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Abstract. A comprehensive understanding of human-object interaction
(HOI) requires detecting not only a small portion of predefined HOI
concepts (or categories) but also other reasonable HOI concepts, while
current approaches usually fail to explore a huge portion of unknown
HOI concepts (i.e., unknown but reasonable combinations of verbs and
objects). In this paper, 1) we introduce a novel and challenging task for
a comprehensive HOI understanding, which is termed as HOI Concept
Discovery; and 2) we devise a self-compositional learning framework
(or SCL) for HOI concept discovery. Specifically, we maintain an online
updated concept confidence matrix during training: 1) we assign pseudo
labels for all composite HOI instances according to the concept confi-
dence matrix for self-training; and 2) we update the concept confidence
matrix using the predictions of all composite HOI instances. Therefore,
the proposed method enables the learning on both known and unknown
HOI concepts. We perform extensive experiments on several popular HOI
datasets to demonstrate the effectiveness of the proposed method for
HOI concept discovery, object affordance recognition and HOI detec-
tion. For example, the proposed self-compositional learning framework
significantly improves the performance of 1) HOI concept discovery by
over 10% on HICO-DET and over 3% on V-COCO, respectively; 2) ob-
ject affordance recognition by over 9% mAP on MS-COCO and HICO-
DET; and 3) rare-first and non-rare-first unknown HOI detection rel-
atively over 30% and 20%, respectively. Code is publicly available at
https://github.com/zhihou7/HOI-CL.

Keywords: Human-Object Interaction, HOI Concept Discovery, Object
Affordance Recognition

1 Introduction

Human-object interaction (HOI) plays a key role in analyzing the relationships
between humans and their surrounding objects [21], which is of great importance
for deep understanding on human activities/behaviors. Human-object interac-
tion understanding has attracted extensive interests from the community, includ-
ing image-based [7, 5, 17, 38, 52], video-based visual relationship analysis [11, 40],
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video generation [42], and scene reconstruction [63]. However, the distribution
of HOI samples is naturally long-tailed: most interactions are rare and some
interactions do not even occur in most scenarios, since we can not obtain an
interaction between human and object until someone conducts such action in
real-world scenarios. Therefore, recent HOI approaches mainly focus on the anal-
ysis of very limited predefined HOI concepts/categories, leaving the learning on
a huge number of unknown HOI concepts [9, 3] poorly investigated, including
HOI detection and object affordance recognition [50, 25, 26]. For example, there
are only 600 HOI categories known in HICO-DET [6], while we can find 9,360
possible verb-object combinations from 117 verbs and 80 objects.
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Fig. 1. An illustration of unknown HOI detection via concept discovery. Given some
known HOI concepts (e.g., “drink with cup”, “drink with bottle”, and “hold bowl”),
the task of concept discovery aims to identify novel HOI concepts (i.e., reasonable
combinations between verbs and objects). For example, here we have some novel HOI
concepts, “drink with wine glass”, “fill bowl”, and “fill bottle”. Specifically, the pro-
posed self-compositional learning framework jointly optimizes HOI concept discovery
and HOI detection on unknown concepts in an end-to-end manner.

Object affordance is closely related to HOI understanding from an object-
centric perspective. Specifically, two objects with similar attributes usually share
the same affordance, i.e. , humans usually interact with similar objects in a sim-
ilar way [18]. For example, cup, bowl, and bottle share the same attributes
(e.g., hollow), and all of these objects can be used to “drink with”. Therefore,
object affordance [18, 26] indicates whether each action can be applied into an
object, i.e. , if a verb-object combination is reasonable, we then find a novel
HOI concept/category. An illustration of unknown HOI detection via concept
discovery is shown in Fig. 1. Recently, it has turned out that an HOI model
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is not only capable of detecting interactions, but also able to recognize object
affordances [26], especially novel object affordances using the composite HOI
features. Particularly, novel object affordance recognition also indicates discov-
ering novel reasonable verb-object combinations or HOI concepts. Inspired by
this, we can introduce a simple baseline for HOI concept discovery by averaging
the affordance predictions of training dataset into each object category [26].

