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Abstract. 3D shape abstraction has drawn great interest over the years.
Apart from low-level representations such as meshes and voxels, re-
searchers also seek to semantically abstract complex objects with ba-
sic geometric primitives. Recent deep learning methods rely heavily on
datasets, with limited generality to unseen categories. Furthermore, ab-
stracting an object accurately yet with a small number of primitives still
remains a challenge. In this paper, we propose a novel non-parametric
Bayesian statistical method to infer an abstraction, consisting of an un-
known number of geometric primitives, from a point cloud. We model
the generation of points as observations sampled from an infinite mixture
of Gaussian Superquadric Taper Models (GSTM). Our approach formu-
lates the abstraction as a clustering problem, in which: 1) each point
is assigned to a cluster via the Chinese Restaurant Process (CRP); 2)
a primitive representation is optimized for each cluster, and 3) a merg-
ing post-process is incorporated to provide a concise representation. We
conduct extensive experiments on two datasets. The results indicate that
our method outperforms the state-of-the-art in terms of accuracy and is
generalizable to various types of objects.

Keywords: Superquadrics, Nonparametric Bayesian, Shape abstraction

1 Introduction

Over the years, 3D shape abstraction has received considerable attention. Low-
level representations such as meshes [12, 19], voxels [2, 10], point clouds [1, 13]
and implicit surfaces [16, 27] have succeeded in representing 3D shapes with ac-
curacy and rich features. However, they cannot reveal the part-level geometric
features of an object. Humans, on the other hand, are inclined to perceive the
environment by parts [34]. Studies have shown that the human visual system
makes tremendous use of part-level description to guide the perception of the
environment [43]. As a result, the part-based abstraction of an object appears
to be a promising way to allow a machine to perceive the environment more
intelligently and hence perform higher-level tasks like decision-making and plan-
ning. Inspired by those advantages, researchers seek to abstract objects with
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volumetric primitives, such as polyhedral shapes [37], spheres [21] and cuboids
[28, 42, 47, 48]. Those primitives, however, are very limited in shape expressivity
and suffer from accuracy issues. Superquadrics, on the other hand, are a fam-
ily of geometric surfaces that include common shapes such as spheres, cuboids,
cylinders, octahedra, and shapes in between, but are only encoded by five pa-
rameters. By further applying global deformations, they can express shapes such
as square frustums, cones, and teardrop shapes. Due to their rich shape vocab-
ulary, superquadrics have been widely applied in robotics, e.g. grasping [35, 44,
45], collision detection [39], and motion planning [38].

Fig. 1. (a)-(d) Examples of multi-tapered-superquadric-based structures of a table,
chair, cloth rack, and rifle, inferred by our proposed method.

The authors of [8, 25] pioneered abstracting superquadric-based representa-
tions from complex objects. Recently, the authors in [26] developed a hierar-
chical process to abstract superquadric-based structures. But, their method ne-
cessitates that an object has a hierarchical geometric structure. In [31, 33], the
authors utilize deep learning techniques to infer superquadric representations
from voxels or images. However, the data-driven approaches show limitations in
abstraction accuracy and generality beyond the training dataset.

Our work focuses on accurately abstracting a multi-tapered-superquadric-
based representation of a point cloud using a small number of primitives. By
assuming that an object is composed of superquadric-like components, we can
regard the problem as a clustering task, which provides a means for us to reason
about which portion of the point set can be properly fitted by a single tapered
superquadric and thus belongs to the same cluster. The collection of tapered
superquadrics fitted to each cluster constitutes the multi-tapered-superquadric-
based model. Inspired by the work [26] in which the authors construct a Gaussian
model around a superquadric, we build a probabilistic model by mixing Gaussian
components to account for numerous components of an object. Since the number
of components of an object is unknown in advance and varies case by case, we
adapt our model to a nonparametric perspective to assure generality. Gibbs
sampling is applied to infer the posterior distribution, in which we incorporate
both an optimization method [26] for recovering superquadrics accurately from
the point set and a merging process for minimizing the number of primitives,
leading to a more exact, compact, and interpretable representation. Evaluations
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on Shapenet [7] and D-FAUST [6] corroborate the superior performance of our
method in the abstraction of 3D objects.

