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1 Relationship between Our Framework and
Train-Validation Split Scheme

In our framework, in each iteration, we first train the confidence estimator on
the virtual training set (i.e. virtual training). After that, the trained confidence
estimator is evaluated on the virtual testing set (i.e. virtual testing). Finally,
the evaluation result (virtual testing loss Lv te(ϕ

′)) computed on the virtual
testing set is used as a feedback to the training procedure of the confidence
estimator to drive it to learn more distribution-generalizable knowledge (i.e. via
meta-optimization). We notice that the classical train-validation split scheme
has some relationships in concept with our meta framework, as it also trains the
model on the training set first, and then evaluates the model on the validation
set. However, we want to highlight here that our framework with the virtual
training and testing scheme incorporated is totally different from the classical
train-validation split scheme. We explain the two reasons in more detail below.

Firstly, the classical train-validation split scheme is often used to adjust the
model parameters indirectly through adjusting the hyperparameters, which lacks
a mechanism to directly and automatically optimizes the model parameters,
while our framework incorporates a feedback mechanism to directly optimize the
confidence estimator parameters during training to drive the confidence estima-
tor to learn more distribution-generalizable knowledge. This cannot be done by
simply utilizing the train-validation split scheme.

Secondly, we intentionally design distribution differences between the con-
structed virtual training and virtual testing sets in our framework. Hence, uti-
lizing the evaluation result computed on the virtual testing set with a different
distribution from the virtual training set as the feedback, our framework further
encourages the knowledge learned by the confidence estimator during training
to be more distribution-generalizable.

⋆ Both authors contributed equally to the work.
⋆⋆ Corresponding Author
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Due to the effectiveness of our framework, during experiments, we empirically
observe consistent performance enhancement, as shown in Sec. 4 of our main
paper.

2 Analysis of Meta-Optimization Rule

Inspired by [13, 8, 21], we here analyze the meta-optimization rule. The overall
objective of our meta-optimization rule is formulated as:

min
ϕ

{
Lv tr(ϕ) + Lv te(ϕ

′)
}

=min
ϕ

{
Lv tr(ϕ) + Lv te

(
ϕ− α∇Lv tr(ϕ)

)} (1)

And the first-order Taylor expansion of a function can be formulated as:

f(x) ≈ f(b) +
(
∇f(b)

)
· (x− b) (2)

where b is an arbitrary point close to x. Hence, by regarding ϕ− α∇Lv tr(ϕ) as
x and setting b = ϕ, we can write the second term Lv te

(
ϕ−α∇Lv tr(ϕ)

)
in our

overall objective approximately as its first-order Taylor expansion . The overall
objective can then be approximately reformulated as:

min
ϕ

{
Lv tr(ϕ) + Lv te

(
ϕ− α∇Lv tr(ϕ)

)}
≈min

ϕ

{
Lv tr(ϕ) + Lv te(ϕ)− α

(
∇Lv tr(ϕ)

)
·
(
∇Lv te(ϕ)

)} (3)

This means that the overall objective of our meta-optimization is approx-
imately equivalent to simultaneously (1) minimize the loss value on both the
virtual training set Dv tr and the virtual testing set Dv te (i.e. minϕ {Lv tr(ϕ)+
Lv te(ϕ)}); (2) maximize the term (∇Lv tr(ϕ)) · (∇Lv te(ϕ)), in which (1) opti-
mizes the confidence estimator to perform well on the virtual training and testing
sets same as the objective of conventional joint-learning scheme and (2) maxi-
mizes the dot product of the gradient of Lv tr(ϕ) and the gradient of Lv te(ϕ).