Nevertheless, there are two main limitations when directly utilizing object
affordance prediction [26] for concept discovery. First, the affordance prediction
approach in [26] is time-consuming and unsuitable to be utilized during train-
ing phrase, since it requires to predict all possible combinations of verbs and
objects using the whole training set. By contrast, we introduce an online HOI
concept discovery method, which is able to collect concept confidence in a run-
ning mean manner with verb scores of all composite features in mini-batches
during training. Second, also more importantly, the compositional learning ap-
proach [26] merely optimizes the composite samples with known concepts (e.g.,
600 categories on HICO-DET), ignoring a large number of composite samples
with unknown concepts (unlabeled composite samples). As a result, the model
is inevitably biased to known object affordances (or HOI concepts), and leads to
the similar inferior performance to the one in Positive-Unlabeled learning [12,
14, 46]. That is, without negative samples for training, the network will tend to
predict high confidence on those impossible verb-object combinations or over-
fit verb patterns (please refer to Appendix A for more analysis). Considering
that the online concept discovery branch is able to predict concept confidence
during optimization, we can then construct pseudo labels [35] for all composite
HOIs belonging to either known or unknown categories. Inspired by this, we
introduce a self-compositional learning strategy (or SCL) to jointly optimize all
composite representations and improve concept predictions in an iterative man-
ner. Specifically, SCL combines the object representations with different verb
representations to compose new samples for optimization, and thus implicitly
pays attention to the object representations and improves the discrimination of
composite representations. By doing this, we can improve the object affordance
learning, and then facilitate the HOI concept discovery.

Our main contributions can be summarized as follows: 1) we introduce a
new task for a better and comprehensive understanding on human-object inter-
actions; 2) we devise a self-compositional learning framework for HOI concept
discovery and object affordance recognition simultaneously; and 3) we evaluate
the proposed approach on two extended benchmarks, and it significantly im-
proves the performance of HOI concept discovery, facilitates object affordance
recognition with HOI model, and also enables HOI detection with novel concepts.

2 Related Work

2.1 Human-Object Interaction

HOI understanding [21] is of great importance for visual relationship reason-
ing [58] and action understanding [4, 64]. Different approaches have been inves-
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tigated for HOI understanding from various aspects, including HOI detection [6,
37, 38, 65, 32, 8, 67, 52, 62], HOI recognition [7, 31, 28], video HOI [11, 30], com-
positional action recognition [40], 3D scene reconstruction [63, 10], video gener-
ation [42], and object affordance reasoning [15, 26]. Recently, compositional ap-
proaches (e.g., VCL [25]) have been intensively proposed for HOI understanding
using the structural characteristic [31, 25, 42, 36, 26]. Meanwhile, DETR-based
methods (e.g., Qpic [52]) achieve superior performance on HOI detection. How-
ever, these approaches mainly consider the perception of known HOI concepts,
and pay no attention to HOI concept discovery. To fulfill the gap between learn-
ing on known and unknown concepts, a novel task, i.e. , HOI concept discovery,
is explored in this paper. Currently, zero-shot HOI detection also attracts mas-
sive interests from the community [50, 2, 45, 25, 27]. However, those approaches
merely consider known concepts and are unable to discover HOI concepts. Some
HOI approaches [45, 2, 56, 55] expand the known concepts via leveraging language
priors. However, that is limited to existing knowledge and can not discover con-
cepts that never appear in the language prior knowledge. HOI concept discovery
is able to address the problem, and enable unknown HOI concept detection.

2.2 Object Affordance Learning

The notation of affordance is formally introduced in [18], where object affor-
dances are usually those action possibilities that are perceivable by an actor [43,
18, 19]. Noticeably, the action possibilities of an object also indicate the HOI con-
cepts related to the object. Therefore, object affordance can also represent the
existence of HOI concepts. Recent object affordance approaches mainly focus on
the pixel-level affordance learning from human interaction demonstration [34, 16,
15, 23, 41, 13, 61]. Yao et al. [60] present a weakly supervised approach to discover
object functionalities from HOI data in the musical instrument environment.
Zhu et al. [66] introduce to reason affordances in knowledge-based representa-
tion. Recent approaches propose to generalize HOI detection to unseen HOIs
via functionality generalization [2] or analogies [45]. However those approaches
focus on HOI detection, ignoring object affordance recognition. Specifically, Hou
et al. [26] introduce an affordance transfer learning (ATL) framework to enable
HOI model to not only detect interactions but also recognize object affordances.
Inspired by this, we further develop a self-compositional learning framework to
facilitate the object affordance recognition with HOI model to discover novel
HOI concepts for downstream HOI tasks.

