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Abstract. Scene graph generation (SGG) is designed to extract (sub-
ject, predicate, object) triplets in images. Recent works have made a
steady progress on SGG, and provide useful tools for high-level vision and
language understanding. However, due to the data distribution problems
including long-tail distribution and semantic ambiguity, the predictions
of current SGG models tend to collapse to several frequent but unin-
formative predicates (e.g., on, at), which limits practical application of
these models in downstream tasks. To deal with the problems above, we
propose a novel Internal and External Data Transfer (IETrans) method,
which can be applied in a plug-and-play fashion and expanded to large
SGG with 1,807 predicate classes. Our IETrans tries to relieve the data
distribution problem by automatically creating an enhanced dataset that
provides more sufficient and coherent annotations for all predicates. By
applying our proposed method, a Neural Motif model doubles the macro
performance for informative SGG. The code and data are publicly avail-
able at https://github.com/waxnkw/IETrans-SGG.pytorch.
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1 Introduction

Scene graph generation (SGG) aims to detect relational triplets (e.g., (man,
riding, bike)) in images. As an essential task for connecting vision and lan-
guage, it can serve as a fundamental tool for high-level vision and language
tasks, such as visual question answering [2,25,29,14], image captioning [33,7],
and image retrieval [10,27,28]. However, existing SGG methods can only make
correct predictions on a limited number of predicate classes (e.g., 29 out of 50
pre-defined classes [39]), among which a majority of predicates are trivial and
uninformative (e.g., on, and, near). This undermines the application of SGG for
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Fig. 1. Generate an enhanced dataset automatically for better model training with:
(a) Internal Transfer: Specify general predicate annotations as informative ones. (b)
External Transfer: Relabel missed relations from NA.

downstream tasks. To address the limitation, we first identify two main problems
that need to deal with:

• Long-tail problem: the problem refers to the phenomenon that annota-
tions mainly concentrate on a few head predicate classes, and are much
sparse in most tail predicate classes. For example, in Visual Genome[12],
there are over 100K samples for the top 5 predicate classes, while over 90%
of predicate classes have less than 10 samples. As a result, the performance
of tail predicate classes is poor due to the lack of effective supervision.

• Semantic ambiguity: many samples can be described as either general
predicate class (e.g., on) or an informative one (e.g., riding). However, data
annotators prefer some general (and thus uninformative) predicate classes to
informative ones for simplicity. This causes conflicts in the widely adopted
single-label optimization since different labels are annotated for the same
type of instances. Thus, even when the informative predicates have enough
training samples, the prediction will easily collapse to the general ones.

To address the problems mentioned above, recent works propose to use re-
sampling [6,13], reweighting [32], and post-processing methods [23,8]. However,
we argue that these problems can be better alleviated by enhancing the existing
dataset into a reasonable dataset, that contains more abundant training samples
for tail classes and also provides coherent annotations for different classes.

To this end, we propose a novel framework named Internal and External
data Transfer (IETrans), which can be equipped to different baseline models
in a plug-and-play applied in a fashion. As shown in Figure 1, we automatically
transfer data from general predicates to informative ones (Internal Transfer)
and relabel relational triplets missed by annotators (External Transfer). (1)
For internal transfer, we first identify the general-informative relational pairs
based on the confusion matrix, and then conduct a triplet-level data transfer from
general ones to informative ones. The internal transfer will not only alleviate the
optimization conflict caused by semantic ambiguity but also provide more data
for tail classes; (2) For external transfer, there exist many positive samples
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missed by annotators [12,19], which are usually treated as negative samples by
current methods. However, this kind of data can be considered as a potential data
source, covering a wide range of predicate categories. Inspired by Visual Distant
Supervision [35] which employs NA samples for pre-training, we also consider the
NA samples, which are the union of negative and missed annotated samples. The
missed annotated samples can be relabeled to provide more training samples.

It is worth noting that both internal transfer and external transfer are in-
dispensable for improving SGG performance. Without the internal transfer, the
external transfer will suffer from the semantic ambiguity problem. Meanwhile,
the external transfer can further provide training samples for tail classes, espe-
cially for those that have weak semantic connection with head classes.

Exhaustive experiments show that our method is both adaptive to different
baseline models and expansible to large-scale SGG. We equip our data augmen-
tation method with 4 different baseline models and find that it can significantly
boost all models’ macro performance and achieve SOTA performance for F@K
metric, a metric for overall evaluation. For example, a Neural Motif Model with
our proposed method can double the mR@100 performance and achieve the high-
est F@100 among all model-agnostic methods on predicate classification task of
the widely adopted VG-50 [31] benchmark.