2 Related Work

In this section, we cover the mathematical definition of superquadrics and discuss
relevant work on 3D representations.

2.1 Superquadrics

Superquadrics [4] are a family of geometric surfaces that include common shapes,
such as spheres, cuboids, cylinders, and octahedra, but only encoded by five
parameters. A superquadric surface can be parameterized by ω ∈ (−π, π] and
η ∈ [−π

2 ,
π
2 ]:
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α ≜ sgn(sin(α))| sin(α)|ε,

(1)

where ⊗ denotes the spherical product [4], ε1 and ε2 define the sharpness of
the shape, and ax, ay, and az control the size and aspect ratio. Eq. 1 is defined
within the superquadric canonical frame. The expressiveness of a superquadric
can be further extended with global deformations such as bending, tapering, and
twisting [5]. In our work, we apply a linear tapering transformation along z-axis
defined as follows:

x′ =

(
kx
a3

z + 1

)
x, y′ =

(
ky
a3

z + 1

)
y, z′ = z, (2)

where −1 ≤ kx, ky ≤ 1 are tapering factors, (x, y, z) and (x′, y′, z′) are un-
tapered and tapered coordinates, respectively. To have a superquadric with
a general pose, we apply a Euclidean transformation g = [R ∈ SO(3), t ∈
R3] ∈ SE(3) to it. Thus, a tapered superquadric Sθ is fully parameterized by
θ = [ε1, ε2, ax, ay, az, g, kx, ky].

2.2 3D representations

Based on how a 3D shape is represented, we can categorize it as a low-level or
semantic representation.

Low-level Representations Standard 3D representations such as voxels, point
clouds, and meshes have been extensively studied. In the work of [2, 10, 20, 36, 40,
41], the authors try to recover voxel models from images, which represents the 3D
shapes as a regular grid. A high-resolution voxel model requires a large amount of
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Fig. 2. (a) Examples of tapering: a cylinder can be tapered to a cone and a cuboid can
be tapered to a square frustum. (b) Part-based models inferred by SQs [33]. The left one
is the original mesh; the middle one is the superquadrics representation inferred from
the network trained on the chair category; the right one is inferred from the network
trained on the table category, indicating a limited generality of the DL approach.

memory, which limits its applications. Point clouds are a more memory-efficient
way to represent 3D shapes that are utilized in [1, 13], but they fail to reveal
surface connectivity. Hence, researchers also turn to exploiting meshes [12, 19,
23, 24, 29, 46] to show connections between points. Additionally, using implicit
surface functions to represent 3D shapes has gained a lot of popularity [3, 9, 15,
16, 27, 30]. Although those representations can capture detailed 3D shapes, they
lack interpretability as they cannot identify the semantic structures of objects.

Part-based Semantic Representations To abstract the semantic structures
of objects, researchers have attempted to exploit various kinds of volumetric
primitives such as polyhedral shapes [37], spheres [21] and cuboids [28, 42, 48].
However, their results are limited due to the shape-expressiveness of the primi-
tives. Superquadrics, on the other hand, are more expressive. The authors of [8,
25] are pioneers in abstracting part-based structures from complex objects using
superquadrics. They first segmented a complex object into parts and then fitted a
single superquadric for each part. However, their work suffers from limited accu-
racy. Recently, the authors in [26] proposed a fast, robust, and accurate method
to recover a single superquadric from point clouds. They exploited the symmetry
of the superquadrics to avoid local optima and constructed a probabilistic model
to reject outliers. Based on the single superquadric recovery, they developed a
hierarchical way to represent a complex object with multiple superquadrics. The
method is effective but requires that an object possess an inherent hierarchical
structure. Another line of primitive-based abstraction is by deep learning [31–
33]. Their networks demonstrate the ability to capture fine details of complex
objects. However, the data-driven DL approaches are less generalizable to un-
seen categories. Besides, they are of a semantic-level approximation, which is
lack accuracy. Instead, our method builds a probabilistic model to reason about
primitive-based structures case by case, ensuring generality. Moreover, optimiza-
tions are incorporated to yield a more accurate representation for each semantic
part.
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3 Method

