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Abstract. Stereo depth estimation is particularly amenable to local
textured regions while echoes have good depth estimations for global
textureless regions, thus the two modalities complement each other. Mo-
tivated by the reciprocal relationship between both modalities, in this
paper, we propose an end-to-end framework named StereoEchoes for
stereo depth estimation with echoes. A Cross-modal Volume Refinement
module is designed to transfer the complementary knowledge of the au-
dio modality to the visual modality at feature level. A Relative Depth
Uncertainty Estimation module is further proposed to yield pixel-wise
confidence for multimodal depth fusion at output space. As there is no
dataset for this new problem, we introduce two Stereo-Echo datasets
named Stereo-Replica and Stereo-Matterport3D for the first time. Re-
markably, we show empirically that our StereoEchoes, on Stereo-Replica
and Stereo-Matterport3D, outperforms stereo depth estimation methods
by 25%/13.8% RMSE, and surpasses the state-of-the-art audio-visual
depth prediction method by 25.3%/42.3% RMSE.

Keywords: depth estimation, multimodal learning, cross-modal volume
refinement, relative depth uncertainty estimation

1 Introduction

Recent years have witnessed exciting attempts to leverage audio visual multi-
modal learning for depth estimation [8,12,28]. For the visual modality, learning
depth from stereo images is appropriate for textured regions though not accurate
in textureless areas due to matching ambiguity. In contrast, in the audio modal-
ity, the echo has a good depth estimation for textureless regions in spite of large
errors in local details. This suggests that the two modalities can complement
each other, which is also reflected in psychology and perception that auditory
grouping helps solve visual ambiguity [44] while visual information helps cali-
brate the auditory information [20].

Previous work in audio-visual depth estimation dates back to BatVision [8],
which predicts depth directly from binaural echoes. The performance was im-
proved by concatenating features of monocular images and echoes in [12]. Parida
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○ Rely on material properties

✔ Stereo images with echoes ✔ No material properties ✔ Cross-modal attention fusion ✔ Clear at boundary

○ Monocular image with echoes ○ General multimodal fusion ○ Blurred at boundary
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Fig. 1. Comparison of our method with the existing approach [28]. Our StereoEchoes
learns depth from stereo images and echoes with no need for material properties esti-
mation. Our method produces depth maps with clear object boundary.

et al. [28] explored the idea further by integrating a material properties estima-
tion network with an attention mechanism, and achieved state-of-the-art per-
formance. Unfortunately, material properties which rely on additional collected
data with material annotations, are difficult to obtain for many environments.
Besides, monocular depth estimation is an ill-posed problem thus the estimated
depth maps are still blurry at local details and object boundaries.

To address these challenges, we argue that the above mentioned stereo depth
estimation with echoes is a better configuration without demands on material
properties. In general, the material of the object is usually reflected in the visual
texture. Rich textures on objects are particularly amenable to stereo match-
ing. From this point of view, stereo learning can be a good substitute for both
monocular learning and material properties estimation. Although depth is not
well estimated in textureless regions for stereo, the echo can play a complemen-
tary role for these areas. The multimodal learning of stereo images and echoes
will make a dramatic leap on the performance of depth prediction.

Deriving from the above motivation, in this work, we propose an end-to-
end framework named StereoEchoes for stereo depth estimation with echoes. To
fully exploit the reciprocal relationship between the audio and visual modalities,
we integrate both modalities at internal feature level and output space, respec-
tively. At feature level, we propose a Cross-modal Volume Refinement module
to transfer the complementary knowledge of echoes into the stereo features. On
output space, we introduce a Relative Depth Uncertainty Estimation module to
yield pixel-wise confidence for subsequent multimodal depth maps fusion. Our
carefully designed cross-modal attention based fusion is empirically superior to
previous general multimodal feature fusion. Fig. 1 shows the comparison of our
method with the existing approach [28].

On the other hand, there are no specific datasets containing stereo images and
echoes for depth estimation. Therefore, we introduce in this paper two Stereo-
Echo datasets named Stereo-Replica and Stereo-Matterport3D from Replica [38]
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and Matterport3D [3] respectively for multimodal stereo depth estimation bench-
marks with echoes. The key point is to utilize the ground truth depth and given
camera parameters to synthesize right-view images with original monocular im-
ages as the left-view images. The corresponding echoes are simulated using 3D
simulators Habitat [33] and audio simulator SoundSpaces [5].