To validate the scalability of our proposed method, we additionally propose
a new benchmark with 1,807 predicate classes (VG-1800), which is more prac-
tical and challenging. To provide a reliable and stable evaluation, we manually
remove unreasonable predicate classes and make sure there are over 5 samples
for each predicate class on the test set. On VG-1800, our method achieves SOTA
performance with significant superiority compared with all baselines. The pro-
posed IETrans can make correct predictions on 467 categories, compared with all
other baselines that can only correctly predict less than 70 categories. While the
baseline model can only predict relations like (cloud, in, sky) and (window, on,
building), our method enables to generate informative ones like (cloud, floating
through, sky) and (window, on exterior of, building).

Our main contributions are summarized as follows: (1) To cope with the
long-tail problem and semantic ambiguity in SGG, we propose a novel IETrans
framework to generate an enhanced training set, which can be applied in a plug-
and-play fashion. (2) We propose a new VG-1800 benchmark, which can provide
reliable and stable evaluation for large-scale SGG. (3) Comprehensive experi-
ments demonstrate the effectiveness of our IETrans in training SGG models.

2 Related Works

2.1 Scene Graph Generation

As an important tool of connecting vision and language, SGG [31,19,15] has
drawn widespread attention from the community. SGG is first proposed as vi-
sual relation detection (VRD) [19], in which each relation is detected indepen-
dently. Considering that relations are highly dependent on their context, [31]
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further proposes to formulate VRD as a dual-graph generation task, which can
incorporate context information. Based on [31], different methods [18,24,39] are
proposed to refine the object and relation representations in the scene graph. For
example, [18] proposes a novel message passing mechanism that can encode edge
directions into node representations. Recently, CPT [36] and PEVL [34] propose
to employ pre-trained vision-language models for SGG. CPT shows promising
few-shot ability and PEVL shows much better performance than models training
from scratch.

2.2 Informative Scene Graph Generation

Although making steady progress on improving recall on SGG task, [24,3] point
out that the predictions of current SGG models are easy to collapse to several
general and trivial predicate classes. Instead of only focusing on recall met-
ric, [24,3] propose a new metric named mean recall, which is the average recall
of all predicate classes. [23] employs a causal inference framework, which can
eliminate data bias during the inference process. CogTree [37] proposes to lever-
age the semantic relationship between different predicate classes, and design a
novel CogTree loss to train models that can make informative predictions. In
BGNN [13], the authors design a bi-level resampling strategy, which can help to
provide a more balanced data distribution during the training process. However,
previous works of designing new loss or conducting resampling, only focus on
predicate-level adjustment, while the visual relation is triplet-level. For example,
given the subject man and object skateboard, the predicate riding is an infor-
mative version of standing on, while given the subject man and object horse,
riding will not be an informative alternative of standing on. Thus, instead of
using less precise predicate-level manipulation, we employ a triplet-level transfer.

2.3 Large-scale Scene Graph Generation

In the last few years, there are some works [1,41,40,35] focusing on large-scale
SGG. Then, how to provide a reliable evaluation is an important problem. [40]
first proposes to study large-scale scene graph generation and makes a new split
of Visual Genome dataset named VG80K, which contains 29,086 predicate cate-
gories. However, the annotations are too noisy to provide reliable evaluation. To
cope with this problem, [1] further cleans the dataset, and finally reserves 2,000
predicate classes. However, only 1,429 predicate classes are contained in the test
set, among which 903 relation categories have no more than 5 samples. To pro-
vide enough samples for each predicate class’ evaluation, we re-split the Visual
Genome to ensure each predicate class on the test set has more than 5 samples,
and the total predicate class number is 1,807. For the proposed methods, [40]
employs a triplet loss to regularize the visual representation with the constraint
on word embedding space. RelMix [1] proposes to conduct data augmentation
with the format of feature mixup. Visual distant supervision [35] pre-trains the
model on relabeled NA data with the help of a knowledge base and achieve sig-
nificant improvement on a well-defined VG setting without semantic ambiguity.
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Fig. 2. Illustration of our proposed IETrans to generate an enhanced dataset. Internal
transfer is designed to transfer data from general predicate to informative ones. Ex-
ternal transfer is designed to relabel NA data. To avoid misunderstanding, (cs, p

∗, co)
is a relational triplet class. (si, p(si,oi), oi) represents a single relational triplet instance.

However, the data extension will be significantly limited by the semantic ambigu-
ity problem. To deal with this problem, we propose an internal transfer method
to generate informative triplets.

3 Method

In this section, we first introduce the internal data transfer and external data
transfer, respectively, and then elaborate how to utilize them collaboratively.
Figure 2 shows the pipeline of our proposed IETrans.