2.3 Semi-Supervised Learning

Semi-supervised learning is a learning paradigm for constructing models that use
both labeled and unlabeled data [59]. There are a wide variety of Deep Semi-
Supervised Learning methods, such as Generative Networks [33, 51], Graph-
Based methods [54, 20], Pseudo-Labeling methods [35, 57, 24]. HOI concept dis-
covery shares a similar characteristic to semi-supervised learning approaches.
HOI concept discovery has instances of labeled HOI concepts, but no instances



Discovering Human-Object Interaction Concepts 5

of unknown concepts. We thus compose HOI representations for unknown con-
cepts according to [47]. With composite HOIs, concept discovery and object
affordance recognition can be treated as PU learning [12]. Moreover, HOI con-
cept discovery requires to discriminate whether the combinations (possible HOI
concepts) are reasonable and existing. Considering each value of the concept
confidences also represents the possibility of the composite HOI, we construct
pseudo labels [35, 47] for composite features from the concept confidence matrix,
and optimize the composite HOIs in an end-to-end way.

3 Approach

In this section, we first formulate the problem of HOI concept discovery and
introduce the compositional learning framework. We then describe a baseline
for HOI concept discovery via affordance prediction. Lastly, we introduce the
proposed self-compositional learning framework for online HOI concept discovery
and object affordance recognition.
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Fig. 2. Illustration of Self-Compositional Learning for HOI Concept Discovery. Specif-
ically, following [25], verb and object features are extracted via RoI-Pooling from union
box and object box respectively, which are then used to construct HOI features in HOI
branch according to HOI annotation. Following [25], for SCL, verb and object features
are further mutually combined to generate composite HOI features. Then, the feasible
composite HOI features belonging to the known concepts are directly used to train
the network in Compositional Branch. Here the classifier predicts verb classes directly.
Meanwhile, we update the concept confidence M ∈ RNv×No , where Nv and No are
the number of verb classes and object classes respectively, with the predictions of all
composite HOI features. The concept discovery branch is optimized via a self-training
approach to learn from composite HOI features with the concept confidence M.

3.1 Problem Definition

HOI concept discovery aims to discover novel HOI concepts/categories using HOI
instances from existing known HOI categories. Given a set of verb categories V
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and a set of object categories O, let S = V × O indicate the set of all possible
verb-object combinations. Let Sk, Su, and So denote three disjoint sets, known
HOI concepts, unknown HOI concepts, and invalid concepts (or impossible verb-
object combinations), respectively. That is, we have Sk∩Su = ∅ and Sk∪Su = S
if So = ∅. Let T = {(hi, ci)}Li=1 indicate the training dataset, where hi is a HOI
instance (i.e. , verb-object visual representation pair), ci ∈ Sk indicates the label
of the i-th HOI instance and L is the total number of HOI instance.

We would also like to clarify the difference between the notations of “unknown
HOI categories” and “unseen HOI categories” in current HOI approaches as
follows. Let Sz indicate the set of “unseen HOI categories” and we then have
Sz ⊆ Sk. Specifically, “unseen HOI category” indicates that the HOI concept is
known but no corresponding HOI instances can be observed in the training data.
Current HOI methods usually assume that unseen HOI categories Sz are known
HOI categories via the prior knowledge [50, 31, 45, 2, 25]. Therefore, existing HOI
methods can not directly detect/recognize HOIs with unknown HOI concepts.
HOI concept discovery aims to find Su from the existing HOI instances in T
with only known HOI concepts in Sk.

3.2 HOI Compositional Learning

Inspired by the compositional nature of HOI, i.e. , each HOI consists of a verb
and an object, visual compositional learning has been intensively explored for
HOI detection by combining visual verb and object representations [31, 25, 27,
26]. Let hi = ⟨xvi ,xoi⟩ indicate a HOI instance, where xvi and xoi denote the
verb and object representations, respectively. The HOI compositional learning
then aims to achieve the following objective,

gh(⟨x̃vi
, x̃oi⟩) ≈ gh(⟨xvi ,xoi⟩), (1)

where gh indicates the HOI classifier, xvi and xoi indicate the real verb-object
representation pair (i.e. , annotated HOI pair in dataset), ⟨x̃vi , x̃oi⟩ indicates
the composite verb-object pair. Specifically, x̃oi can be obtained from either
real HOIs [25], fabricated objects or language embedding [27, 2, 45], or external
object datasets [26], while x̃vi can be from real HOIs (annotated verb-object
pair) and language embeddings [31, 45]. As a result, when composite HOIs are
similar to real HOIs, we are then able to augment HOI training samples in
a compositional manner. However, current compositional approaches for HOI
detection [25, 26] simply remove the composite HOI instances out of the label
space, which may also remove a large number of feasible HOIs (e.g., “ride ze-
bra” as shown Figure 2). Furthermore, the compositional approach can not only
augment the training data for HOI recognition, but also provide a method to
determinate whether x̃vi and x̃oi are combinable to form a new HOI or not [26],
i.e. , discovering the HOI concepts.