We evaluate the proposed StereoEchoes framework on the introduced Stereo-
Echo datasets. We show in experiments that our method outperforms the state-
of-the-art audio-visual depth prediction method [28] by 25.3% and 42.3% RMSE
on Stereo-Replica and Stereo-Matterport3D. Compared with the challenging
baselines that directly learn depth from the stereo, the improvements of our
StereoEchoes are 25% and 13.8% respectively, demonstrating the superiority
of incorporating echoes. Quantitative visualization shows that our method can
produce more accurate depth maps on foreground objects and boundaries. Fur-
thermore, extensive ablations validate the effectiveness of our methods.

Our contributions are summarized as follows:

– We propose to formulate the problem of stereo depth estimation with echoes,
and introduce the StereoEchoes framework for this problem by utilizing the
reciprocal relationship between the audio and visual modalities.

– Two modules of Cross-modal Volume Refinement and Relative Depth Un-
certainty Estimation are designed for multimodal fusion at feature level and
output space, which are superior to previous general fusion strategies.

– We further introduce two Stereo-Echo datasets named Stereo-Replica and
Stereo-Matterport3D for evaluating the problem of multimodal stereo depth
estimation with echoes.

– Experiments show that, on Stereo-Replica and Stereo-Matterport3D datasets,
the proposed StereoEchoes outperforms the state-of-the-art audio-visual depth
prediction method by 25.3% and 42.3% RMSE, and surpasses the challenging
baseline of stereo depth estimation by 25% and 13.8%.

2 Related Work

Audio-visual Learning. Most videos contain both audio and visual informa-
tion, which bridges the link between the two domains. The close connection
between the two modalities has made a dramatic leap in audio-visual learn-
ing in recent years. In one line of work, the corresponding of the two modali-
ties is used to learn the cross-modal representation in a self-supervised manner,
which can be transferred well to a series of downstream tasks [2,26,50,1,6]. The
representations can be learned by an auxiliary task of predicting the audio-
visual correspondence [2], by predicting whether the audio and video frames are
temporally synchronized [26] or spatially aligned [50], or by using cross-modal
prediction for co-clustering [1]. One of the recent approaches further employs
compositional contrastive learning to transfer audio-visual knowledge for bet-
ter video representation learning [6]. In another line of work, the integration of
both audio and visual modalities is exploited, which has promoted a variety of
tasks such as audio source separation [54,11,13,15], audio spatialization [24,14],
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audio-visual instance discrimination [23,25], saliency prediction [40], and action
recognition [16]. Our work can be understood as exploring the complementary
knowledge between audio and visual modality for the task of depth estimation.

Deep Stereo Matching. Depth is preferentially recovered by well-posed stereo
matching due to its simple settings, high accuracy, and acceptable cost. Most
deep stereo methods directly leverage rectified RGB stereo images to estimate
disparity, which can be converted to depth with known camera baseline and
focal length. One category of approaches utilizes correlation layers to encode
matching information of left and right views [22,27,48], in which semantic [49]
and edge information [36] are also incorporated as additional cues to improve
performance. Another category of approaches focuses on building a 4D cost vol-
ume and leveraging 3D convolutions for cost aggregation to regress disparity or
depth [19,4,17,52,7]. A few other methods work on combining other modalities to
obtain accurate dense depth maps, like sparse LiDAR point clouds [30] or proxy
disparity labels from a dedicated platform on-board the camera [31]. However,
none of these techniques has been intended to cope with audio information,
whereas this work demonstrates the ability of the audio modality to help predict
better depth when combined with stereo images.