3.1 Nonparametric Clustering Formulation

In this section, we will show how to cast the problem of superquadric-based ab-
straction into the nonparametric clustering framework. To begin with, we model
how a random point (observation) x is sampled from a superquadric primi-
tive. First, for a superquadric parameterized by θ = [ε1, ε2, ax, ay, az, g, kx, ky],
a point µ ∈ Sθ̄, where θ̄ = [ε1, ε2, ax, ay, az, (I3,0), 0, 0], is randomly selected
across the whole surface; a noise factor τ is sampled from an univariate Gaussian
distribution τ ∼ N (0, σ2). Then, an point x̄ is generated as

x̄ = (1 +
τ

|µ|
)µ, (3)

where τ denotes the noise level that shows how far a point deflects the surface.
After that, we obtain the point x by applying tapering and rigid transformation
to x̄, i.e. x = g ◦ Taper(x̄). We call the above generative process the Gaussian
Superquadric Taper Model (GSTM), denoted by:

x ∼ GSTM(θ, σ2). (4)

Subsequently, given a point cloud of an object X = {xi ∈ R3|i = 1, 2, ..., N}, we
assume that each element xi is generated from some GSTM parameterized by
(θj , σ

2
j ). As a result, we consider the point cloud X as sample points generated

by a mixture model as follows:

X = {xi|xi ∼
K∑
j=1

ωjGSTM(θj , σ
2
j )}, (5)

where
∑K

j=1 ωj = 1, and each ωj denotes the probability that an observation is

drawn from (θj , σ
2
j ). Given the observation, we can estimate a set of θ from the

mixture model. Subsequently, we assume each θj is a shape representation for one
semantic part of the object. And thus, we attain a set of tapered superquadrics
representing the semantic structures for the object.

The EM algorithm [11] is a classical inference to solve a mixture model
problem. However, EM implementation requires knowledge of K – the number
of components, which in our case is hard to determine beforehand from a raw
point cloud. Therefore, we handle this difficulty by adapting our model to a
nonparametric clustering framework, where we consider K to be infinite.

To deal with the mixture model with infinitely many components, we in-
troduce the Dirichlet Process (DP) into our formulation. A DP, parameterized
by a base distribution G0 and a concentration factor α, is a distribution over
distributions:

G ∼ DP (G0, α), (6)
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Fig. 3. Generative process of a point cloud. Notice that xi and xj where i ̸= j could
be sampled from the same Θ. Since we only draw finite samples, the number of cluster
is in fact finite.

which is equivalent to

G =

∞∑
j=1

ωjδΘj , Θj ∼ G0, π ∼ GEM(α), (7)

where Θj = (θj , σ
2
j ), sampled from G0, is the parameter of the jth GSTM, δ is

the indicator function which evaluates to zero everywhere, except for δΘj
(Θj) =

1, π = (ω1, ω2, ...),
∑∞

i=1 ωi = 1, and GEM is the Griffiths, Engen and McCloskey
distribution [17]. Therefore, an observation xi is regarded as sampled from:

zi ∼ π,xi ∼ GSTM(Θzi), (8)

where zi is a latent variable sampled from a categorical distribution parameter-
ized by π, indicating the membership of xi. Fig. 3 illustrates the process.

Even though we have an infinite mixture model, in practice we only draw
finite samples, which means the number of clusters is actually finite. One advan-
tage of our formulation is that we do not need to impose any constraints on K,
which is inferred from the observation X. On the other hand, unlike learning-
based approaches that require a large amount of training data, our method
reasons about primitive-based structures case by case, relying entirely on the
geometric shapes of the object. These two facts contribute to increasing the
generality of being able to cope with objects of varying shapes and component
counts.

