare our method to other debiasing methods in SGG,
including two representative methods (Reweight [33] and TDE [33]) and a re-
cently proposed one (DLFE [4]). For Reweight, we follow the idea in [33]. These
methods use the same backbone (VidVRD-II [28]) with ours. The results in
Table 1 show that compared to these methods, our method achieves superior
performance, demonstrating that by considering the spatio-temporal structure
of VidSGG, our method can better handle the biases in this task.

On AG dataset, as shown in Table 4 and Table 5, our method outperforms
other methods on all metrics. Our method also outperforms other debiasing
methods [33, 4] that use the same backbone (TRACE [36]) with ours. Moreover,
note that the metric of Mean Recall is designed to measure the model per-
formance considering the imbalanced data distribution [33, 36], and our method
achieves more performance improvements on this metric, demonstrating that our
framework can effectively mitigate the spatio-temporal conditional bias problem
caused by biased data distribution in the dataset.

4.3 Ablation Studies

We conduct extensive ablation experiments to evaluate our framework on Vid-
VRD dataset.

Impact of different backbone networks. To validate the general effec-
tiveness of our framework, we apply it on different models [20, 28], and obtain
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Table 4. Recall (%) of various models on AG dataset following the setting in [36].

Top k Predictions
for Each Pair

Method SGDet SGCls PredCls

image video image video image video

R@20 R@50 R@20 R@50 R@20 R@50 R@20 R@50 R@20 R@50 R@20 R@50

k=7 Freq Prior [45] 34.41 44.34 32.50 41.11 45.10 48.87 44.47 46.39 87.95 93.02 86.01 88.59
G-RCNN [42] 34.28 44.47 32.60 41.29 45.57 49.75 45.11 47.22 88.73 93.73 86.28 88.93
RelDN [46] 34.92 45.27 33.18 42.10 46.47 50.31 45.87 47.78 90.89 96.09 88.77 91.43
TRACE [36] 35.09 45.34 33.38 42.18 46.66 50.46 46.03 47.92 91.60 96.35 89.31 91.72

TRACE [36] + Reweight [33] 35.15 45.37 33.42 42.24 46.68 50.50 46.07 47.94 91.61 96.35 89.32 91.74
TRACE [36] + TDE [33] 35.20 45.41 33.49 42.30 46.71 50.55 46.12 48.00 91.63 96.36 89.32 91.76
TRACE [36] + DLFE [4] 35.29 45.47 33.58 42.41 46.75 50.63 46.18 48.04 91.64 96.36 89.35 91.77

Ours 36.59 47.00 34.88 43.81 47.40 51.06 46.71 48.56 91.74 96.43 89.44 91.85

k=6 Freq Prior [45] 34.47 43.69 32.38 40.24 44.90 47.15 43.57 44.63 85.89 89.43 83.33 84.99
G-RCNN [42] 34.60 43.98 32.75 40.65 45.82 48.31 44.60 45.77 87.03 90.60 84.02 85.74
RelDN [46] 35.22 44.94 33.39 41.64 46.76 49.11 45.48 46.57 89.63 93.56 87.01 88.86
TRACE [36] 35.41 45.06 33.59 41.76 47.00 49.32 45.71 46.79 90.34 93.94 87.56 89.24

TRACE [36] + Reweight [33] 35.44 45.10 33.64 41.83 47.01 49.35 45.73 46.82 90.36 93.95 87.58 89.27
TRACE [36] + TDE [33] 35.49 45.16 33.68 41.90 47.04 49.36 45.76 46.89 90.37 93.96 87.61 89.27
TRACE [36] + DLFE [4] 35.56 45.28 33.76 41.99 47.08 49.41 45.83 46.92 90.39 93.99 87.65 89.29

Ours 36.80 46.73 34.99 43.39 47.66 49.96 46.41 47.47 90.49 94.11 87.78 89.50

Table 5. Mean Recall (%) and Average Precision (%) of various models on AG dataset
following the setting in [36].

Method SGDet SGCls PredCls

Mean Recall Average Precision Mean Recall Average Precision Mean Recall Average Precision

@20 @50 mAPr wmAPr @20 @50 mAPr wmAPr @20 @50 mAPr wmAPr

Freq Prior [45] 24.89 34.07 9.45 15.58 34.30 36.96 14.29 22.68 55.17 63.67 33.10 65.92
G-RCNN [42] 27.79 34.99 11.76 15.90 36.19 38.29 17.64 22.53 56.32 61.31 41.21 70.89
RelDN [46] 30.39 39.53 12.93 15.94 39.92 41.93 20.07 23.88 59.81 63.47 50.08 72.26
TRACE [36] 30.84 40.12 13.43 16.56 41.19 43.21 20.71 24.61 61.80 65.37 53.27 75.45

TRACE [36] + Reweight [33] 30.87 40.21 13.44 16.59 41.31 43.44 20.75 24.63 61.97 65.77 53.30 75.46
TRACE [36] + TDE [33] 31.01 40.40 13.47 16.60 41.56 43.70 20.79 24.66 62.12 65.89 53.34 75.50
TRACE [36] + DLFE [4] 31.24 40.75 13.48 16.62 41.77 43.98 20.83 24.70 62.44 66.31 53.35 75.52

Ours 32.43 43.13 14.00 17.47 43.43 47.26 21.25 25.32 67.67 75.72 53.88 75.96

consistent performance improvement as shown in Table 2, showing our frame-
work can be flexibly applied on various models to improve their performance.