Multimodal Monocular Depth Estimation. Monocular depth estimation
methods span from only monocular image based methods to multimodal meth-
ods. The former involves estimating dense depth maps from a single RGB im-
age [53]. The latter usually increases other modalities including sparse depth
maps [47], LiDAR point clouds [46,51], bird’s eye views [37], and surface nor-
mal [32]. Recently, the audio modality is shown to be able to estimate the depth
of the scene, like echoes from two ears [8] or binaural sounds of the object it-
self [41]. To fuse multimodal information from the audio and visual modalities
to improve the performance, the authors in [12] leverage echolocation as a proxy
task to learn better visual representations. They show that simply concatenat-
ing visual and audio features can yield better depth maps. This idea was further
extended in [28] where a material properties estimation network is added and
a multimodal fusion module is proposed with attention mechanisms for better
depth estimation. Going beyond the ill-posed monocular depth estimation and
inaccessible material properties, in this study, we propose to learn depth from
stereo images using echoes with no requirements for material properties. Stereo
learning on visual textures and the complementary knowledge from echoes can
boost the performance of depth estimation to a further level.

3 Methods

3.1 Problem Formulation

In this paper, we focus on learning depth from stereo images with echoes. Given
a pair of RGB stereo images, (Il, Ir) ∈ R3×W×H , a Stereo Net is adopted to
predict the disparity map, Dv ∈ RW×H , where W,H are the width and height
of images. With known camera baseline B and focal length f , the depth map Zv
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Fig. 2. Framework overview of our StereoEchoes. The multimodal data of stereo images
and echoes pass through the Stereo Net and the Echo Net to yield their respective depth
maps. The two networks interact at feature level through the Cross-modal Volume
Refinement module. The final depth map is fused by the pixel-wise confidence produced
by the Relative Depth Uncertainty Estimation module.

from the visual modality can be obtained by Zv = Bf
Dv

. The corresponding time-
domain echo response is also given, which can be converted into a frequency
spectrogram representation, E ∈ R2×P×Q, where P is the number of discrete
time steps and Q is the number of frequency bins. An Echo Net is employed to
regress the depth map Za from the audio modality. The final depth map Z is
obtained by fusing the depth maps predicted by both modalities.

3.2 Framework Overview

Fig. 2 depicts the framework of our method. As mentioned in Sec. 3.1, we take
multimodal data of stereo images and echoes as input. The Echo Net and Stereo
Net are adopted to yield the depth maps of the respective modalities. The Echo
Net is an encoder-decoder network used in [12]. The Stereo Net inspired from
[17] consists of feature extraction, cost volume construction, cost aggregation,
and disparity regression. To fully exploit the reciprocal relationship between the
audio and visual modalities, we integrate both modalities at internal feature level
and output space, respectively. For feature-level integration, we propose a Cross-
modal Volume Refinement module to transfer the complementary knowledge of
echoes into the stereo cost volume for refinement. On the output space, we
introduce a Relative Depth Uncertainty Estimation module to yield pixel-wise
confidence of each modality. The final depth maps are obtained by fusing depth
maps of both modalities with respective pixel-wise confidence.

3.3 Cross-modal Volume Refinement

Stereo matching approaches aim at learning structural information by comparing
the similarity of local left and right patches to obtain the optimal disparity. As
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Fig. 3. Schematic diagram of Cross-modal Volume Refinement module (a) and Relative
Depth Uncertainty Estimation module (b).

a result, stereo methods often succeed on richly-textured foreground objects but
struggle to deal with textureless areas such as white walls. In contrast, depth
prediction from echoes reported in earlier work [8,5,28] shows that the audio
modality has a good estimation for textureless global regions like white walls
despite large errors in the details. To fully exploit the reciprocal relationship be-
tween the two modalities, we propose to transfer the complementary knowledge
of the audio modality to the visual modality at internal feature level.

Cost volume is the most significant internal feature in deep stereo networks,
encoding all necessary information for succeeding disparity regression. The de-
coder features of the Echo Net also contain global characteristics related to depth
regression. To this end, we design a Cross-modal Volume Refinement (CVR)
module that utilizes echo features as a guide to help refine the cost volume of
the Stereo Net. Fig. 3(a) shows the schematic diagram of CVR. Inspired by the
cross-attention mechanism [42], we adopt audio features as query features and
visual features as key-value features to learn audio-visual multimodal features
for volume refinement.