3.2 Optimization-based Gibbs Sampling

We apply Bayesian inference to solve the mixture model problem, where the goal
is to infer the posterior distribution of the parameters θ̃ = {θ1,θ2, ...,θK}, σ̃2 =
{σ2

1 , σ
2
2 , ..., σ

2
K} and the latent variables Z = {z1, z2, ..., zN} given the observa-

tion X:

p(θ̃, σ̃2,Z | X). (9)

However, in practice, the Eq. 9 is intractable to obtain in a closed-form. Thus,
we apply Gibbs sampling [14], an approach to estimating the desired probability
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Algorithm 1 Optimization-based Gibbs sampling

Input: X = {x1,x2, ...,xN}
Output: {θ̃t

, σ̃2t ,Zt}Tt=1

initialize {θ̃t
, σ̃2t ,Zt} for t = 0 by K-means clustering

for t = 1, 2, ..., T do

1. draw a sample Z′ for Z, where Z′ ∼ p(Z | X, θ̃
t
, σ̃2t)

2. optimize each element θj of θ̃ conditioned on {Z′,X, σ̃2t}, and let θ̃
′
be the

optimized θ̃

3. draw a sample σ̃2′ for σ̃2, where σ̃2′ ∼ p(σ̃2 | X,Z′, θ̃
′
)

4. let {θ̃t+1
, σ̃2t+1

,Zt+1} = {θ̃′
, σ̃2′ ,Z′}

end for

distribution via sampling. Apart from sampling, we also incorporate an opti-
mization process, which is used to obtain an accurate superquadric representa-
tion for each cluster. The following algorithm 1 shows how optimization-based
Gibbs sampling works in our case. In the following sections, we will derive and
demonstrate explicitly how to obtain each parameter.

Sample Z To begin with, as defined in Eq. 3, we have the sampling distribution
of x

p(x | θ, σ2) =
1

2
√
2πσ

exp

(
−∥x− µ1(θ,x)∥22

2σ2

)
+

1

2
√
2πσ

exp

(
−∥x− µ2(θ,x)∥22

2σ2

)
,

(10)

where µ1 and µ2 are two intersection points between the superquadric surface
and the line joining the superqadric’s origin and x, as Fig. 4 shows.

Fig. 4. Demonstration for computing sampling density of x. According to GSTM, µ1

and µ2 are the only two points accounting for the generation of x.

We denote µ1 as the closer intersection point to x. In the general case, Eq.
10 is dominated by the former part, and hence we let

p(x | θ, σ2) ≈ 1

2
√
2πσ

exp

(
−∥x− µ1(θ,x)∥22

2σ2

)
. (11)
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By further examination, we discover that the term ∥x−µ1(θ,x)∥2 is the radial
distance between a point and a superquadric as defined in [18]. We denote it by
d(θ,x). Integrating out the θ and σ2 gives:

p(x) =

∫
θ,σ2

p(x | θ, σ2)p(θ, σ2) dθdσ2 ≈
∫
θ,σ2

p(θ, σ2)

2
√
2πσ

exp

(
−d2(θ,x)

2σ2

)
dθdσ2.

(12)
Eq. 12 denotes the prior predictive density of x and is intractable to compute in
closed form. It can be approximated by Monte Carlo sampling or approximated
by a constant [22]. In our work, we treat p(x) as a tunable hyper-parameter and
denote it as p0. To sample membership for each point xi, we have

p
(
zi = j | Z−i,θj , σ

2
j ,X, α

)
∝ p (zi = j | Z−i, α) p

(
xi | θj , σ

2
j ,Z−i

)
∝ n−i,j

N − 1 + α
p(xi | θj , σ

2
j ) =

n−i,j

N − 1 + α

1

2
√
2πσj

exp

(
−d2(θj ,xi)