3.3 Self-Compositional Learning

In this subsection, we introduce the proposed self-compositional learning frame-
work for HOI concept discovery as follows. As shown in Figure 2, the main
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HOI concept discovery framework falls into the popular two-stage HOI detec-
tion framework [25]. Specifically, we compose novel HOI samples from pair-wise
images to optimize the typical HOI branch (annotated HOIs), compositional
branch (the composite HOIs out of the label space are removed [25, 26]) and the
new concept discovery branch (all composite HOIs are used). The main challenge
of HOI concept discovery is the lack of instances for unknown HOI concepts, but
we can infer to discover new concepts according to the shared verbs and objects.
Specifically, we find that the affordance transfer learning [26] can be used for not
only the object affordance recognition but also the HOI concept discovery, and
we thus first introduce the affordance-based method as a baseline as follows.

Affordance Prediction The affordance transfer learning [26] or ATL is intro-
duced for affordance recognition using the HOI detection model. However, it has
been ignored that the affordance prediction can also enable HOI concept discov-
ery, i.e. , predicting a new affordance for an object although the affordance is not
labeled during training. We describe a vanilla approach for HOI concept discov-
ery using affordance prediction [26]. Specifically, we predict the affordances for
all objects in the training set according to [26]. Then, we average the affordance
predictions according to each object category to obtain the HOI concept confi-
dence matrix M ∈ RNv×No , where each value represents the concept confidence
of the corresponding combination between a verb and an object. Nv and No are
the numbers of verb and object categories, respectively. For simplicity, we may
use both vector and matrix forms of the confidence matrix M ∈ RNvNo and
M ∈ RNv×No in this paper. Though affordance prediction can be used for HOI
concept discovery, it is time-consuming since it requires to predict affordances
of all objects in training set. Specifically, we need an extra offline affordance
prediction process to infer concepts with the computational complexity O(N2)
in [26], where N is the number of total training HOIs, e.g., it takes 8 hours
with one GPU to infer the concept matrix M on HICO-DET. However, we can
treat the verb representation as affordance representation [26], and obtain the
affordance predictions for all objects in each mini-batch during training stage.
Inspired by the running mean manner in [29], we devise an online HOI concept
discovery framework via averaging the predictions in each mini-batch.

Online Concept Discovery As shown in Figure 2, we keep a HOI concept
confidence vector during training, M ∈ RNvNo , where each value represents
the concept confidence of the corresponding combination between a verb and
an object. To achieve this, we first extract all verb and object representations
among pair-wise images in each batch as xv and xo. We then combine each
verb representation and all object representations to generate the composite
HOI representations xh. After that, we use the composite HOI representations
as the input to the verb classifier and obtain the corresponding verb predictions
Ŷv ∈ RNN×Nv , where N indicates the number of real HOI instances (i.e. , verb-
object pair) in each mini-batch andNN is then the number of all composite verb-
object pairs (including unknown HOI concepts). Let Yv ∈ RN×Nv and Yo ∈
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RN×No denote the label of verb representations xv and object representations
xo, respectively. We then have all composite HOI labels Yh = Yv ⊗Yo, where
Yh ∈ RNN×NvNo , and the superscripts h, v, and o indicate HOI, verb, and
object, respectively. Similar to affordance prediction, we repeat Ŷv by No times
to obtain concept predictions Ŷh ∈ RNN×NvNo . Finally, we update M in a
running mean manner [29] as follows,

M←
M⊙C+

∑NN
i Ŷh(i, :)⊙Yh(i, :)

C+
∑NN

i Yh(i, :)
, (2)

C← C+

NN∑
i

Yh(i, :), (3)

where⊙ indicates the element-wise multiplication, Ŷh(i, :)⊙Yh(i, :) aims to filter
out predictions whose labels are not Yh(i, :), each value of C ∈ RNvNo indicates
the total number of composite HOI instances in each verb-object pair (including
unknown HOI categories). Actually, Ŷh(i, :) ⊙ Yh(i, :) follows the affordance
prediction process [26]. The normalization with C is to avoid the model bias to
frequent categories. Specifically, both M and C are zero-initialized. With the
optimization of HOI detection, we can obtain the vector M to indicate the HOI
concept confidence of each combination between verbs and objects.