Specifically, the CVR has two inputs: the audio feature Fa ∈ RB×C1×H×W

and the cost volume Fv ∈ RB×C2×D×H×W . The convolutional modules with the
kernel size 3 × 3 followed by BN and ReLU (W a

Q, W
v
K , and W v

V ) are used to
transform Fa and Fv to obtain the embeddings Qa, Kv, and Vv:

Qa = W a
Q(Fa),Kv = W v

K(Fv), Vv = W v
V (Fv). (1)

The audio-visual correlation Ra→v is computed by the Hadamard product ◦
between Kv and the reshaped Qa ∈ RB×(C2D)×H×W under the constraint of
C1 = C2 ×D:

Ra→v = Reshape(Qa) ◦Kv. (2)

The residual volume is learned from the multimodal correlation Ra→v, which is
further added to the input to yield the refined volume F r

v as:

F r
v = WM (Ra→v) + Vv, (3)

where WM denotes a convolutional module with the kernel size 3 × 3 followed
by BN and ReLU.
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In practice, we employ CVR at multi-scale audio and visual features, and
the resolutions of feature maps of both modalities are aligned by upsampling or
downsampling operations.

3.4 Relative Depth Uncertainty Estimation

As elucidated in Sec. 3.3, the audio modality estimates better depth in the global
textureless regions, while the visual modality has a more accurate prediction
on foreground objects. Multimodal depth maps can complement each other by
fusion to obtain an optical depth map. The key lies in how to obtain the pixel-
wise confidence of the respective depth map for each modality.

Deep neural networks provide a probability for each prediction, which is
called epistemic uncertainty resulting from the model itself [18]. Earlier works
employ Monte Carlo Dropout [10] to approximate the posterior distribution for
uncertainty estimation, or ensemble [21]. For binocular vision, uncertainty es-
timation evolves into stereo confidence estimation. Various methods have been
proposed for this that use the single-modal or bi-modal input [29,35,39]. These
works mostly focus on the absolute confidence estimation of depth maps from the
visual modality, but rarely explore the relative confidence estimation between
two modalities. To this end, we propose a Relative Depth Uncertainty Estima-
tion module (RDUE) to obtain the relative confidence of the visual modality
compared to the audio modality for depth map fusion. Fig. 3(b) shows the ar-
chitecture of RDUE.

Specifically, we first use the input left image Il and the generated dispar-
ity map D to obtain the corresponding warped right image Ĩr based on stereo
reconstruction. Then, a small modal-specific fully-convolutional network (W a

C

and W v
C) takes the concatenation of Il, the respective depth map (Za and Zv),

and the corresponding pixel-wise error map (Oa and Ov) as inputs, which pro-
duces stereo confidence embeddings Ea and Ev. For both modalities, this can be
expressed as:

Ea = W a
C(Cat(Il, Za, Oa)),

Ev = W v
C(Cat(Il, Zv, Ov)),

(4)

where the error map is calculated by the l1 norm between the input right image
and the warped one as O = |Ir− Ĩr|. Next, the relative depth confidence map M
are learned from the stereo confidence embeddings of both modalities followed
by a Sigmoid layer to normalize the values to [0, 1]:

M = Sigmoid(W◦(Cat(Ea, Ev))), (5)

where W◦ denotes a small fully-convolutional network for relative confidence
estimation.

We use the relative confidence map M for weighting the depth map Zv from
stereo and 1 −M for weighting the depth map Za from echoes. Thus the final
depth map Z can be obtained by

Z = M⊙ Zv + (1−M)⊙ Za, (6)

where ⊙ denotes the element-wise product.
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3.5 Objective Function

We train the Echo Net and Stereo Net jointly in an end-to-end manner following
[28], and adopt the logarithm of depth errors as the loss function:

L(Z,Z∗) = ln(1 + ||Z − Z∗||1), (7)

where Z∗ is the ground truth depth map.

4 Stereo-Echo Datasets

Lacking specific datasets for evaluating depth estimation from stereo images
with echoes, we introduce two Stereo-Echo datasets named Stereo-Replica and
Stereo-Matterport3D from two indoor visual scenes Replica [38] and Matter-
port3D [3], respectively. We describe the details of the visual scenes, echoes
simulation, and stereo images synthesis as below.

