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1 Network Architecture

We now provide the detailed architecture of each subnetwork of the proposed
StereoEchoes.

Echo Net. The Echo Net is an encoder-decoder network used in [7]. The encoder
network consists of 3 convolutional layers with the kernel size of 8 × 8, 4 × 4,
3 × 3, the stride of 4 × 4, 2 × 2, 1 × 1, and the number of output channels
32, 64, 8, respectively. Finally, a 1 × 1 convolutional layer is added to obtain
a 512-dimensional echo feature vector. The decoder consists of 7 convolutional
layers with the kernel size, stride, and padding of 4, 2, and 1, respectively. The
corresponding number of output channels are 512, 256, 128, 64, 32, 16, and 1,
respectively. Each layer is followed by BN and ReLU.

Stereo Net. The Stereo Net used in [3] consists of four parts, feature extraction,
cost volume construction, cost aggregation, and disparity prediction. The de-
tailed structure is listed in Table 1. For feature extraction, a ResNet-like siamese
network with sharing weights is adopted to extract features of stereo images. The
last feature maps of conv2, conv3, and conv4 are concatenated to construct the
group-wise cost volume. Then, a 3D aggregation network is used to aggregate
features from neighboring disparities and pixels to obtain refined cost volumes.
It consists of a pre-hourglass module and three stacked 3D hourglass networks,
which are connected to output modules to predict multi-scale disparity maps.

Cross-modal Volume Refinement. We adopt the output feature maps of
layers 4, 5, and 6 of the decoder of Echo Net as the audio feature inputs of
our CVR module. The three outputs of the Hourglass module of the Stereo
Net are used as the visual feature inputs of CVR. We adopt 3× 3 convolutions
for downsampling or deconvolutions for upsampling to align the feature sizes of
audio features and visual features. The 3D convolutional layers in CVR have the
kernel size of 3× 3× 3 with stride 1 and filter output size 32.
Relative Depth Uncertainty Estimation. The RDUE module mainly con-
tains two parts, which are audio and visual uncertainty estimation networks.

⋆ Corresponding author.
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Table 1. Detailed architecture of the Stereo Net. [a × a(×a), c] refers to the 2D/3D
convolution kernel size a and the output filter size c.

Name Layer setting Output dimension
Feature Extraction

input H × W × 3
conv0 x [3 × 3, 32] × 3 H/2 × W/2 × 32
conv1 x [3 × 3, 32] × 3 H/2 × W/2 × 32
conv2 x [3 × 3, 64] × 16 H/4 × W/4 × 64
conv3 x [3 × 3, 128] × 3, dila = 1 H/4 × W/4 × 128
conv4 x [3 × 3, 128] × 3, dila = 2 H/4 × W/4 × 128
concat [conv2 16, conv3 3, conv4 3] H/4 × W/4 × 320

Cost Volume
Concat left and right feature D/4 × H/4 × W/4 × 64

Pre-hourglass
3Dconv1 x [3 × 3 × 3, 32] × 2 D/4 × H/4 × W/4 × 32
3Dconv2 x [3 × 3 × 3, 32] × 2 D/4 × H/4 × W/4 × 32
pre-output 3Dconv1 2, 3Dconv2 2: Add D/4 × H/4 × W/4 × 32

Hourglass Module 1, 2, 3
3Dconv3 x [3 × 3 × 3, 64] × 2 D/8 × H/8 × W/8 × 64
3Dconv4 x [3 × 3 × 3, 128] × 2 D/16 × H/16 × W/16 × 128
deconv1 deconv [3 × 3 × 3, 64] D/8 × H/8 × W/8 × 64
shortcut1 3Dconv3 2:[3 × 3 × 3, 64] D/8 × H/8 × W/8 × 64

plus1 deconv1, shortcut1:Add D/8 × H/8 × W/8 × 64
deconv0 deconv [3 × 3 × 3, 32] D/4 × H/4 × W/4 × 32
shortcut0 pre-output:[1 × 1 × 1, 32] D/4 × H/4 × W/4 × 32

hourglass-output deconv0, shortcut0:Add D/4 × H/4 × W/4 × 32
Output Module 0, 1, 2, 3

3Dconv4 [3 × 3 × 3, 32] D/4 × H/4 × W/4 × 32
3Dconv5 [3 × 3 × 3, 1] D/4 × H/4 × W/4 × 1

upsampling bilinear interpolation D × H × W
disparity regression H × W

Both networks consist of 3 convolutional layers with the kernel size 3 × 3 and
the number of output channels 32, 32, 16, respectively. The outputs of the two
parts are concatenated to obtain the confidence embeddings, which are fed into
2 convolutional layers with the kernel size 3× 3, 1× 1, and output channels 32,
1 to yield the relative confidence map.