2σ2
j

)
,

(13)

and

p
(
zi = K + 1 | Z−i,θj , σ

2
j ,X, α

)
∝ p (zi = K + 1 | α) p

(
xi | θj , σ

2
j ,Z−i

)
∝ α

N − 1 + α
p(xi) =

α

N − 1 + α
p0,

(14)

where α is the concentration factor of DP, Z−i denotes Z excluding zi, and n−i,j

is the number of points belonging to cluster j, excluding xi. Eq. 13 computes the
probability that xi belongs to some existing cluster, whereas Eq. 14 determines
the probability of generating a new cluster. The term p (zi = j | Z−i, α) of Eq.
13 and p (zi = K + 1 | α) of Eq. 14 come from the Chinese Restaurant Process
(CRP), where a point tends to be attracted by a larger population and has a
fixed probability to generate a new group. The term p

(
xi | θj , σ

2
j ,Z−i

)
reasons

about what the likelihood is that xi belongs to some existing cluster or a new
one, based on the current θ̃ = {θ1,θ2, ...,θK} and σ̃2 = {σ2

1 , σ
2
2 , ..., σ

2
K}. After

the assignment of all points, some existing clusters may be assigned with none
of the points and we remove those empty clusters. Thus, the K keeps changing
during each iteration. To increase the performance, we incorporate a splitting
process before sampling Z. Details are presented in the supplementary.

Optimize θ̃ By independence between individual θ, the density function of
each θj is conditioned only on Xj and σ2

j as follows:

p(θj | Xj , σ2
j ), (15)

where Xj = {xl | xl ∈ X, zl = j}, i.e. the set of points belonging to cluster j.
By assuming that the prior for θ is an uniform distribution, we have

p(θj | Xj , σ2
j ) ∝ p(θj)p(X

j | θj , σ
2
j ) ∝ p(Xj | θj , σ

2
j ), (16)
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where

p(Xj | θj , σ
2
j ) =

∏
l

1

2
√
2πσj

exp

(
−d2(θj ,xl)

2σ2
j

)
. (17)

Combining Eq. 16 and Eq. 17 gives

p(θj | Xj , σ2
j ) ∝

∏
l

exp

(
−d2(θj ,xl)

2σ2
j

)
= exp

(
−
∑
l

d2(θj ,xl)

2σ2
j

)
. (18)

Gibbs sampling requires sampling θj from Eq. 18. However, directly sampling
from Eq. 18 is difficult due to its complexity. Instead, optimization is used as a
substitute for the sampling process, which, we believe, is a reasonable replace-
ment. By inspecting Eq. 18 more closely, we discover that the θj minimizing∑

d2(θj ,xl) maximizes the density function. Therefore, an optimized θj has
relatively higher likelihood to be close to the actual sample of θj drawn from
p(θj | Xj , σ2

j ). And closeness implies similar shapes. Additionally, we recognize
that optimizing Eq. 18 can be regarded as a single superquadric recovery prob-
lem, which requires the abstraction of an optimal superquadric primitive from
the cluster points Xj . In other words, we fit an optimal superquadric to each
cluster, and those superquadrics will affect the membership of each point in the
subsequent iteration, which is a process similar to EM. As a result, we use the ro-
bust and accurate recovery algorithm [26], which yields an optimal superquadric
with high fidelity, to acquire each θj in replacement of the sampling.