Visual Scenes. Both Replica and Matterport3D datasets are rendered us-
ing open source 3D simulators, Habitat [33]. Replica has 18 scenes in total from
1740 images and 4 orientations (90◦, 180◦, 270◦, 360◦), which covers hotels, apart-
ments, rooms, and offices. Following [12], we use 15 scenes for training and 3
scenes for testing. On Matterport3D, we use 77 scenes of real-world homes from
16844 images and 4 orientations for evaluation following [28]. The training, val-
idation, and testing sets consist of 59, 10, and 8 scenes, respectively.

Echoes Simulation. We use the audio simulator SoundSpaces [5] for realis-
tic echoes simulation. The visual scene of the respective dataset is firstly divided
into grids along navigation points. We place the source and receiver at the same
point for sending the audio signal and receiving the echoes, respectively. Follow-
ing [12], a 3 ms sweep signal is adopted as the source audio spanning the human
hearing range (20Hz to 20kHz). The Room Impulse Response (RIR) is then cal-
culated in four orientations using audio ray tracing [43]. Finally, we obtain the
echoes by convolving the input audio signal with the RIR. Here, the sampling
rates of the source and received echoes are 44.1 kHz and 16 kHz for Replica and
Matterport3D, respectively. We encourage the interested readers to refer to [12]
for more details.

Stereo Images Synthesis. We utilize RGB images and their ground truth
depth to generate stereo image pairs similar to [45]. To simulate camera base-
lines and focal lengths, we directly convert the depth Z to disparity D with
D = Zmax

Z . The RGB image is regarded as the left image Il and the right image
Ir is synthesized via forward warping [34]. Specifically, we translate each pixel
of left image D pixels to the left side and perform linear interpolation to obtain
the right image. However, pixels in Ir with no matching pixels in Il may mani-
fest themselves as holes in the synthesized image Ir. To address this, following
image painting techniques [9], we fill the missing regions with a texture from a
randomly selected image from the same scene. In this way, the interference from
black holes with depth prediction is mitigated. Fig. 4 presents several synthe-
sized examples with corresponding disparity maps. The datasets are available at
https://github.com/chzhang18/Stereo-Echo-Datasets.

https://github.com/chzhang18/Stereo-Echo-Datasets
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Fig. 4. Synthesized examples of stereo image pairs and disparity maps on Stereo-
Replica dataset [38] (left three cases) and Stereo-Matterport3D dataset [3] (right four
cases). Brighter colors indicate larger disparity values.

5 Experiments

In this section, we first introduce the implementation details and evaluation met-
rics. We then conduct experiments on our Stereo-Echo datasets, Stereo-Replica
and Stereo-Matterport3D, to demonstrate the superiority of our method. Next,
extensive ablation studies are provided to analyze the contribution of each pro-
posed module in our framework, as well as the extensions for other stereo net-
works. Finally, we show the qualitative results to further validate the effectiveness
of our method.

5.1 Experimental Setup

Our method is implemented with PyTorch. The input to the Stereo Net is
128×128 RGB stereo images. Color normalization is used for data preprocessing
without any data augmentation. The maximum disparity is set to 32. For input
to the Echo Net, following [28], 60ms echo signal is used to compute spectro-
gram with FFT size of 512. For Replica, a 2×257×166 spectrogram is obtained
using Hanning window of length 64 and hop length of 16. For Matterport3D, a
2× 257× 121 spectrogram is produced using Hanning window of length 32 and
hop length of 8. For network architecture, the Echo Net is used in [28] and the
Stereo Net is adopted from [48]. Detailed architectures of the two networks and
the proposed Cross-modal Volume Refinement and Relative Depth Uncertainty
Estimation are provided in Supplementary Materials.

In training, we employ Adam (β1 = 0.9, β2 = 0.999) as the optimizer with
learning rate of 0.001. The batch size is set to 50 on a single TITAN-RTX GPU.
The entire model is trained from scratch. The training epoch is set to 100 for
Replica and 50 for Matterport3D. The code is available at https://github.

com/chzhang18/StereoEchoes.

https://github.com/chzhang18/StereoEchoes
https://github.com/chzhang18/StereoEchoes
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Table 1. Evaluation results on the Stereo-Replica dataset. E refers to echoes, M refers
to monocular images, and S refers to stereo images.