The goal of our method is to generate an enhanced dataset automatically,
which should provide more training samples for tail classes, and also specify
general predicate classes as informative ones. Concretely, as shown in Figure 1,
the general relation on between (person, beach) need to be specified as more
informative one standing on, and the missed annotations between (person, kite)
can be labeled so as to provide more training samples.

3.1 Problem Definition

Scene Graph Generation. Given an image I, a scene graph corresponding
to I has a set of objects O = {(bi, ci)}No

i=1 and a set of relational triplets E =

{(si, p(si,oi), oi)}
Ne
i=1. For each object (bi, ci), it consists of an object bounding

box bi ∈ R4 and an object class ci which belongs to the pre-defined object class
set C. With si ∈ O and oi ∈ O, pi is defined as relation between them and
belongs to the pre-defined predicate class set P.

Inference. SGG is defined as a joint detection of objects and relations. Gen-
erally, an SGG model will first detect the objects in the image I. Based on the
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detected objects, a typical SGG model will conduct a feature refinement for
objects and relation representation, and then classify the objects and relations.

3.2 Internal Data Transfer

The key insight of internal transfer is to transfer samples from general predicate
classes to their corresponding informative ones, like the example shown in Fig-
ure 1. We split the process into 3 sub-steps, including (1) Confusion Pair Dis-
covery: specify confused predicate pairs as potential general-informative pairs
for given subject and object classes. (2) Transfer Pair Judgement: judge
whether the candidate pair is valid. (3) Triplet Transfer: transfer data from
the selected general predicate class to the corresponding informative one.

Confusion Pair Discovery. To find general predicate classes and correspond-
ing informative ones, a straightforward way is to annotate the possible relation
transitions manually. However, relations are highly dependent on the subject
and object classes, i.e. relation is triplet-level rather than predicate-level. For
example, given the entity pair man and bike, riding is a sub-type of sitting
on, while for man and skateboard, riding shares different meaning with sitting

on. In this condition, even under 50 predicate classes settings, the possible re-
lation elements will scale up to an infeasible number for human annotation.
Another promising alternative is to employ pre-defined knowledge bases, such
as WordNet [20] and VerbNet [11]. However, existing knowledge bases are not
specifically designed to cope with visual relation problems, which result in a gap
between visual and textual hierarchies [26].

Fig. 3. Confusion matrix of Mo-
tif [39]’s prediction score on all en-
tity pairs in VG training set with
the subject man and the object
motorcycle.

Thus, in this work, we try to specify the
general-informative pairs by taking advantage
of information within the dataset, and leave
the exploration of external knowledge sources
for future work. A basic observation is that
informative predicate classes are easily
confused by general ones. Thus, we can
first find confusion pairs as candidate general-
informative pairs. By observing the predic-
tions of the pre-trained Motif [39] model, we
find that the collapse from informative predi-
cate classes to general ones, appears not only
on the test set but also on the training set.
As shown in Figure 3, the predicate classes
riding and sitting on are significantly con-
fused by a more general predicate class on.

On the training set, given a relational
triplet class (cs, p, co), we use a pre-trained
baseline model to predict predicate labels of
all samples belonging to (cs, p, co), and average their score vectors. We denote
the aggregated scores for all predicates as S = {spi

|pi ∈ P}. From S, we select
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all predicate classes with higher prediction scores than the ground-truth anno-
tation p, which can be formulated as Pc = {pi|spi

> sp}. Pc can be considered
as the most confusing predicate set for (cs, p, co), which can serve as candidate
transfer sources.

Transfer Pair Judgement. However, a confused predicate class does not equal
to a general one. Sometimes, a general predicate can also be confused by an
informative predicate. For example, in Figure 3, under the constraint of cs =
man and co = motorcycle, the less informative predicate sitting on is confused
by the more informative predicate riding. In this condition, it is not a good
choice to transfer from riding to sitting on. Thus, we need to further select
the truly general predicates from the candidate set Pc.

To select the most possible general predicate classes from Pc, we first intro-
duce an important feature that is useful to recognize general predicate classes.
As observed by [37], the general predicate classes usually cover more
diverse relational triplets, while informative ones are limited. Based on this
observation, we can define the attraction factor of a triplet category (cs, p, co)
as:

A(cs, p, co) =
1∑

ci,cj∈C I(ci, p, cj)
, (1)

where C is the object categories set and I(t) indicates whether the triplet cate-
gory t exists in the training set, which can be formulated as:

I(t) =

{
1, if t ∈ training set

0, otherwise
(2)

The denominator of A(cs, pi, co) is the number of relational triplet types con-
taining pi. Thus, A(cs, pi, co) with smaller value means pi is more likely to be a
general predicate. Concretely, when A(cs, pi, co) < A(cs, p, co), we transfer data
from (cs, pi, co) to (cs, p, co).

