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Abstract. In this supplementary material, we first discuss more details
about the evaluation metrics we select in the experiments. Furthermore,
we discuss details of the merging and splitting process. Finally, we pro-
vide additional qualitative results on the ShapeNet dataset.

1 Metrics

In this section, we provide more details about the two metrics that we use to
evaluate the experiments.

1.1 Chamfer L1-distance

Recall that Chamfer L1-distance is defined as follows:

Dchamfer (X,Y ) =
1

N

∑
xi∈X

min
yj∈Y

∥∥xi − yj

∥∥
1
+

1

M

∑
yj∈Y

min
xi∈X

∥∥yj − xi

∥∥
1
, (1)

where X = {xi} denotes the points sampled from the original model, Y = {yj}
denotes the points sampled from the predicted model, and N and M is the
number of points of the sets X and Y , respectively. For X, since the ShapeNet
dataset does not provide point cloud representations for the objects, we need to
sample points from the original mesh files. Specifically, for each original model,
we sample points densely on each face of the mesh. Then, we downsample the
point cloud to be around 50 − 60K points. D-FAUST provides the point cloud
for each data. We directly downsample the original point cloud to be around
50−60K points. For Y , we apply the equal-distance sampling strategy [3] on each
superquadric surface of the predicted model to get a collection of sets of points.
By taking union of all the point sets, we obtain a point cloud representation
for the predicted model. Then we downsample the point cloud to be around
50 − 60K points, as well. The first term of Eq. 1 computes how far on average
the closest point of the predicted model is to the original model, and the second
term calculates how far on average the closest point of the original model is to
the predicted model. Thus, a lower value of Chamfer distance implies a better
abstraction accuracy in terms of surface fitness.
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1.2 Intersection over Union (IoU)

Recall the definition of IoU as follows:

IoU =
V (Spred ∩ Starget)

V (Spred ∪ Starget)
, (2)

where Spred is the predicted model, Starget is the original model, and V (.) com-
putes the volume. It is difficult, if not impossible, to obtain the volume of the
intersection or union of two models. Therefore, we approximate the volume with
the Monte Carlo method. We sample 50K points uniformly inside the axis-aligned
bounding box of the original model. For each point x, we check its position rel-
ative to the original mesh model and the predicted multi-superquadric model,
respectively. We approximate the IoU with the ratio of the points belonging to
the set of the intersection and the union. If two models match perfectly, the IoU
will be 1 and if two models disjoint from each other, the IoU is 0. In other words,
a higher IoU indicates a better abstraction accuracy in terms of volumetric oc-
cupation.

2 Merging & Splitting Process

2.1 Merging Process

We design a merging process to reduce the number of primitives while maintain-
ing geometric accuracy, leading to a more interpretable and concise abstraction.
Given an abstraction result with X̃ = {X1,X2, ...,XK} and θ̃ = {θ1,θ2, ...,θK},
where Xj is a cluster of points and θj is the corresponding superquadric repre-
sentation, we propose a method to determine if any two clusters can be merged.
Specifically, for Xi and Xj (i ̸= j), we let

Mi =
1

ni

∑
l

d2(θi,ul)

Mj =
1

nj

∑
l

d2(θj ,vl),

(3)

where ul ∈ Xi, vl ∈ Xj , d(.) computes the radial distance between a point
and a superquadric [2], and ni and nj is the number of points in Xi and Xj ,
respectively. Eq. 3 measures how good the superquadric representation for a
cluster is. Subsequently, we fit a new superquadric θnew for the cluster Xnew =
Xi ∪ Xj [3], and let

Mnew =
1

nnew

∑
l

d2(θnew,wl), (4)

where wl ∈ Xnew and nnew is the number of Xnew. If Mnew ≤ max(Mi,Mj)
or Mnew ≤ Cthre (Cthre is a constant), we call these two clusters is a good
merge. Furthermore, as mentioned in [1], we do not want to see that the volume
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of θnew is much larger than the volume of θi and θj as this usually means
we wrongly merge two separate parts of an object into one and represent it
with a large superquadric. The detailed process of the merging is summarized in
Algorithm 1. We incorporate this merging process at the end of the iteration of
the optimization-based Gibbs sampling when t = T

2 and t = T .