Self-Training Existing HOI compositional learning approaches [25, 27, 26] usu-
ally only consider the known HOI concepts and simply discard the composite
HOIs out of label space during optimization. Therefore, there are only positive
data for object affordance learning, leaving a large number of unlabeled com-
posite HOIs ignored. Considering that the concept confidence on HOI concept
discovery also demonstrates the confidence of affordances (verbs) that can be ap-
plied to an object category, we thus try to explore the potential of all composite
HOIs, i.e., both labeled and unlabeled composite HOIs, in a semi-supervised way.
Inspired by the way used in PU learning [12] and pseudo-label learning [35], we
devise a self-training strategy by assigning the pseudo labels to each verb-object
combination instance using the concept confidence matrix M, and optimize the
network with the pseudo labels in an end-to-end way. With the self-training, the
online concept discovery can gradually improve the concept confidence M, and
in turn optimize the HOI model for object affordance learning with the concept
confidence. Specifically, we construct the pseudo labels Ỹv ∈ RNN×Nv from the
concept confidence matrix M ∈ RNv×No for composite HOIs xh as follows,

Ỹv(i, :) =

No∑
j

M(:, j)

max(M)
⊙Yh(i, :, j), (4)

where 0 ≤ j < No indicates the index of object category, 0 ≤ i < NN is the
index of HOI representations. Here, N is the number of HOIs in each mini-
batch, and is usually very small on HICO-DET and V-COCO. Thus the time
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complexity of Equation 4 is small. The labels of composite HOIs are reshaped as
Yh ∈ RNN×Nv×No . Noticeably, in each label Yh(i, :, :), there is only one vector
Yh(i, :, j) larger than 0 because each HOI has only one object. As a result, we
obtain pseudo verb label Ỹv(i, :) for HOI xhi . Finally, we use composite HOIs
with pseudo labels to train the models, and the loss function is defined as follows,

Ld =
1

NN

NN∑
i

(
1

Nv

Nv∑
k

LBCE(
Z(i, k)

T
, Ỹv(i, k))), (5)

where Z(i, :) is the prediction of the i-th composite HOI, 0 ≤ k < Nv means
the index of predictions, T is the temperature hyper-parameter to smooth the
predictions (the default value is 1 in experiment), LBCE indicates the binary
cross entropy loss. Finally, we optimize the network using Ld, Lh and Lc in an
end-to-end way, where Lh indicate the typical classification loss for known HOIs
and Lc is the compositional learning loss [25].

4 Experiments

In this section, we first introduce the datasets and evaluation metrics. We then
compare the baseline and the proposed method for HOI concept discovery and
object affordance recognition. We also demonstrate the effectiveness of the pro-
posed method for HOI detection with unknown concepts and zero-shot HOI
detection. Lastly, we provide some visualizations results of self-compositional
learning. Moreover, ablation studies and the full results of HOI detection with
self-compositional learning are provided in Appendix D, F, respectively.

4.1 Datasets and Evaluation Metrics

Datasets. We extend two popular HOI detection datasets, HICO-DET [6] and
V-COCO [22], to evaluate the performance of different methods for HOI concept
discovery. Specifically, we first manually annotate all the possible verb-object
combinations on HICO-DET (117 verbs and 80 objects) and V-COCO (24 verbs
and 80 objects). As a result, we obtain 1,681 concepts on HICO-DET and 401
concepts on V-COCO, i.e. , 1,681 of 9,360 verb-object combinations on HICO-
DET and 401 of 1,920 verb-object combinations on V-COCO are reasonable.
Besides, 600 of 1,681 HOI concepts on HICO-DET and 222 of 401 HOI concepts
on V-COCO are known according to existing annotations. Thus, the HOI concept
discovery task requires to discover the other 1,081 concepts on HICO-DET and
179 concepts on V-COCO. See more details about the annotation process, the
statistics of annotations, and the novel HOI concepts in Appendix B.

Evaluation Metrics. HOI concept discovery aims to discover all reason-
able combinations between verbs and objects according to existing HOI training
samples. We report the performance by using the average precision (AP) for
concept discovery and mean AP (or mAP) for object affordance recognition.
For HOI detection, we also report the performance using mAP. We follow [26]
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to evaluate object affordance recognition with HOI model on COCO validation
2017 [39], Object 365 validation [49], HICO-DET test set [6] and Novel Objects
from Object 365 [49].