However, only considering the number of relational triplet types also has
drawbacks: some relational triplets with very limited number of samples (e.g.,
only 1 or 2 samples) might be annotation noise, while these relational triplets are
easily selected as transfer targets. Transferring too much data to such uncertain
relational triplets will significantly degenerate models’ performance. Thus, we
further consider the number of each relational triplet and modify the attraction
factor as:

A(cs, p, co) =
N(cs, p, co)∑

ci,cj∈C I(ci, p, cj) ·N(ci, p, cj)
, (3)

where N(t) denotes the number of instances with relational type t in the training
set. With the attraction factor, we can further filter the candidate confusion set
Pc to the valid transfer source for (cs, p, co):

Ps = {pi|(pi ∈ Pc) ∧ (A(cs, pi, co) < A(cs, p, co))}, (4)

where ∧ denotes the logical conjunction operator.
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Triplet Transfer. Given the transfer source Ps, we collect all samples in the
training set satisfying:

T = {(oi, pk, oj)|(coi = cs) ∧ (pk ∈ Ps) ∧ (coj = co)}. (5)

Then, we sort T by model’s prediction score of p, and transfer the top kI%
samples to the target triplet category (cs, p, co). Note that, a triplet instance
may need to be transferred to more than one relational triplets. To deal with
the conflict, we choose the target predicate with the highest attraction factor.

3.3 External Data Transfer

The goal of our external transfer is to relabel unannotated samples to excavate
missed relational triplets, as the example shown in Figure 1.

NA Relabeling. NA samples refer to all unannotated samples in the training
set, including both truly negative samples and missed positive samples. In ex-
ternal transfer, NA samples are directly considered as the transfer source and are
relabeled as existing relational triplet types.

To get the NA samples, we first traverse all unannotated object pairs in im-
ages. However, considering that data transfer from all NA samples to all pos-
sible predicate classes will bring heavy computational burden, and inevitably
increase the difficulty of conducting precise transfer, so as to sacrifice the qual-
ity of transferred data. Thus, we only focus on object pairs whose bounding
boxes have overlaps and limit the possible transfer targets to existing relational
triplet types. The exploration of borrowing zero-shot relational triplets from NA

is left for future work.
Given a sample (s, NA, o), we can get its candidate target predicate set as:

Tar(s, NA, o) = {p|(p ∈ P) ∧ (N(cs, p, co) > 0) ∧ (IoU(bs, bo) > 0)}, (6)

where P denotes pre-defined predicate classes, bs and bo denote bounding boxes
of s and o, and IoU denotes the intersection over union.

Given a triplet (s, NA, o), the predicate class with the highest prediction score
except for NA is chosen. The label assignment can be formulated as:

p(s,o) = argmax
p∈Tar(s,NA,o)

(ϕp(s, o)), (7)

where ϕp(·) denotes the prediction score of predicate p.

NA Triplet Transfer. To decide transfer or not, we rank all chosen (s, NA, o)
samples according to NA scores in an ascending order. The lower NA score means
the sample is more likely to be a missed positive sample. Similar with internal
transfer, we simply transfer the top kE% data.

3.4 Integration

Internal transfer is conducted on annotated data and external transfer is con-
ducted on unannotated data, which are orthogonal to each other. Thus, we can
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simply merge the data without conflicts. After obtaining the enhanced dataset,
we re-train a new model from scratch and use the new model to make inferences
on the test set.

4 Experiments

In this section, we first show the generalizability of our method with different
baseline models and the expansibility to large-scale SGG. We also make ablation
studies to explore the influence of different modules and hyperparameters. Fi-
nally, analysis is conducted to show the effectiveness of our method in enhancing
the current dataset.

4.1 Generalizability with Different Baseline Models

We first validate the generalizability of our method with different baseline models
and its effectiveness when compared with current SOTA methods.

Datasets. Popular VG-50 [31] benchmark is employed, which consists of 50
predicate classes and 150 object classes.

Tasks. Following previous works [31,23,39], we evaluate our model on three
widely used SGG tasks: (1) Predicate Classification (PREDCLS) provides
both localization and object classes, and requires models to recognize predicate
classes. (2) Scene Graph Classification (SGCLS) provides only correct lo-
calization and asks models to recognize both object and predicate classes. (3) In
Scene Graph Detection (SGDET), models are required to first detect the
bounding boxes and then recognize both object and predicate classes.