Sample σ̃2 Similarly, by independence, we have

σ2′

j ∼ p(σ2
j | Xj ,θj)

σ̃2′ = {σ2′

1 , σ2′

2 , ..., σ2′

K}.
(19)

We also assume the non-informative prior for σ2 is the uniform distribution,
which gives

p(σ2
j | Xj ,θj) ∝ p(σ2

j )p(X
j | θj , σ

2
j ) ∝ p(Xj | θj , σ

2
j ). (20)

Combining Eq. 17 and Eq. 20 gives

p(σ2
j | Xj ,θj) ∝

∏
l

1

2
√
2πσj

exp

(
−d2(θj ,xl)

2σ2
j

)

∝
(

1

σj

)nj

exp

(
−
∑
l

d2(θj ,xl)

2σ2
j

)
,

(21)

where nj is the number of Xj . Let D =
∑

l d
2(θj ,xl) and γj = 1

σ2
j
. By change

of variable, we have

γ′
j ∼ p(γj | Xj ,θj) ∝ γ

nj−3

2
j exp(−D

2
γj). (22)
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Hence, γj follows a gamma distribution with shape parameter
nj−1

2 and scale
parameter 2

D . In other words,

σ2′

j =
1

γ′
j

γ′
j ∼ Γ

(
nj − 1

2
,
2

D

)
.

(23)

D reflects how good the optimized superquadric fits the cluster points. With
lower value of D, γ′

j will have a better chance to be higher and hence σ2′

j will be
smaller. In other words, the better the fitting is, the smaller the noise level will
be.

3.3 Merging process

We observe that our method yields structures consisting of excessive components,
resulting in less interpretability. Therefore, we design a merging post-process
minimizing component numbers while maintaining accuracy. Specifically, for any
two clusters represented by two superquadrics, we make a union of the two
sets of points into one set, from which we recover a superquadric. If the newly
recovered superquadric turns out to be a good fit for the new point set, we will
merge these two clusters into one, and replace the two original superquadrics
with the newly fitted one. Detailed formulations and procedures are presented
in the supplementary.

4 Experiment

In this section, we demonstrate our approach to abstracting part-level structures
exhibits high accuracy, compared with state-of-the-art part-based abstraction
method [33]. We do not compare with the work of [31, 32] since their work
focuses mainly on abstracting 3D shapes from 2D images. We also include a
simple clustering method as a baseline, where the point cloud is parsed into
K clusters via K-means and each cluster is then represented by an optimized
superquadric [26]. We conduct experiments on the ShapeNet dataset [7] and the
D-FAUST dataset [6]. The ShapeNet is a collection of CAD models of various
common objects such as tables, chairs, bottles, etc. On the other hand, the D-
FAUST dataset contains point clouds of 129 sequences of 10 humans performing
various movements, e.g., punching, shaking arms, and running. Following [33],
we evaluate the results with two metrics, Chamfer L1-distance and Intersection
over Union (IoU). Detailed computations of the two metrics are discussed in the
supplementary.

Initialization: we parse the point cloud into K components based on the
K-means clustering algorithm. Although we specify the value of K initially, the
final value of K will be inferred by our nonparametric model and vary from
case to case. The latent variable zi of each point xi is assigned accordingly.
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Fig. 5. Qualitative results of 3D abstraction on various objects. The left ones are the
original meshes, the middle ones are our inferred results, and the right ones are inferred
from SQs [33]. (a) Bottle, (b) chair, (c) lamp, (d) table, and (e) mailbox.

Subsequently, each cluster is represented by an ellipsoid θ0
j whose moment-of-

inertial (MoI) is four times smaller than the MoI of the cluster points; each σ20

j

is randomly sampled within (0, 1]. We set the number of the sampling iteration
to be T = 30, concentration factor α = 0.5, and p0 = 0.1.