Specifically, as shown by [19], maximizing the dot product of two gradients
encourages the directions of the gradients to be similar. Hence, (2) encourages
the confidence estimator to optimize on the virtual training setDv tr and the vir-
tual testing set Dv te to a similar direction, and hence learn invariant knowledge
across the virtual training and testing sets. Moreover, as we intentionally design
the virtual training and testing sets to have different distributions between them
in our framework, by driving the confidence estimator to learn invariant knowl-
edge across different distributions (i.e. incorporating (2) in our objective), the
confidence estimator is guided to learn more distribution-generalizable knowl-
edge.

Our experiments also show the efficacy of our meta-learning scheme, as shown
in Tab. 5 of our main paper.
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3 Details of Set Construction for Data Input I

During set construction for data input I, as discussed in Sec. 3.2 in the main
paper, we need to first calculate the mean and the standard deviation of each
convolutional layer’s feature map of each input image i from DI . Here we use il

to denote the feature map from the l layer of the input image i. Then to calculate
its mean µ(il) and standard deviation σ(il), following [15], we first calculate the
mean µc(i

l) and the standard deviation σc(i
l) of each channel of the feature map

il as:

µc(i
l) =

1

HW

H∑
h=1

W∑
w=1

ilc (4)

σc(i
l) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(ilc − µc(il))2 (5)

where C ×H ×W is the shape of the feature map il. After that, µ(il) and σ(il)
are constructed respectively as the concatenation of the calculated µc(i

l) and
σc(i

l) across the C channels of il.
Then to build a convolutional feature statistics vector to represent each input

image i from DI , we use i1, i2, ..., iM to denote all the feature maps of the image
i learned from all the M convolutional layers of the confidence estimator, and
thus the convolutional feature statistics vector Vstats(i) of the image i ∈ DI is
constructed as:

Vstats(i) =
{
µ(i1), σ(i1), ..., µ(iM ), σ(iM )

}
(6)

In this way, we can get the convolutional feature statistics vectors for all the
images in DI . After that, we cluster DI into N clusters by applying the K-means
algorithm on the images based on their convolutional feature statistics vectors,
and finally, based on the clustering results, we can construct the virtual training
and testing sets for data input I at the start of each even-numbered iteration,
as shown in our main paper.

4 Visualization of Set Construction for Data Input I

To further demonstrate the effectiveness of our set construction method for data
input I, we present some visualizations on how some clusters look like after we
cluster them following our set construction method. As data distribution shifts
exist within the same dataset [15, 17], to guide the confidence estimator to learn
more distribution generalizable knowledge, we expect the clusters we construct to
express such data distribution shifts. As shown from Fig. 1 to Fig. 4, the clusters
we construct contain distinct style and domain characteristics and express the
data distribution shifts, which demonstrates the general effectiveness of our set
construction method for data input I across different datasets we use.
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Fig. 1. Visualization of clusters we construct on MNIST training set [11].

Fig. 2. Visualization of clusters we construct on CIFAR-10 training set [10].
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Fig. 3. Visualization of clusters we construct on KITTI Eigen-split training set [4, 7,
20].

Fig. 4. Visualization of clusters we construct on Cityscapes training set [3].
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5 Implementation Details of Representative methods

We reimplement various representative methods to tackle label imbalance and
improve out-of-distribution data generalization in the main paper to compare
them with our framework. Here we explain how we reimplement them more in
detail. (1) Reweight: To tackle label imbalance, we assign the inverted sample
fractions respectively to loss terms w.r.t. correct and incorrect task model pre-
dictions as weights. (2) Resample [1]: To tackle label imbalance, we up-sample
the data with incorrect task model predictions to balance with the data with
correct task model predictions during training. (3) Dropout [6]: Since dropout
can be used to improve out-of-distribution data generalization [5], we also reim-
plement dropout by adding dropout layers into the network architecture of the
confidence estimator and setting the dropout probability p = 0.4. (4) Focal loss
[14]: Since focal loss can be used to both tackle label imbalance [12] and improve
out-of-distribution data generalization [16], we use focal loss as the loss function
of our confidence estimator and follow its default hyperparameters (γ = 2.0, α =
2.5) in [14]. (5) Mixup [23]: To improve out-of-distribution data generalization,
we also combine pairs of input samples and use these combinations together with
original input samples during training following [23].