Metrics. Following previous works [37,24], we use Recall@K (R@K) and mean
Recall@K (mR@K) as our metrics. However, different trade-offs between R@K
and mR@K are made in different methods, which makes it hard to make a direct
comparison. Therefore, we further propose an overall metric F@K to jointly
evaluate R@K and mR@K, which is the harmonic average of R@K and mR@K.

Baselines. We categorize several baseline methods into two categories: (1)
Model-agnostic baselines. They refers to methods that can be applied in
a plug-and-play fashion. For this part, we include Resampling [13], TDE [23],
CogTree [37], EBM [22], DeC [9], and DLFE [5]. (2) Specific models. We
also include some dedicated designed models with strong performance, including
KERN [4], KERN [4], GBNet [38], BGNN [13], DT2-ACBS [6], and PCPL [32].

Implementation Details. Following [23], we employ a pre-trained Faster-
RCNN [21] with ResNeXt-101-FPN [16,30] backbone. In the training process,
the parameters of the detector are fixed to reduce the computation cost. The
batch size is set to 12, and the learning rate is 0.12, except for Transformer.
We optimize all models with an SGD optimizer. Specifically, to better balance
the data distribution, the external transfer will not be conducted for the top 15
frequent predicate classes. To avoid deviating too much from the original data
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Table 1. Performance (%) of our method and other baselines on VG-50 dataset.
IETrans denotes different models equipped with our IETrans. Rwt denotes using
the reweighting strategy.

Models
Predicate Classification Scene Graph Classification Scene Graph Detection

R@50 / 100 mR@50 / 100 F@50 / 100 R@50 / 100 mR@50 / 100 F@50 / 100 R@50 / 100 mR@50 / 100 F@50 / 100

S
p
ec
ifi
c

KERN [4] 65.8 / 67.6 17.7 / 19.2 27.9 / 29.9 36.7 / 37.4 9.4 / 10.0 15.0 / 15.8 27.1 / 29.8 6.4 / 7.3 10.4 / 11.7
GBNet [38] 66.6 / 68.2 22.1 / 24.0 33.2 / 35.5 37.3 / 38.0 12.7 / 13.4 18.9 / 19.8 26.3 / 29.9 7.1 / 8.5 11.2 / 13.2
BGNN [13] 59.2 / 61.3 30.4 / 32.9 40.2 / 42.8 37.4 / 38.5 14.3 / 16.5 20.7 / 23.1 31.0 / 35.8 10.7 / 12.6 15.9 / 18.6
DT2-ACBS [6] 23.3 / 25.6 35.9 / 39.7 28.3 / 31.1 16.2 / 17.6 24.8 / 27.5 19.6 / 21.5 15.0 / 16.3 22.0 / 24.0 17.8 / 19.4
PCPL [32] 50.8 / 52.6 35.2 / 37.8 41.6 / 44.0 27.6 / 28.4 18.6 / 19.6 22.2 / 23.2 14.6 / 18.6 9.5 / 11.7 11.5 / 14.4

M
o
d
el
-A

g
n
o
st
ic

Motif [39] 64.0 / 66.0 15.2 / 16.2 24.6 / 26.0 38.0 / 38.9 8.7 / 9.3 14.2 / 15.0 31.0 / 35.1 6.7 / 7.7 11.0 / 12.6
-TDE [23] 46.2 / 51.4 25.5 / 29.1 32.9 / 37.2 27.7 / 29.9 13.1 / 14.9 17.8 / 19.9 16.9 / 20.3 8.2 / 9.8 11.0 / 13.2
-CogTree [37] 35.6 / 36.8 26.4 / 29.0 30.3 / 32.4 21.6 / 22.2 14.9 / 16.1 17.6 / 18.7 20.0 / 22.1 10.4 / 11.8 13.7 / 15.4
-EBM [22] - / - 18.0 / 19.5 - / - - / - 10.2 / 11.0 - / - - / - 7.7 / 9.3 - / -
-DeC [9] - / - 35.7 / 38.9 - / - - / - 18.4 / 19.1 - / - - / - 13.2 / 15.6 - / -
-DLFE [5] 52.5 / 54.2 26.9 / 28.8 35.6 / 37.6 32.3 / 33.1 15.2 / 15.9 20.7 / 21.5 25.4 / 29.4 11.7 / 13.8 16.0 / 18.8
-IETrans (ours) 54.7 / 56.7 30.9 / 33.6 39.5 / 42.2 32.5 / 33.4 16.8 / 17.9 22.2 / 23.3 26.4 / 30.6 12.4 / 14.9 16.9 / 20.0
-IETrans+Rwt (ours) 48.6 / 50.5 35.8 / 39.1 41.2 / 44.1 29.4 / 30.2 21.5 / 22.8 24.8 / 26.0 23.5 / 27.2 15.5 / 18.0 18.7 / 21.7