2 Analysis of Direct Depth Fusion

We are interested in investigating the impact of direct depth fusion from stereo
images and echoes. To get some insights, we fuse the depth maps from both
modalities (Zv and Za) by linear weighting to obtain the final depth map:

Z = α ∗ Zv + (1− α) ∗ Za (1)

where α is the depth fusion ratio. Fig. 1 shows the sensitivity analysis under
different depth fusion ratios. We observe that utilizing average fusion (α = 0.5)
is inferior to directly using stereo images. This indicates that many errors exist
in the depth map from echoes, which damages the stereo depth map. Notably,
using a higher fusion ratio (α = 0.9) can achieve better performance across all
metrics, which validates the effectiveness of echoes in improving stereo depth
estimation. Nevertheless, the improvement of direct depth fusion is limited since
the depth fusion weight is global. By contrast, our designed Relative Depth
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Fig. 1. Sensitivity analysis of depth fusion ratios α (horizontal axis) on the Stereo-
Replica dataset. The top three metrics are RMSE, REL, and log10 (lower is better).
The bottom three metrics are δ1.25, δ1.252 , and δ1.253 (higher is better). Red stars mark
the best fusion ratio. Orange squares mark the stereo baseline.

Uncertainty Estimation can predict modal-specific pixel-wise confidence thus
greatly improving the performance with more fine-grained fusion.

Table 2. Comparison results with depth completion methods on Matterport3D. Red
and blue represent the best and the second best results.

Methods RMSE(↓) MAE(↓) δ1.25(↑) δ1.252(↑) δ1.253(↑)

Bilateral [9] 1.978 0.774 0.613 0.689 0.730
MRF [4] 1.675 0.618 0.651 0.780 0.856

Liu et al. [6] 1.653 0.610 0.663 0.792 0.861
Zhang et al. [11] 1.316 0.461 0.781 0.851 0.888
Huang et al. [5] 1.092 0.342 0.850 0.911 0.936

Senushkin et al. [8] 1.001 0.289 0.930 0.948 0.842
Srivastava et al. [10] 0.846 0.228 0.954 0.985 0.966

STEREO2DEPTH 0.636 0.213 0.943 0.979 0.990
StereoEchoes (Ours) 0.548 0.198 0.958 0.984 0.992

3 Comparison with Depth Completion Methods

Since Matterport3D is a popular benchmark for depth estimation, we also com-
pare our method with the state-of-the-art depth completion methods. These
methods can also be regarded as multimodal methods utilizing LiDAR point
clouds or sparse depth maps as inputs to regress dense depth maps. The re-
sults are listed in Table 2. By comparison, we observe that STEREO2DEPTH
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Table 3. Model parameters comparisons with Bi2D [7].

BI2D StereoEchoes (ours)

Echo Net (8.30MB) Echo Net (8.30MB)
Visual Net (16.66MB) Stereo Net (6.91MB)
Material Net (11.69MB) CVR module (0.26MB)

Attention Net (279.58MB) RDUE module (0.04MB)

Total (316.23MB) Total (15.51MB)

Table 4. Comparison of generalization ability for disparity estimation between training
from scratch and StereoEcho pre-training.