6 Additional Ablation Studies

Impact of splitting DC into different subset proportions. In our exper-
iments, we randomly select 60% of data from DC to construct the first subset
DC,1, and use the remaining 40% as the second subset DC,2. Here we assess
two other variants, one where 50% of data is in the first subset (50% for first
subset), and one where 70% of data is in the first subset (70% for first sub-
set). Note that the remaining data (50% and 30% respectively) is used as the
second subset DC,2. As shown in Tab. 1, our framework and these two variants
all achieve a better performance than the baseline of our framework (SLURP),
which demonstrates the robustness of our framework to this hyperparameter.

Table 1. Ablation studies conducted on the use of different subset proportions when
splitting DC .

Method
CityScapes [3]

CityScapes
Foggy s = 3 [18]

CityScapes
Rainy s = 3 [9]

AUSE-
RMSE↓

AUSE-
Absrel↓ AUROC↑ AUSE-

RMSE↓
AUSE-
Absrel↓ AUROC↑ AUSE-

RMSE↓
AUSE-
Absrel↓ AUROC↑

Baseline(SLURP) 3.05 6.55 0.849 3.41 5.05 0.801 3.08 5.80 0.857
50% for first subset 0.71 0.74 0.925 0.99 0.61 0.935 1.14 0.86 0.907
60% for first subset 0.60 0.62 0.933 0.93 0.58 0.938 1.08 0.80 0.909
70% for first subset 0.69 0.70 0.929 1.01 0.64 0.932 1.17 0.89 0.904

Impact of using different numbers of clusters N . During set construction,
we cluster DI into N clusters, where N is set to 6 in our experiments. We
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evaluate other choices of N in Tab. 2. All variants (N = 2, N = 4, N = 6 and
N = 8) outperform the baseline method (i.e., SLURP [22]) by a large margin,
demonstrating that our framework is fairly robust and insensitive to the choice
of N , and does not require intensive tuning of this hyperparameter.

Table 2. Ablation studies conducted on the number of clusters N .

Method
CityScapes [3]

CityScapes
Foggy s = 3 [18]

CityScapes
Rainy s = 3 [9]

AUSE-
RMSE↓

AUSE-
Absrel↓ AUROC↑ AUSE-

RMSE↓
AUSE-
Absrel↓ AUROC↑ AUSE-

RMSE↓
AUSE-
Absrel↓ AUROC↑

Baseline(SLURP) 3.05 6.55 0.849 3.41 5.05 0.801 3.08 5.80 0.857
2 clusters 1.03 1.30 0.911 1.17 1.04 0.911 1.24 1.86 0.902
4 clusters 0.63 0.70 0.931 0.94 0.68 0.936 1.16 1.18 0.906
6 clusters 0.60 0.62 0.933 0.93 0.58 0.938 1.08 0.80 0.909
8 clusters 0.60 0.63 0.933 0.94 0.58 0.938 1.07 0.81 0.910

Evaluation of different weights of reweight. In our experiments in the main
paper, we reimplement reweight method by assigning the inverted sample frac-
tions respectively to loss terms w.r.t. correct and incorrect task model predictions
as weights. Here, we also evaluate other different weights of reweight method and
compare them with our framework. Specifically, denote w+ as weight assigned
to loss term w.r.t. correct task model predictions and w− as weight assigned to
loss term w.r.t. incorrect task model predictions, we evaluate four other weights
including (w+, w−) = (1,5), (w+, w−) = (1,10), (w+, w−) = (1,20), and (w+,
w−) = (1,40). As shown in Tab. 3, our framework (tackling label imbalance only)
outperforms all these different variants of the reweight method, which further
demonstrates the effectiveness of our framework.