Impact of spatio-temporal conditional biases. To investigate the im-
pact of spatial and temporal conditional biases on model performance, we eval-
uate the following variants. For spatial conditional biases, we test 4 variants.

Table 6. We evaluate various variants to investigate
the impact of each group of spatio-temporal condi-
tional biases.

Method Relation Detection Relation Tagging

mAP R@50 R@100 P@1 P@5 P@10

Baseline (VidVRD-II) 29.37 19.63 22.92 70.40 53.88 40.16

w/o Spatial Level (all) 30.49 20.35 23.61 75.50 55.30 41.50
w/o Predicate-centered 30.98 20.67 23.94 76.50 56.40 42.35
w/o Subject-centered 31.10 20.87 24.04 78.00 56.80 42.75
w/o Object-centered 31.05 20.80 23.98 77.50 56.60 42.60

w/o Temporal Level (all) 30.47 20.48 23.63 75.00 55.60 41.70
w/o Forward Case 30.94 20.78 23.95 76.50 56.50 42.60
w/o Backward Case 31.00 20.75 24.01 77.50 56.80 42.45

Ours 31.57 21.16 24.57 79.00 57.60 43.20

Specifically, one model vari-
ant (w/o Spatial Level (all))
ignores all groups of spa-
tial conditional biases and
handles only temporal condi-
tional biases, i.e., optimizing
the model without the query
sets for handling all types
of spatial conditional biases.
Moreover, as discussed in 3.2,
we have 3 groups of spatial
conditional biases, i.e., the conditional bias between predicate/subject/object and
their corresponding spatial contexts. Thus to explore the impact of each group
of conditional biases, we correspondingly implement 3 variants (w/o Predicate-
centered, w/o Subject-centered and w/o Object-centered), and each variant ig-
nores the corresponding group of query sets during the model training.
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Similarly, for temporal conditional biases, we have 3 variants. One model
variant (w/o Temporal Level (all)) ignores all groups of temporal conditional
biases, and handles only spatial conditional biases. Furthermore, since we have
2 groups of temporal conditional biases, i.e., the conditional bias between the
current triplet and the triplets appear before or appear after, we evaluate 2 more
variants (w/o Forward Case and w/o Backward Case).

As shown in Table 6, ignoring any group of conditional biases would lead
to performance drop compared to our framework, showing that each group of
conditional biases can affect the model performance. More ablation study and
qualitative results are in our supplementary.

4.4 Experiments on Image SGG

Table 7. Experiment results of ours and other de-
biasing methods in image SGG.

Method SGGen SGCls PredCls

mR@20 mR@50 mR@20 mR@50 mR@20 mR@50

VCTree [34] 5.2 7.1 9.1 11.3 14.1 17.7
VCTree+Reweight [33] 6.6 8.7 10.6 12.5 16.3 19.4
VCTree+TDE [33] 6.8 9.5 11.2 15.2 19.2 26.2
VCTree+DLFE [4] 8.6 11.8 15.8 18.9 20.8 25.3

VCTree+Ours 13.1 15.4 19.6 20.6 29.8 31.4

Besides the VidSGG task,
there can also exist spatial
conditional biases in the task
of image SGG. Thus if we
remove the query sets for
handling the temporal condi-
tional biases, our framework
can then be adapted to han-
dle the image SGG task. Therefore, we also evaluate our method on the widely
used SGG benchmark: Visual Genome [14], by constructing and incorporating
only the query sets for handling the spatial conditional biases. As shown in Table
3, we apply our framework on different SGG models [18, 34], and consistently
enhance their performances. Besides, as shown in Table 7, based on the same
backbone (VCTree [34]), our method achieves better performance than other
debiasing strategies.

5 Conclusion

To address the spatio-temporal conditional bias problem in VidSGG, we propose
a novel Meta Video Scene Graph Generation (MVSGG) framework. By con-
structing a support set and various query sets w.r.t. various types of conditional
biases, and optimizing the model on these constructed sets via meta training and
testing, our framework can effectively train the model to handle various types
of conditional biases. Moreover, our framework is general, and can be flexibly
applied to various models. Our framework achieves superior performance.
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