Algorithm 1 Merging Process

Input: X̃ = {X1,X2, ...,XK}, θ̃ = {θ1,θ2, ...,θK}, σ̃2 = {σ2
1 , σ

2
2 , ..., σ

2
K}, Cthre

Output: X̃new = {X1,X2, ...,XS}, θ̃new = {θ1,θ2, ...,θS}, σ̃2
new = {σ2

1 , σ
2
2 , ..., σ

2
S}

merged← {}
for i = 1, 2, ...,K − 1 do

for j = i+ 1, i+ 2, ...,K do
if j ∈ merged then

▷ If jth cluster has been merged, we will skip this cluster
Continue

end if
if V (OBB(Xi)) + V (OBB(Xj)) ≤ 0.7× V (OBB(Xnew)) then

▷ OBB is the oriented bounding box of the point set, V (.) computes the volume
Continue

end if
if goodMerge(θi,θj , Cthre) & V (θi) + V (θj) > 0.7× V (θnew) then
Xi ← Xnew

θi ← θnew

σ2
i ← σ2

new, σ
2
new = 1

γ
, γ ∼ Γ

(
nnew−1

2
, 2
Mnew·nnew

)
▷ We draw a new sample σ2

new for the merged cluster
merged.Append(j)

end if
end for

end for
X̃new ← X̃ .Remove(Xl)
θ̃new ← θ̃.Remove(θl)
σ̃2
new ← σ̃2.Remove(σ2

l ), l ∈ merged
▷ We remove all the clusters that have been merged into other clusters

2.2 Splitting Process

Recall the way we sample membership for each point xi:

p
(
zi = j | Z−i,θj , σ

2
j ,X, α

)
∝ n−i,j

N − 1 + α

1

2
√
2πσj

exp

(
−d2(θj ,xi)

2σ2
j

)
, (5)

and
p
(
zi = K + 1 | Z−i,θj , σ

2
j ,X, α

)
∝ α

N − 1 + α
p0, (6)

where α is the concentration factor of DP, Z−i denotes Z excluding zi, and n−i,j

is the number of points belonging to cluster j, excluding xi. Eq. 5 shows that
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the larger an existing cluster is (larger n−i,j), the more attractive it will be for a
sample point xi. This might sometimes incur unintended results. For example,
some points are assigned wrongly to cluster Xk by accident and thus increase the
size of Xk. Then, at the next iteration the Xk becomes more attractive to sample
points and might take in more unwanted points, leading to a vicious cycle. Thus,
at each iteration before sampling Z, we calculate how good each superquadric
representation θi for each cluster Xi is as in Eq. 3. IfMi is too high, namely θi is a
bad representation, we will segment cluster Xi into subclusters {Yi1,Yi2, ...,Yig}
based on Euclidean distance [4]. We denote the largest subcluster, which contains
most points, as YiL and fit a new superquadric θiL to it. Afterwards, we replace
Xi with YiL and replace θi with θiL. By doing so, we prevent the cluster from
growing in an unintended way.

3 Additional Results

In this section, we provide additional abstraction results on the ShapeNet dataset.
As illustrated in Fig. 1, 2, 3, and 4, our method is able to abstract the semantic
parts from objects of different kinds accurately. Taking the table as an example,
from the superquadric-based abstractions, we can identify which parts are legs
and which part is the desktop. In addition, we can also learn about the relative
sizes and poses between different parts. We believe such high-level abstractions
will allow the machine to understand the objects better and interact with them
with higher intelligence.
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Fig. 1. Qualitative results of 3D abstraction on chairs. The left ones are the original
meshes, the middle ones are our inferred results, and the right ones are inferred from
SQs [5].
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Fig. 2. Qualitative results of 3D abstraction on tables. The left ones are the original
meshes, the middle ones are our inferred results, and the right ones are inferred from
SQs [5].
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Fig. 3. Qualitative results of 3D abstraction on lamps. The left ones are the original
meshes, the middle ones are our inferred results, and the right ones are inferred from
SQs [5].
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Fig. 4. Qualitative results of 3D abstraction on rifles. The left ones are the original
meshes, the middle ones are our inferred results, and the right ones are inferred from
SQs [5].
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