Table 3. Evaluation of different weights of reweight. w+ and w− respectively denote
weights assigned to the loss terms w.r.t. correct and incorrect task model predictions.

Method (w+, w−)
CityScapes [3]

CityScapes
Foggy s = 3 [18]

CityScapes
Rainy s = 3 [9]

AUSE-
RMSE↓

AUSE-
Absrel↓ AUROC↑ AUSE-

RMSE↓
AUSE-
Absrel↓ AUROC↑ AUSE-

RMSE↓
AUSE-
Absrel↓ AUROC↑

Baseline(SLURP) 3.05 6.55 0.849 3.41 5.05 0.801 3.08 5.80 0.857
SLURP + Reweight (1,5) 2.89 6.02 0.852 3.29 4.97 0.804 2.96 5.67 0.859
SLURP + Reweight (1,10) 2.77 5.89 0.855 3.20 4.78 0.809 2.72 5.42 0.862
SLURP + Reweight (1,20) 2.59 5.48 0.860 2.98 4.49 0.817 2.51 5.20 0.863
SLURP + Reweight (1,40) 2.65 5.66 0.859 3.04 4.55 0.814 2.59 5.26 0.863

SLURP + Ours(tackling label imbalance only) 1.33 1.76 0.908 1.98 2.34 0.864 1.71 2.55 0.889

Impact of constructing distributionally different virtual training and
testing sets. In our experiments, we construct virtual training and testing sets
to have different distributions between them in each iteration of our virtual train-
ing and testing scheme (Distributionally Different Set Construction). Here
we assess the variant to randomly select samples to construct virtual training
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and testing sets in each iteration (Random Set Construction). As shown
in Tab. 4, our framework achieves better performance than this variant, which
demonstrates the effectiveness of constructing virtual training and testing sets
to have different distributions.

Table 4. Ablation studies conducted on the effectiveness of constructing virtual train-
ing and testing sets to have different distributions.

Method
CityScapes [3]

CityScapes
Foggy s = 3 [18]

CityScapes
Rainy s = 3 [9]

AUSE-
RMSE↓

AUSE-
Absrel↓ AUROC↑ AUSE-

RMSE↓
AUSE-
Absrel↓ AUROC↑ AUSE-

RMSE↓
AUSE-
Absrel↓ AUROC↑

Baseline(SLURP) 3.05 6.55 0.849 3.41 5.05 0.801 3.08 5.80 0.857
Random Set Construction 2.88 6.12 0.852 3.23 4.85 0.803 3.01 5.70 0.859

Distributionally Different Set Construction 0.60 0.62 0.933 0.93 0.58 0.938 1.08 0.80 0.909

7 Qualitative Results

We present some qualitative results in Fig. 5 w.r.t. both the data with incorrect
task model predictions and the out-of-distribution data inputs. As shown, com-
pared with the baseline methods [2, 22], our framework performs better both
under label imbalance and on out-of-distribution data inputs.

With respect to performing better under label imbalance, as the task model
we use has made > 93% classifications correctly on CIFAR-10 [10], there exist
many more correct task model predictions than incorrect ones. which leads to
label imbalance for the confidence estimation on CIFAR-10 [10]. Hence, the
confidence estimator is likely to be overly confident for incorrect task model
predictions, which is undesirable. Hence, the framework we proposed aims to
train the confidence estimator to perform better under label imbalance. As shown
in Fig. 5(a), TCP [2] as the baseline method overconfidently estimates many
images with incorrect task model predictions as correct, while our framework
successfully identifies these incorrect predictions made by the task model and
achieves a better performance under label imbalance.