VCTree [24] 64.5 / 66.5 16.3 / 17.7 26.0 / 28.0 39.3 / 40.2 8.9 / 9.5 14.5 / 15.4 30.2 / 34.6 6.7 / 8.0 11.0 / 13.0
-TDE [23] 47.2 / 51.6 25.4 / 28.7 33.0 / 36.9 25.4 / 27.9 12.2 / 14.0 16.5 / 18.6 19.4 / 23.2 9.3 / 11.1 12.6 / 15.0
-CogTree [37] 44.0 / 45.4 27.6 / 29.7 33.9 / 35.9 30.9 / 31.7 18.8 / 19.9 23.4 / 24.5 18.2 / 20.4 10.4 / 12.1 13.2 / 15.2
-EBM [22] - / - 18.2 / 19.7 - / - - / - 12.5 / 13.5 - / - - / - 7.7 / 9.1 - / -
-DLFE [5] 51.8 / 53.5 25.3 / 27.1 34.0 / 36.0 33.5 / 34.6 18.9 / 20.0 24.2 / 25.3 22.7 / 26.3 11.8 / 13.8 15.5 / 18.1
-IETrans (ours) 53.0 / 55.0 30.3 / 33.9 38.6 / 41.9 32.9 / 33.8 16.5 / 18.1 22.0 / 23.6 25.4 / 29.3 11.5 / 14.0 15.8 / 18.9
-IETrans+Rwt (ours) 48.0 / 49.9 37.0 / 39.7 41.8 / 44.2 30.0 / 30.9 19.9 / 21.8 23.9 / 25.6 23.6 / 27.8 12.0 / 14.9 15.9 / 19.4

GPS-Net [18] 65.1 / 66.9 15.0 / 16.0 24.4 / 25.8 36.9 / 38.0 8.2 / 8.7 13.4 / 14.2 30.3 / 35.0 5.9 / 7.1 9.9 / 11.8
-Resampling [13] 64.4 / 66.7 19.2 / 21.4 29.6 / 32.4 37.5 / 38.6 11.7 / 12.5 17.8 / 18.9 27.8 / 32.1 7.4 / 9.5 11.7 / 14.7
-DeC [9] - / - 35.9 / 38.4 - / - - / - 17.4 / 18.5 - / - - / - 11.2 / 15.2 - / -
-IETrans (ours) 52.3 / 54.3 31.0 / 34.5 38.9 / 42.2 31.8 / 32.7 17.0 / 18.3 22.2 / 23.5 25.9 / 28.1 14.6 / 16.5 18.7 / 20.8
-IETrans+Rwt (ours) 47.5 / 49.4 34.9 / 38.6 40.2 / 43.3 29.3 / 30.3 19.8 / 21.6 23.6 / 25.2 23.1 / 25.0 16.2 / 18.8 19.0 / 21.5

Transformer [23] 63.6 / 65.7 17.9 / 19.6 27.9 / 30.2 38.1 / 39.2 9.9 / 10.5 15.7 / 16.6 30.0 / 34.3 7.4 / 8.8 11.9 / 14.0
-CogTree [37] 38.4 / 39.7 28.4 / 31.0 32.7 / 34.8 22.9 / 23.4 15.7 / 16.7 18.6 / 19.5 19.5 / 21.7 11.1 / 12.7 14.1 / 16.0
-IETrans (ours) 51.8 / 53.8 30.8 / 34.7 38.6 / 42.2 32.6 / 33.5 17.4 / 19.1 22.7 / 24.3 25.5 / 29.6 12.5 / 15.0 16.8 / 19.9
-IETrans+Rwt (ours) 49.0 / 50.8 35.0 / 38.0 40.8 / 43.5 29.6 / 30.5 20.8 / 22.3 24.4 / 25.8 23.1 / 27.1 15.0 / 18.1 18.2 / 21.7

distribution, the frequency bias item calculated from the original dataset is ap-
plied to our IETrans in the inference stage. For internal and external transfer,
the kI is set to 70% and kE is set to 100%. Please refer to the Appendix for
more details.

Comparison with SOTAs. We report the results of our IETrans and baselines
for VG-50 in Table 1. Based on the observation of experimental results, we have
summarized the following conclusions:

Our IETrans is adaptive to different baseline models. We equip our
method with 4 different models, including Motif [39], VCTree [24], GPS-Net [18],
and Transformer [23]. The module architectures range from conventional CNN
to TreeLSTM (VCTree) and self-attention layers (Transformer). The training al-
gorithm contains both supervised training and reinforcement learning (VCTree).
Despite the model diversity, our IETrans can boost all models’ mR@K metric
and also achieve competitive F@K performance. For example, our IETrans can
double mR@50/100 and improve the overall metric F@50/100 for over 9 points
across all 3 tasks for GPS-Net.