4.1 Evaluation on ShapeNet

We choose seven different types of objects among all of the categories. For deep
learning training, we randomly divide the data of each object into two sets –
a training set (80%) and a testing set (20%), and we compare the results on
the testing set. Since ShapeNet only provides meshes, we first densely sample
points on the mesh surfaces and then downsample the point clouds to be around
3500 points. For all categories, we set the K = 30. The result is summarized
in Table 1, where w/om denotes our method excluding the merging process.
Our method outperforms the state-of-the-art [33] and the K-means baseline
significantly on all object types. Excluding the merging process improves ac-
curacy but increases the number of primitives, making the abstracted models
less interpretable. Therefore, we believe merging is beneficial and important be-
cause it reduces the primitive numbers while maintaining excellent accuracy,
which improves interpretability. Unlike the learning-based method, which is a
semantic-level approximation, our method infers the part-based representation
in an optimization-based manner. As a result, our method yields a more ge-
ometrically accurate primitive-based structure, yet with a compact number of
primitives. A qualitative comparison between our method and SQs [33] is de-
picted in Fig. 5.
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Fig. 6. (a) Comparison between different results inferred by different models. From left
to right: the original meshes, results inferred by our method, results inferred by our
method excluding merging, results inferred by the baseline trained on the chair cate-
gory, and results inferred by the baseline trained on the table category, (b) quantita-
tive results showing that the baseline method has limited generality. The (table/chair)
means that a network trained on the table category is used to predict the chair cate-
gory.

Table 1. Quantitative results on ShapeNet

Chamfer-L1 IoU

Category K-means SQs [33] w/om Ours K-means SQs w/om Ours

bottle 0.064 0.037 0.026 0.019 0.552 0.596 0.618 0.656

can 0.086 0.032 0.028 0.014 0.690 0.736 0.803 0.802

chair 0.065 0.054 0.018 0.024 0.433 0.269 0.577 0.557

lamp 0.066 0.065 0.020 0.024 0.354 0.190 0.425 0.414

mailbox 0.054 0.059 0.019 0.019 0.529 0.400 0.687 0.686

rifle 0.018 0.022 0.009 0.013 0.517 0.291 0.594 0.536

table 0.060 0.057 0.018 0.021 0.374 0.194 0.536 0.512

mean 0.057 0.053 0.017 0.021 0.410 0.242 0.547 0.526

#primitives

Category K-means SQs w/om Ours

bottle 30 8 7.4 6.8

can 30 7 13.6 1.1

chair 30 10 26.9 13.6

lamp 30 10 24.8 9.5

mailbox 30 10 18.8 3.1

rifle 30 7 20.0 7.6

table 30 11 25.1 9.5
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Furthermore, generality is noteworthy. To attain the reported accuracy, the
baseline method needs to be trained on a dataset of a specified item category,
respectively. A network trained on one item is difficult to generalize to another as
Fig. 6 shows. In contrast, our probabilistic formulation reasons about the part-
based representation case by case, and the nonparametric formulation makes it
possible to adapt to various shapes with varying component numbers.

4.2 Evaluation on D-FAUST

We follow the same split strategy in [31] and divide the dataset into training
(91), testing (29), and validation (9). Likewise, we compare results on the test-
ing set. For our method, we downsample the point clouds to be around 5500
points and set K to be 30, as well. The results are shown in table 2. Fig. 7 illus-
trates examples of inferred representations. We can observe that our model can
accurately capture the major parts of humans, i.e. heads, chests, arms, forearms,
hips, thighs, legs, and feet, even when they are performing different movements.

Table 2. Quantitative results on D-FAUST

Chamfer-L1 IoU

SQs[33] 0.0473 0.7138

ours 0.0335 0.7709

Fig. 7. Abstraction results on D-FAUST dataset. The left ones are the original point
clouds, the middle ones are inferred by our method, and the right ones are from SQs
[33].
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4.3 Extension: Point Cloud Segmentation

Due to the fact that our method yields a geometrically accurate structure, we can
achieve a geometry-driven point clouds segmentation task naturally. All points
in the point clouds have been well clustered after we obtain the abstraction
of an object and we segment the point clouds accordingly. Fig. 8 illustrates
some examples of point clouds segmentation on different objects, inferred by our
method.

Fig. 8. Examples of point clouds segmentation inferred by our method.