4.2 Implementation Details

We implement the proposed method with TensorFlow [1]. During training, we
have two HOI images (randomly selected) in each mini-batch and we follow [17]
to augment ground truth boxes via random crop and random shift. We use a
modified HOI compositional learning framework, i.e. , we directly predict the
verb classes and optimize the composite HOIs using SCL. Following [25, 27],
the overall loss function is defined as L = λ1Lh + λ2Lc + λ3Ld, where λ1 = 2,
λ2 = 0.5, λ3 = 0.5 on HICO-DET, and λ1 = 0.5, λ2 = 0.5, λ3 = 0.5 on
V-COCO, respectively. Following [27], we also include a sigmoid loss for verb
representation and the loss weight is 0.3 on HICO-DET. For self-training, we
remove the composite HOIs when its corresponding concept confidence is 0, i.e.
, the concept confidence has not been updated. If not stated, the backbone is
ResNet-101. The Classifier is a two-layer MLP. We train the model for 3.0M
iterations on HICO-DET and 300K iterations on HOI-COCO with an initial
learning rate of 0.01. For zero-shot HOI detection, we keep human and objects
with the score larger than 0.3 and 0.1 on HICO-DET, respectively. See more
ablation studies (e.g., hyper-parameters, modules) in Appendix. Experiments
are conducted using a single Tesla V100 GPU (16GB), except for experiments
on Qpic [52], which uses four V100 GPUs with PyTorch [44].

4.3 HOI Concept Discovery

Baseline and Methods. We perform experiments to evaluate the effectiveness
of our proposed method for HOI concept discovery. For a fair comparison, we
build several baselines and methods as follows,

– Random: we randomly generate the concept confidence to evaluate the
performance.

– Affordance: discover concepts via affordance prediction [26] as described in
Sec 3.3.

– GAT [53]: build a graph attention network to mine the relationship among
verbs during HOI detection, and discover concepts via affordance prediction.

– Qpic* [52]: convert verb and object predictions of [52] to concept confidence
similar as online discovery.

– Qpic* [52] +SCL: utilize concept confidence to update verb labels, and
optimize the network (Self-Training). Here, we have no composite HOIs.

Please refer to the Appendix for more details, comparisons (e.g., re-training,
language embedding), and qualitative discovered concepts with analysis.

Results Comparison. Table 1 shows affordance prediction is capable of
HOI concept discovery since affordance transfer learning [26] also transfers affor-
dances to novel objects. Affordance prediction achieves 24.38% mAP on HICO-
DET and 21.36% mAP on V-COCO, respectively, significantly better than the
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Table 1. The performance of the proposed method for HOI concept discovery.
We report all performance using the average precision (AP) (%). SCL means self-
compositional learning. SCL− means online concept discovery without self-training.

Method
HICO-DET V-COCO

Unknown (%) Known (%) Unknown (%) Known (%)

Random 12.52 6.56 12.53 13.54
Affordance [26] 24.38 57.92 20.91 95.71
GAT [53] 26.35 76.05 18.35 98.09
Qpic* [52] 27.53 87.68 15.03 13.21

SCL− 22.25 83.04 24.89 96.70
Qpic* [52] + SCL 28.44 88.91 15.48 13.34
SCL 33.58 92.65 28.77 98.95

random baseline. With graph attention network, the performance is further im-
proved a bit. Noticeably, [26] completely ignores the possibility of HOI concept
discovery via affordance prediction. Due to the strong ability of verb and object
prediction, Qpic achieves 27.42% on HICO-DET, better than affordance predic-
tion. However, Qpic has poor performance on V-COCO. The inference process of
affordance prediction for concept discovery is time-consuming (over 8 hours with
one GPU). Thus we devise an efficient online concept discovery method which di-
rectly predicts all concept confidences. Specifically, the online concept discovery
method (SCL−) achieves 22.25% mAP on HICO-DET, which is slightly worse
than the result of affordance prediction. On V-COCO, the online concept discov-
ery method improves the performance of concept discovery by 3.98% compared
to the affordance prediction. The main reason for the above observation might
be due to that V-COCO is a small dataset and the HOI model can easily overfit
known concepts on V-COCO. Particularly, SCL significantly improves the per-
formance of HOI concept discovery from 22.36% to 33.58% on HICO-DET and
from 24.89% to 28.77% on V-COCO, respectively. We find we can also utilize
self-training to improve concept discovery on Qpic [52] (ResNet-50) though the
improvement is limited, which might be because verbs and objects are entangled
with Qpic. Lastly, we meanwhile find SCL largely improves concept discovery of
known concepts on both HICO-DET and V-COCO.