Compared with other model-agnostic methods, our method out-
performs all of them in nearly all metrics. For example, when applying
IETrans to Motif on PREDCLS, our model can achieve the highest R@50/100
and mR@50/100 among all model-agnostic baselines except for DeC. After adding
the reweighting strategy, our IETrans can outperform DeC on mR@K.
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Compared with strong specific baselines, our method can also achieve
competitive performance on mR@50/100, and best overall perfor-
mance on F@50/100. Considering mR@50/100, our method with reweighting
strategy is slightly lower than DT2-ACBS on SGCLS and SGDET tasks, while
our method performs much better than them on R@50/100 (e.g., 24.3 points of
VCTree on PREDCLS task). For overall comparison considering F@50/100 met-
rics, our VCTree+IETrans+Rwt can achieve the best F@50/100 on PREDCLS
and Motif+IETrans+Rwt achieves the best F@50/100 in SGCLS and SGDET
task.

4.2 Expansibility to Large-Scale SGG

We also validate our IETrans on VG-1800 dataset to show its expansibility to
large-scale scenarios.

Datasets. We re-split the Visual Genome dataset to create a VG-1800 bench-
mark, which contains 70,098 object categories and 1,807 predicate categories.
Different from previous large-scale VG split [40,1], we clean the misspellings and
unreasonable relations manually and make sure all 1,807 predicate categories
appear on both training and test set. For each predicate category, there are over
5 samples on the test set to provide a reliable evaluation. Detailed statistics of
VG-1800 dataset are provided in Appendix.

Tasks. In this work, we mainly focus on the predicate-level recognition ability
and thus compare models on PREDCLS in the main paper. For SGCLS results,
please refer to the Appendix.

Metrics. Following [40,1], we use accuracy (Acc) and mean accuracy upon all
predicate classes (mAcc). Similar to VG-50, the harmonic average of two metrics
is reported as F-Acc. In addition, we also report the number of predicate classes
that the model can make at least one correct prediction, denoted as Non-Zero.

Baselines. We also include model-agnostic baselines including Focal Loss [17],
TDE [23], and RelMix [1], and a specific model BGNN [13].

Implementation Details. Please refer to the Appendix for details.

Table 2. Performance of our method and baselines on VG-1800 dataset. IETrans de-
notes the Motif [39] model trained using our IETrans. To better compare with baselines,
we show different Acc and mAcc trade-offs by setting different kI .

Models
Top-1 Top-5 Top-10

Acc mAcc F-Acc Non-Zero Acc mAcc F-Acc Non-Zero Acc mAcc F-Acc Non-Zero

BGNN [13] 61.55 0.59 1.16 37 85.64 2.33 4.5 111 90.07 3.91 7.50 139

Motif [39] 59.63 0.61 1.21 47 84.82 2.68 5.20 112 89.44 4.37 8.33 139
-Focal Loss 54.65 0.26 0.52 14 79.69 0.79 1.56 27 85.21 1.36 2.68 41
-TDE [23] 60.00 0.62 1.23 45 85.29 2.77 5.37 119 89.92 4.65 8.84 152
-RelMix [1] 60.16 0.81 1.60 65 85.31 3.27 6.30 134 89.91 5.17 9.78 177
-IETrans (kI = 10%) (ours) 56.66 1.89 3.66 202 83.99 8.23 14.99 419 89.71 13.06 22.80 530
-IETrans (kI = 90%) (ours) 27.40 4.70 8.02 467 72.48 13.34 22.53 741 83.50 19.12 31.12 865
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Fig. 5. Visualization of raw Motif model and Motif equipped with our IETrans.

Comparison with SOTAs. Performance of our method and baselines are
shown in Table 2. Based on the observation of experimental results, we have
summarized the following conclusions:

Fig. 4. The mAcc and Acc
curve. (a) is our IETrans
method. kI is tuned to gen-
erate the blue curve. (b-f) are
baselines.

Our model can successfully work on
large-scale settings. On VG-1800 dataset, the
long-tail problem is even exacerbated, where hun-
dreds of predicate classes have only less than
10 samples. Simply increasing loss weight (Fo-
cal Loss) on tail classes can not work well. Dif-
ferent from these methods, our IETrans can suc-
cessfully boost the performance on mAcc while
keeping competitive results on Acc. For quantita-
tive comparison, our IETrans (kI = 10%) can
significantly improve the performance on top-10
mAcc (e.g., 19.12% vs. 4.37%) while maintaining
comparable performance on Acc.