5 Conclusions & Limitations

In this paper, we present a novel method to abstract the semantic structures
of an object. We cast the problem into a nonparametric clustering framework
and solve it by the proposed optimization-based Gibbs sampling. Additionally,
since our method yields a semantically meaningful structure, we can achieve a
geometry-driven point clouds segmentation task naturally. However, there are
some limitations to our method. Firstly, compared with deep learning methods,
our implementation is less efficient and cannot be applied in real-time at this
moment. In addition, for some certain categories of objects, such as watercraft
and airplanes, which barely consist of superquadric-like parts, the performance
of our algorithm is expected to drop. Furthermore, learning-based methods can
produce results with better semantic consistency than ours.

Future work will focus on extending the expressiveness of superquadrics by
applying more deformations beyond tapering, such as bending and sheering.
Additionally, our formulation of how a random point is sampled from a ta-
pered superquadric primitive can be extended to a more general surface beyond
superquadrics. Moreover, trying different priors for both θ and σ2 other than
uniform distributions is also an auspicious way to improve performance.

Acknowledgments This research is supported by the National Research Foun-
dation, Singapore, under its Medium Sized Centre Programme - Centre for Ad-
vanced Robotics Technology Innovation (CARTIN) R-261-521-002-592.



Shape Abstraction via Superquadrics 15

References

1. Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations
and generative models for 3d point clouds. In: International conference on machine
learning. pp. 40–49. PMLR (2018)

2. Anwar, Z., Ferrie, F.: Towards robust voxel-coloring: Handling camera calibration
errors and partial emptiness of surface voxels. In: 18th International Conference
on Pattern Recognition (ICPR). vol. 1, pp. 98–102. IEEE (2006)

3. Atzmon, M., Lipman, Y.: Sal: Sign agnostic learning of shapes from raw data.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 2565–2574 (2020)

4. Barr, A.H.: Superquadrics and angle-preserving transformations. IEEE Computer
graphics and Applications 1(1), 11–23 (1981)

5. Barr, A.H.: Global and local deformations of solid primitives. In: Readings in
Computer Vision, pp. 661–670. Elsevier (1987)

6. Bogo, F., Romero, J., Pons-Moll, G., Black, M.J.: Dynamic FAUST: Registering
human bodies in motion. In: IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR) (2017)

7. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z.,
Savarese, S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich
3d model repository. arXiv preprint arXiv:1512.03012 (2015)

8. Chevalier, L., Jaillet, F., Baskurt, A.: Segmentation and superquadric modeling of
3d objects. In: WSCG (2003)

9. Chibane, J., Alldieck, T., Pons-Moll, G.: Implicit functions in feature space for 3d
shape reconstruction and completion. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR). pp. 6970–6981 (2020)

10. Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3d-r2n2: A unified approach
for single and multi-view 3d object reconstruction. In: European Conference on
Computer Vision (ECCV). pp. 628–644. Springer (2016)

11. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society: Series B
(Methodological) 39(1), 1–22 (1977)

12. Deng, B., Genova, K., Yazdani, S., Bouaziz, S., Hinton, G., Tagliasacchi, A.:
Cvxnet: Learnable convex decomposition. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). pp. 31–44 (2020)

13. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object recon-
struction from a single image. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 605–613 (2017)

14. Gelfand, A.E.: Gibbs sampling. Journal of the American statistical Association
95(452), 1300–1304 (2000)

15. Genova, K., Cole, F., Sud, A., Sarna, A., Funkhouser, T.: Local deep implicit
functions for 3d shape. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR). pp. 4857–4866 (2020)

16. Genova, K., Cole, F., Vlasic, D., Sarna, A., Freeman, W.T., Funkhouser, T.: Learn-
ing shape templates with structured implicit functions. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV). pp. 7154–7164
(2019)

17. Gnedin, A., Kerov, S.: A characterization of gem distributions. Combinatorics,
Probability and Computing 10(3), 213–217 (2001)



16 Y. Wu et al.

18. Gross, A.D., Boult, T.E.: Error of fit measures for recovering parametric solids. In:
Proceedings of the IEEE International Conference on Computer Vision (ICCV)
(1988)

19. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: A papier-mâché
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