Methods EPE(↓) D1-all(↓) RMSE(↓) δ1.25(↑)
Scratch 0.323 0.79% 12.353 0.876

StereoEchoes Pre-training 0.308 0.53% 12.351 0.877

obtains better RMSE and MAE although it is inferior to concurrent state-of-the-
art method [10] on other metrics. This indicates that stereo learning can estimate
more accurate absolute depth than monocular depth completion methods due to
the well-posed settings and geometric completeness. When incorporating echoes,
our method achieves the best performance on four out of five metrics. Notably,
the RMSE significantly outperforms the other methods. This demonstrates that,
by exploiting the reciprocal relationship between stereo images and echoes, bet-
ter representations can be learned from the combination of the audio and visual
modalities than from sparse depth maps.

4 Parameters Efficacy

To investigate the parameters efficiency of the proposed method, we list the
parameters of each component in comparison with BI2D in Table 3. One can
observe that our method employs a 20 times smaller model but achieves re-
markable performance on the Stereo-Replica and Stereo-Matterport3D datasets
as reported in main paper. This further validates our claim that, compared to
monocular audio-visual depth estimation with the material network and heavy
attention network, the combination of stereo images and echoes is a better con-
figuration with lightweight parameters.

5 Generalizability on Real Data

We repurpose the learned stereo representation for disparity estimation on the
real-world stereo dataset named InStereo2K [1] following VisualEchoes [2]. Ta-
ble 4 shows the comparison results of pre-training on StereoEcho datasets and
training from scratch on the test set. We adopt additional EPE and D1-all met-
rics to demonstrate the stereo performance. The stereo model initialized with the
pre-trained StereoEchoes network achieves better stereo performance compared
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to that trained from scratch. This suggests that stereo with echoes generalizes
better than stereo only for disparity estimation.

6 Evaluation Metrics

Let Zp and Z∗
p denote the predicted depth and ground truth depth for ev-

ery valid pixel p. Here, valid pixels are those pixels with a total of N whose
ground truth depth values are greater than zero. We adopt the following stan-

dard metrics: (1) Root mean square error (RMSE):
√

1
N

∑
p(Zp − Z∗

p )
2. (2)

Mean absolute relative error (REL): 1
N

∑
p
|Zp−Z∗

p |
Z∗

p
. (3) Mean log10 error (log10):

1
N

∑
p

∥∥log10 Zp − log10 Z
∗
p

∥∥. (4) Accuracy under threshold t: max
(

Z∗
p

Zp
,
Zp

Z∗
p

)
=

δ < t
(
t ∈

[
1.25, 1.252, 1.253

])
.

7 More Qualitative Results

We provide more qualitative results of audio-visual depth estimation using vari-
ous approaches on the Stereo-Replica and Stereo-Matterport3D datasets in Fig. 2
and Fig. 3 respectively. The visualizations of the confidence maps from Echo Net
and Stereo Net are shown in Fig. 4.
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Left Image Right Image VisualEchoes BI2D STEREO2DEPTH Ours Ground Truth

Fig. 2. Qualitative comparison results of depth maps on the Stereo-Replica dataset.
From left to right are left image, right image, depth maps from VisualEchoes [2],
BI2D [7], stereo images, our proposed StereoEchoes, and ground truth. Our method
consistently produces more accurate depth maps with clear object boundaries (rows
1-5). It also produces closer results to ground truth for irregular objects (row 6), thin
structures (row 7), and dark light (row 8). The performance in reflective areas needs
to be further improved (row 9).
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Left Image Right Image VisualEchoes BI2D STEREO2DEPTH Ours Ground Truth

Fig. 3. Qualitative comparison results of depth maps on the Stereo-Matterport3D
dataset. From left to right are left image, right image, depth maps from VisualE-
choes [2], BI2D [7], stereo images, our proposed StereoEchoes, and ground truth. Since
the visual scenes in Matterport3D are rich in texture that are beneficial for stereo
learning, our method estimates more accurate depth maps for both foregrounds and
backgrounds. The incorporation of echoes makes object boundaries clearer and sharper
by the complementation of visual and audio modalities.
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Left Image Echo Conf. Stereo Conf.

    Stereo-Replica Dataset

Left Image Echo Conf. Stereo Conf.

Stereo-Matterport3D Dataset

Fig. 4. Visualization of relative confidence maps from stereo images (Stereo Conf.)
and echoes (Echo conf.) on the Stereo-Replica (left) and Stereo-Matterport3D (right)
datasets.
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