With respect to handling the out-of-distribution data inputs, data distribu-
tion shifts occur within the same dataset, and more severe between different
datasets, e.g. between the training data from existing datasets and testing data
received during deployment under real-world conditions. Hence, in order for the
confidence estimator to perform well in practical applications, it is important
for the confidence estimator to perform well on out-of-distribution data inputs.
As shown in Fig. 5(b), when an input image from the Cityscapes testing set [3]
is passed to the confidence estimator trained on the KITTI Eigen-split training
set [4, 7, 20] (i.e. an out-of-distribution data input from a different dataset), Our
framework achieves much better performance compared to SLURP [22] as the
baseline method.
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(a) Results w.r.t the data with incorrect task model predictions from CIFAR-10 testing
set [10] with TCP [2] as the baseline.

(b) Results w.r.t an out-of-distribution data input from the Cityscapes testing set [3]
evaluated using the confidence estimator trained on the KITTI Eigen-split training set
[4, 7, 20]. Note that in the last three images, we use green-colored area to represent area
that the task model correctly estimate the depth value, red-colored area to represent
area that the task model incorrectly estimate the depth value, and black-colored area
to represent area without valid task model ground truth.

Fig. 5. Qualitative results of our framework and the baseline methods [22, 2]. As shown,
our framework demonstrates better performance both on data inputs with incorrect
task model predictions and out-of-distribution data inputs.

8 Details of our used backbones

We use the same backbone as SLURP [22] for confidence estimation on monoc-
ular depth estimation and the same backbone as TCP [2] for confidence estima-
tion on image classification. Here we introduce how these two backbones work
respectively.

For confidence estimation on monocular depth estimation, as shown in Fig. 6,
the backbone of SLURP passes both the data input I and the prediction map P
through a feature encoder to output encoded features, and then further passes
the fused encoded features through a context block to output the confidence
estimate S. During training, the confidence estimator is optimized through a
binary cross entropy loss function.

For confidence estimation on image classification, as shown in Fig. 7, the
backbone of TCP passes only the data input I through a feature encoder to
output encoded features, and then passes the encoded features through confidnet
to output the confidence estimate S. During training, the confidence estimator
is optimized through a TCP loss function. Note that compared to backbone of
SLUPR, the backbone of TCP utilizes prediction P in the TCP loss function
instead of through a feature encoder.
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Note that our framework only modifies the training procedure of the con-
fidence estimator, so we can directly apply our framework to the above two
backbones with no adaptation to network structures although they have differ-
ent network structures and use different loss functions.

Fig. 6. Illustration of the backbone of SLURP [22]

Fig. 7. Illustration of the backbone of TCP [2]
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17. Rabanser, S., Günnemann, S., Lipton, Z.: Failing loudly: An empirical study of
methods for detecting dataset shift. Advances in Neural Information Processing
Systems 32 (2019)

https://openreview.net/forum?id=6Tm1mposlrM


12 H. Qu et al.

18. Sakaridis, C., Dai, D., Hecker, S., Van Gool, L.: Model adaptation with synthetic
and real data for semantic dense foggy scene understanding. In: Proceedings of the
european conference on computer vision (ECCV). pp. 687–704 (2018)

19. Shi, Y., Seely, J., Torr, P., N, S., Hannun, A., Usunier, N., Synnaeve, G.: Gradi-
ent matching for domain generalization. In: International Conference on Learning
Representations (2022), https://openreview.net/forum?id=vDwBW49HmO

20. Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity
invariant cnns. In: 2017 international conference on 3D Vision (3DV). pp. 11–20.
IEEE (2017)

21. Xu, L., Qu, H., Kuen, J., Gu, J., Liu, J.: Meta spatio-temporal debiasing for video
scene graph generation. In: Proceedings of the European Conference on Computer
Vision (ECCV) (2022)

22. Yu, X., Franchi, G., Aldea, E.: Slurp: Side learning uncertainty for regression prob-
lems. In: 32nd British Machine Vision Conference, BMVC 2021, Virtual Event /
November 22-25, 2021 (2021)

23. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk
minimization. In: International Conference on Learning Representations (2018)

https://openreview.net/forum?id=vDwBW49HmO

	Improving the Reliability for Confidence Estimation (Supplementary)