Methods Modality RMSE(↓) REL(↓) log10(↓) δ1.25(↑) δ1.252 (↑) δ1.253 (↑)

ECHO2DEPTH E 0.713 0.347 0.134 0.580 0.772 0.868
RGB2DEPTH M 0.374 0.202 0.076 0.749 0.883 0.945

VisualEchoes [12] E + M 0.346 0.172 0.068 0.798 0.905 0.950
BI2D [28] E + M 0.249 0.118 0.046 0.869 0.943 0.970

STEREO2DEPTH S 0.248 0.069 0.030 0.945 0.980 0.989
StereoEchoes E + S 0.186 0.051 0.022 0.964 0.985 0.993

Table 2. Evaluation results on the Stereo-Matterport3D dataset. E refers to echoes,
M refers to monocular images, and S refers to stereo images.

Methods Modality RMSE(↓) REL(↓) log10(↓) δ1.25(↑) δ1.252 (↑) δ1.253 (↑)

ECHO2DEPTH E 1.778 0.507 0.192 0.464 0.642 0.759
RGB2DEPTH M 1.090 0.260 0.111 0.592 0.802 0.910

VisualEchoes [12] E + M 0.998 0.193 0.083 0.711 0.878 0.945
BI2D [28] E + M 0.950 0.175 0.079 0.733 0.886 0.948

STEREO2DEPTH S 0.636 0.058 0.026 0.943 0.979 0.990
StereoEchoes E + S 0.548 0.049 0.021 0.958 0.984 0.992

5.2 Comparison with State-of-the-art Methods

We compare on Stereo-Replica and Stereo-Matterport3D datasets with state-
of-the-art methods: VisualEchoes [12] and Beyond-Image-to-Depth [28] (mark
it as BI2D for convenience). We also compare with three competitive baselines:
ECHO2DEPTH that predicts depth only from Echo Net, STEREO2DEPTH
that predicts depth only from Stereo Net, and RGB2DEPTH that predicts depth
only from monocular images.

Table. 1 shows the comparison results with the above methods on the Stereo-
Replica dataset. Our proposed method outperforms all the compared methods
on all the metrics. We observe that STEREO2DEPTH achieves comparable per-
formance to BI2D on RMSE, and surpasses it on other metrics benefiting from
the advantage of binocular vision. When adding the audio modality, our StereoE-
choes outperforms BI2D by 25.3% (0.186 cf. 0.249 RMSE). It is also worth noting
that our StereoEchoes achieves an order of magnitude lower than VisualEchoes
by 50.3% (0.186 cf. 0.374 RMSE).

Table. 2 shows the comparison results on the Stereo-Matterport3D dataset.
Our StereoEchoes achieves the best performance, notably outperforming BI2D
by 42.3% on RMSE. Although the performance of STEREO2DEPTH is quite
remarkable, our StereoEchoes further improves it by 13.8% on RMSE. This is
surprisingly higher than the improvement of BI2D w.r.t. RGB2DEPTH (0.950
cf. 1.090 i.e. 12.8%). This validates our claim that the configuration of stereo
inputs with echoes is better than that of monocular inputs with echoes. Stereo
depth prediction with echoes can fully utilize the complementary knowledge to
achieve higher performance without the help of the material network.
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Table 3. Ablation study of key components on the Stereo-Replica and Stereo-
Matterport3D datasets.

Datasets Methods CVR RDUE RMSE(↓) REL(↓) log10(↓) δ1.25(↑) δ1.252 (↑) δ1.253 (↑)

Replica

STEREO2DEPTH 0.248 0.069 0.030 0.945 0.980 0.989
Ours w/o RDUE ✓ 0.202 0.054 0.024 0.958 0.983 0.991
Ours w/o CVR ✓ 0.193 0.057 0.023 0.958 0.984 0.991
Ours (full) ✓ ✓ 0.186 0.051 0.022 0.964 0.985 0.993

Mp3D

STEREO2DEPTH 0.636 0.058 0.026 0.943 0.979 0.990
Ours w/o RDUE ✓ 0.593 0.054 0.023 0.951 0.980 0.990
Ours w/o CVR ✓ 0.599 0.050 0.022 0.951 0.980 0.990
Ours (full) ✓ ✓ 0.548 0.049 0.021 0.958 0.984 0.992

Table 4. Performance of different feature fusion strategies on Stereo-Replica.