4.4 Object Affordance Recognition

Following [26] that has discussed average precision (AP) is more robust for eval-
uating object affordance, we evaluate object affordance recognition with AP
on HICO-DET. Table 2 illustrates SCL largely improves SCL− (without self-
training) by over 9% on Val2017, Object365, HICO-DET under the same train-
ing iterations. SCL requires more iterations to converge, and SCL greatly im-
proves previous methods on all datasets with 3M iterations (Please refer to Ap-
pendix for convergence analysis). Noticeably, SCL directly predicts verb rather
than HOI categories, and removes the spatial branch. Thus, SCL without self-
training (SCL−) is a bit worse than ATL. Previous approaches ignore the un-
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Table 2. Comparison of object affordance recognition with HOI network (trained on
HICO-DET) among different datasets. Val2017 is the validation 2017 of COCO [39].
Obj365 is the validation of Object365 [49] with only COCO labels. Novel classes are
selected from Object365 with non-COCO labels. ATL∗ means ATL optimized with
COCO data. Numbers are copied from the appendix in [26]. Unknown affordances
indicate we evaluate with our annotated affordances. Previous approaches [25, 26] are
usually trained by less 0.8M iterations (Please refer to the released checkpoint in [25,
26]). We thus also illustrate SCL under 0.8M iterations by default. SCL− means SCL
without self-training. Results are reported by Mean Average Precision (%).

Method
Known Affordances Unknown Affordances

Val2017 Obj365 HICO Novel Val2017 Obj365 HICO Novel

FCL [27] 25.11 25.21 37.32 6.80 - - - -
VCL [25] 36.74 35.73 43.15 12.05 28.71 27.58 32.76 12.05
ATL [26] 52.01 50.94 59.44 15.64 36.80 34.38 42.00 15.64
ATL∗ [26] 56.05 40.83 57.41 8.52 37.01 30.21 43.29 8.52

SCL− 50.51 43.52 57.29 14.46 44.21 41.37 48.68 14.46
SCL 59.64 52.70 67.05 14.90 47.68 42.05 52.95 14.90
SCL (3M iters) 72.08 57.53 82.47 18.55 56.19 46.32 64.50 18.55

known affordance recognition. We use the released models of [26] to evaluate the
results on novel affordance recognition. Here, affordances of novel classes (anno-
tated by hand [26]) are the same in the two settings. We find SCL improves the
performance considerably by over 10% on Val2017 and HICO-DET.

4.5 HOI Detection with Unknown Concepts

HOI concept discovery enables zero-shot HOI detection with unknown concepts
by first discovering unknown concepts and then performing HOI detection. The
experimental results of HOI detection with unknown concepts are shown in Ta-
ble 3. We follow [25] to evaluate HOI detection with 120 unknown concepts in
two settings: rare first selection and non-rare first selection, i.e. , we select 120
unknown concepts from head and tail classes respectively. Different from [25,
27] where the existence of unseen categories is known and the HOI samples for
unseen categories are composed during optimization, HOI detection with un-
known concepts does not know the existence of unseen categories. Therefore,
we select top-K concepts according to the confidence score during inference to
evaluate the performance of HOI detection with unknown concepts (that is also
zero-shot) in the default mode [6].

As shown in Table 3, with more selected unknown concepts according to
concept confidence, the proposed approach further improves the performance on
unseen categories on both rare first and non-rare first settings. Specifically, it
demonstrates a large difference between rare first unknown concepts HOI detec-
tion and non-rare first unknown concepts HOI detection in Table 3. Considering
that the factors (verbs and objects) of rare-first unknown concepts are rare in
the training set [27], the recall is very low and thus degrades the performance on
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Table 3. Illustration of HOI detection with unknown concepts and zero-shot HOI
detection with SCL. K is the number of selected unknown concepts. HOI detection
results are reported by mean average precision (mAP)(%). We also report the recall
rate of the unseen categories in the top-K novel concepts. “K = all” indicates the results
of selecting all concepts, i.e. , common zero-shot. ∗ means we train Qpic [52](ResNet-
50) with the released code in zero-shot setting and use the discovered concepts of SCL
to evaluate HOI detection with unknown concepts. Un indicates Unknown/Unseen, Kn
indicates Known/Seen, while Rec indicates Recall.