Compared with different baselines, our
method can outperform them for overall
evaluation. As shown in Table 2, our IETrans
(kI = 90%) can achieve best performance on F-
Acc, which is over 3 times of the second highest baseline, RelMix, a method
specifically designed for large-scale SGG. To make the visualized comparison,
we plot a curve of IETrans with different Acc and mAcc trade-offs by tuning kI ,
and show the performance of other baselines as points. As shown in Figure 4,
all baselines drawn as points are under our curve, which means our method can
achieve better performance than them. Moreover, our IETrans (kI = 90%) can
make correct predictions on 467 predicate classes for top-1 results, while the
Non-Zero value of all other baselines are less than 70.

Case Studies. To show the potential of our method for real-world application,
we provide some cases in Figure 5. We can observe that our IETrans can help to
generate more informative predicate classes while keeping faithful to the image
content. For example, when the Motif model only predict relational triplets like
(foot, of, bear), (nose, on, bear) and (cloud, in, sky), our IETrans can generate
more informative ones as (foot, belonging to, bear), (nose, sewn onto, bear),
and (cloud, floating through, sky).
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Fig. 7. (a) The influence of kI in the Top-10 F-Acc with only internal transfer. (b)
The influence of kE in the Top-10 F-Acc with only external transfer.

4.3 Ablation Studies

In this part, we analyse the influence of internal transfer, external transfer, and
corresponding parameters, kI and kE .

Influence of Internal Transfer. As shown in Figure 6, only using exter-
nal transfer (yellow cube) is hard to boost the mAcc performance as much as
IETrans. The reason is that although introducing samples for tail classes, they
will still be suppressed by corresponding general ones. However, by introducing
internal transfer (green point) to cope with semantic ambiguity problem, the
performance (red cross) can be improved significantly on mAcc, together with
minor performance drop on Acc.

Fig. 6. The mAcc and Acc
curve. (a) Normally trained
Motif. (b) ExTrans: external
transfer. (c) InTrans: inter-
nal transfer. (d) Our proposed
IETrans. kI is tuned to gen-
erate a curve. The blue circle
and arrow mean that combin-
ing ExTrans and InTrans can
lead to the pointed result.

Influence of External Transfer. Although in-
ternal transfer can achieve huge improvement on
mAcc compared with Motif, its performance is
poor compared with IETrans, which shows the im-
portance of further introducing training data by
external transfer. Integration of two methods can
maximize the advantages of data transfer.

Influence of kI . As shown in Figure 7 (a), with
the increase of kI , the top-10 F-Acc will increase
until kI = 80%, and begin to decrease when
kI > 80%. The phenomenon indicates that a large
number of general predicates can be interpreted as
informative ones. Moving these predicates to in-
formative ones will boost the overall performance.
However, there also exists some predicates that
can not be interpreted as informative ones or be
modified suitably by current methods, which is
harmful to the performance of models.

Influence of kE. As shown in Figure 7 (b), the
overall performance increases slowly with the ini-
tial 90% transferred data, but improves signifi-
cantly with the rest 10%. Note that, the data is
ranked according to the NA score, which means that the last 10% data is actually
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Fig. 8. (a) Enhanced Scene Graph Visualization. Gray line denotes unchanged
relation. Blue line denotes changed and reasonable relation. Red line denotes changed
but unreasonable relation. (b) Distribution Change. The comparison between distri-
butions of original dataset and enhanced dataset for VG-1800. The x-axis is the relation
id intervals from head to tail classes. The y-axis is the corresponding log-frequency.

what the model considered as most likely to be truly negative. The phenomenon
indicates that the model may easily classify tail classes as negative samples,
while this part of data is of vital significance for improving the model’s ability
of making informative predictions.

4.4 Analysis of Enhanced Dataset

Enhanced Scene Graph Correctness. We investigate the correctness of en-
hanced scene graphs from the instance level. An example is shown in Figure 8(a).
We can see that the IETrans is less accurate on VG-1800, which indicates that
it is more challenging to conduct precise data transfer on VG-1800.

Distribution Change. The distribution change is shown in Figure 8(b). We
can see that our IETrans can effectively supply samples for non-head classes.

5 Conclusion

In this paper, we design a data transfer method named IETrans to generate an
enhanced dataset for the SGG. The proposed IETrans consists of an internal
transfer module to relabel general predicate classes as informative ones and
an external transfer module to complete missed annotations. Comprehensive
experiments are conducted to show the effectiveness of our method. In the future,
we hope to extend our method to other large-scale visual recognition problems
(e.g., image classification, semantic segmentation) with similar challenges.
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