Methods RMSE(↓) REL(↓) log10(↓) δ1.25(↑) δ1.252 (↑) δ1.253 (↑)

BI2D [28] 0.249 0.118 0.046 0.869 0.943 0.970
Concat 0.228 0.065 0.028 0.953 0.983 0.991
Bilinear 0.234 0.065 0.029 0.952 0.983 0.991
CVR 0.202 0.054 0.024 0.958 0.983 0.991

5.3 Ablation Study

In this section, we conduct detailed ablation studies to demonstrate the following
points. (i) Using stereo images and echoes together with either CVR or RDUE
improves the performance over only using stereo images. (ii) Among different fu-
sion strategies at feature level or output space, our proposed method achieves the
best performance. (iii) Our method can be embedded into other stereo networks.

Effectiveness of Key Components. We adopt STEREO2DEPTH as the ab-
lation baseline to show the impact of CVR and RDUE as shown in Table 3.
As can be seen, applying the Cross-modal Volume Refinement can significantly
reduce the RMSE, e.g., 18.5% on Stereo-Replica and 6.8% on Stereo-Mp3D. We
conjecture that since the visual scenes in Replica have more textureless regions,
the echo guidance is more effective thus the improvement on Replica is more.
The δ metrics are also improved indicating that the complementary knowledge
from the audio modality also helps reduce the pixel-wise relative errors.

In addition, compared with the baselines, RMSE is reduced by 22.2% and
5.8% on Stereo-Replica and Stereo-Matterport3D respectively by integrating the
proposed Relative Depth Uncertainty Estimation. The results validate that the
depth fusion is able to fully exploit the reciprocal relationship between the audio
and visual modalities on textureless and textured areas through the pixel-wise
confidence map.

Furthermore, using both CVR and RDUE can further reduce the RMSE by
3.6% ∼ 8.5% on the two datasets, though the performance is already encouraging
by adding either of them. As a result, our full method significantly outperforms
the corresponding baselines on both datasets, especially an improvement of 25%
RMSE on the Stereo-Replica dataset.
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Table 5. Performance of different depth fusion strategies at output space on the Stereo-
Replica dataset.

Methods RMSE(↓) REL(↓) log10(↓) δ1.25(↑) δ1.252 (↑) δ1.253 (↑)

Average 0.281 0.069 0.030 0.941 0.978 0.989
Linear Weighting 0.246 0.066 0.029 0.946 0.980 0.990

Echo Uncertainty 0.242 0.066 0.029 0.948 0.981 0.990
Stereo Uncertainty 0.234 0.065 0.029 0.950 0.982 0.990

Relative Uncertainty 0.193 0.057 0.023 0.958 0.984 0.991

0.220 0.225 0.230 0.235 0.240 0.245 0.250

RMSE ( )

Fu
ll+R

DU
E+C

VR
Ba

se
BI

2D

0.100 0.105 0.110 0.115 0.120

REL ( )

Fu
ll+R

DU
E+C

VR
Ba

se
BI

2D

0.860 0.865 0.870 0.875 0.880 0.885 0.890

1.25 ( )

Fu
ll+R

DU
E+C

VR
Ba

se
BI

2D

0.960 0.965 0.970 0.975 0.980

1.25^3 ( )

Fu
ll+R

DU
E+C

VR
Ba

se
BI

2D

Fig. 5. Performance improvements by gradually adding proposed modules to
AANet [48] on the Stereo-Replica dataset. The tag “full” refers to Base+CVR+RDUE.

Different Fusion Strategies. To further demonstrate the effectiveness of each
module, we perform exhaustive comparisons with other alternative methods re-
spectively. In Table 4, for the feature level fusion, two strategies are chosen for
comparison, which are concat of audio and stereo features and bilinear transfor-
mation used in [28] with an attention network. We observe that our CVR, with
RMSE of 0.202, achieves the best performance among the alternative strate-
gies. Note that concat and bilinear perform better than BI2D benefiting from
stereo settings, but are still inferior to our CVR. This highlights that our elab-
orately designed CVR for stereo and echo feature fusion is better than generic
multimodal features fusion with attention.