Method K
Rare First Non-rare First

Un Kn Full Rec (%) Un Kn Full Rec (%)

SCL 0 1.68 22.72 18.52 0.00 5.86 16.70 14.53 0.00
SCL 120 2.26 22.72 18.71 10.83 7.05 16.70 14.77 21.67
SCL 240 3.66 22.72 18.91 15.00 7.17 16.70 14.80 25.00
SCL 360 4.09 22.72 19.00 15.83 7.91 16.70 14.94 30.83
SCL all 9.64 22.72 19.78 100.00 13.30 16.70 16.02 100.00

Qpic∗ [52] 0 0.0 30.47 24.37 0.00 0.0 23.73 18.98 0.0
Qpic∗ [52] 120 2.32 30.47 24.84 10.83 14.90 22.19 20.58 21.67
Qpic∗ [52] 240 3.35 30.47 25.04 15.00 14.90 22.79 21.22 25.00
Qpic∗ [52] 360 3.72 30.47 25.12 15.83 14.91 23.13 21.48 30.83
Qpic∗ [52] all 15.24 30.44 27.40 100.00 21.03 23.73 23.19 100.00

ATL [26] all 9.18 24.67 21.57 100.00 18.25 18.78 18.67 100.00
FCL [27] all 13.16 24.23 22.01 100.00 18.66 19.55 19.37 100.00
Qpic + SCL all 19.07 30.39 28.08 100.00 21.73 25.00 24.34 100.00

unknown categories. However, with concept discovery, the results with top 120
concepts on unknown categories are improved by relatively 34.52% (absolutely
0.58%) on rare first unknown concepts setting and by relatively 20.31% (ab-
solutely 1.19%) on non-rare first setting, respectively. with more concepts, the
performance on unknown categories is also increasingly improved.

We also utilize the discovered concept confidences with SCL to evaluate HOI
detection with unknown concepts on Qpic [52]. For a fair comparison, we use the
same concept confidences to SCL. Without concept discovery, the performance of
Qpic [52] degrades to 0 on Unseen categories though Qpic significantly improves
zero-shot HOI detection. Lastly, we show zero-shot HOI detection (the unseen
categories are known) in Table 3 (Those rows where K is all). We find that
SCL significantly improves Qpic, and forms a new state-of-the-art on zero-shot
setting though we merely use ResNet-50 as backbone in Qpic. We consider SCL
improves the detection of rare classes (include unseen categories in rare first and
seen categories in non-rare first) via stating the distribution of verb and object.
See Appendix D for more analysis, e.g., SCL improves Qpic particularly for rare
categories on Full HICO-DET.

4.6 Visualization

Figure 3 illustrates the Grad-CAM under different methods. We find the pro-
posed SCL focus on the details of objects and small objects, while the baseline
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and VCL mainly highlight the region of human and the interaction region, e.g.,
SCL highlights the details of the motorbike, particularly the front-wheel (last
row). Besides, SCL also helps the model via emphasizing the learning of small
objects (e.g., frisbee and bottle in the last two columns), while previous works
ignore the small objects. This demonstrates SCL facilitates affordance recogni-
tion and HOI concept discovery via exploring more details of objects. A similar
trend can be observed in Appedix G (Qpic+SCL).

Baseline VCL SCLInput

Fig. 3. A visual comparison of recent methods using the Grad-CAM [48] tool. The
first row is input image, the second row is baseline without compositional approach,
the third row is VCL [25] and the last row is the proposed SCL. We do not compare with
ATL [26], since that ATL uses extra training datasets. Here, we compare all models
using the same dataset.

5 Conclusion

We propose a novel task, Human-Object Interaction Concept Discovery, which
aims to discover all reasonable combinations (i.e. , HOI concepts) between verbs
and objects according to a few training samples of known HOI concepts/cate-
gories. Furthermore, we introduce a self-compositional learning or SCL frame-
work for HOI concept discovery. SCL maintains an online updated concept confi-
dence matrix, and assigns pseudo labels according to the matrix for all composite
HOI features, and thus optimize both known and unknown composite HOI fea-
tures via self-training. SCL facilitates affordance recognition of HOI model and
HOI concept discovery via enabling the learning on both known and unknown
HOI concepts. Extensive experiments demonstrate SCL improves HOI concept
discovery on HICO-DET and V-COCO and object affordance recognition with
HOI model, enables HOI detection with unknown concepts, and improves zero-
shot HOI detection.
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