In Table 5, for the fusion at output space, we take the average value and
linear weighting 5 of the estimated depth from two modalities as baselines. We
also compare with single-modal uncertainty-aware depth fusion strategies that
leverage only audio or visual modality. One can observe that our method signif-
icantly outperforms these four compared strategies, indicating that multimodal
relative uncertainty estimation is able to learn better pixel-wise confidence than
single-modal absolute uncertainty estimation for depth fusion.

Stereo Backbone Network. We further extend our method to correlation-
based stereo networks, e.g., the lightweight stereo network AANet [48]. Since the
aggregation network in AANet employs 2D convolutions, our CVR can adapt to
the 3D matching volume while the RDUE remains constant. We reimplement all
models with the training protocols detailed in Sec. 5.1. Fig. 5 depicts the results.
It can be seen that our method delivers better performance using different stereo
networks. This suggests that our designed method generalizes well to various
stereo networks to improve their performance with echoes.

5 The depth maps from stereo images and echoes are fused using weights of 0.9:0.1.
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Left Image ECHO2DEPTH VisualEchoes BI2D STEREO2DEPTH Ours Ground Truth

Fig. 6. Qualitative comparisons of different methods on Stereo-Replica. Our method
produces better depth maps with fine structures and clear object boundaries.

Left Image ECHO2DEPTH VisualEchoes BI2D STEREO2DEPTH Ours Ground Truth

Fig. 7. Qualitative comparisons on Stereo-Matterport3D. Our method produces more
accurate depth maps on both foregrounds and backgrounds.

5.4 Qualitative Results and Analysis

In addition to quantitative comparisons, we further provide qualitative visual
analysis to illustrate the superiority of our method. Fig. 6 visualizes the depth
map comparison with competing methods on the Stereo-Replica dataset. Com-
pared to VisualEchoes and BI2D, STEREO2DEPTH is able to generate more
accurate depth maps for foreground objects, such as chairs, benches, and clothes.
This is mainly due to the rich texture and large disparity of foreground objects
that are suitable for stereo learning. When echoes are integrated, the comple-
mentarity of both modalities makes the depth boundary sharper, since the audio
modality is conducive to depth estimation for textureless backgrounds. Fig. 7
further shows the comparison results on the Stereo-Matterport3D dataset. Our
method produces more accurate depth maps on both foreground objects and
backgrounds. The reasons are two-fold. Firstly, the scenes in Matterport3D are
rich in textures thus enhancing the stereo performance. Secondly, complemen-
tary knowledge of echoes further improves the depth maps of background objects
that are far away, such as windows and murals on walls.
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(a) Stereo-Replica Dataset (b) Stereo-Matterport3D Dataset

Fig. 8. Confidence map visualization on Stereo-Replica (left) and Stereo-Matterport3D
(right). The echo modality produces high confidence for textureless areas (black box)
whereas the visual modality attends more on richly-textured regions (red box). Warm
colors represent high confidence while cool colors represent low confidence.

We further visualize the confidence maps for Echo Net and Stereo Net in
Fig. 8. On Stereo-Replica, the audio modality is generally more confident in tex-
tureless regions (e.g., white walls in the backgrounds) while the visual modality
is more confident in textured foreground objects (e.g., sofa and table). On Stereo-
Matterport3D, the visual modality produces higher confidence in most regions,
since most scenes have rich textures suitable for matching. Unfortunately, visual
modalities tend to exhibit poor confidence in dark textureless regions, where
audio modalities are mainly relied upon. An example is marked using a black
box in the rightmost case in Fig. 8. The above analysis suggests that the audio
and visual modalities can complement each other. Our method tries to leverage
the best of the strengths of both modalities to yield the final depth.

6 Conclusion and Future Work

In this paper, we propose a new problem of predicting depth with stereo images
and echoes and introduce the Stereo-Replica and Stereo-Matterport3D datasets
as benchmarks. To exploit the reciprocal relationship of both modalities for
addressing the problem, we have proposed the StereoEchoes framework consist-
ing of the CVR module at the feature level and the RDUE module for multi-
modal depth fusion. Extensive experiments on the two datasets validate that
our method improves stereo depth estimation by adding echoes. In future work,
we plan to extend our method to unsupervised conditions without ground truth
depth and deploy our model on edge devices for robot navigation.
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