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1 More Implementation Details

In this section, we provide more details about our model implementation in
addition to those discussed in the paper. The code and trained models for our
method are publicly available on https://github.com/prismformore/InvPT.
Model Optimization. For evaluation on NYUD-v2 [6] and PASCAL-Context [2],
we totally consider six dense prediction tasks, including semantic segmentation
(Semseg), monocular depth estimation (Depth), surface normal estimation (Nor-
mal), human parsing (Parsing), saliency detection (Saliency), and object bound-
ary detection (Boundary). For the continuous regression tasks (i.e. Depth and
Normal) a L1 Loss is employed. For the discrete classification tasks (i.e. Semseg,
Parsing, Saliency, and Boundary), a cross-entropy loss is utilized. For the sake of
simplicity, we use the same set of loss functions for both intermediate and final
supervision. The whole model can be end-to-end optimized.
Data Processing. For a fair comparison with ATRC [1], we follow its data
processing pipeline. On PASCAL-Context, we pad the image to the size of 512×
512, while on NYUD-v2, we randomly crop the input image to the size of 448×
576 as Swin Transformer [4] requires both the height and width to be even for
conducting patch merging. We use typical data augmentation including random
scaling, cropping, horizontal flipping and color jittering.
Implementation Details of Encoder Feature Aggregation (EFA). For
Swin Transformer encoders [4], we pass feature sequences from the first three
stages to Inverted Pyramid Transformer Decoder (InvPT decoder). For ViT en-
coders [3], since they do not explicitly define the concept of stage, we evenly
choose 3 layers based on the depth and unfold their output spatially, and then
use transposed convolution to upsample the resolution of feature maps to match
the spatial resolution in the corresponding decoder stage before further trans-
formation. Specifically, for ViT-base encoder, we use the output token sequences
of layer 3, 6, and 9, while for ViT-large encoder we use output token sequences
of layer 6, 12, and 18. The kernel size and stride of the transposed convolution
for the feature at the first scale are 4, and those at the second scale are 2.
Details about Self-attention in InvPT Decoder. The specific shapes of the
query, the key, and the value matrices (i.e. Q,K,V) in different UP-Transformer
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Fig. 1: An example frame of the demo video for the study of generalization
performance. Models are all trained on PASCAL-Context and tested on DAVIS
video dataset. Our method yields qualitatively better generalization performance
compared to PAD-Net [7] and ATRC [1].

Table 1: Shapes of Q,K,V matrices in different upsampling stages. Please refer
to Sec. 3.4 in paper for the detailed definitions of the notations in the table.
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stages are shown in Table 1. Please refer to Sec. 3.4 in paper for the detailed
definitions of the notations in the table.

2 More Experimental Results and Analysis

Video Demo for Generalization Performance Comparison on DAVIS
Video Dataset. As introduced in the paper, to qualitatively study the gener-
alization ability of the proposed multi-task transformer for dense scene under-
standing, we compare it with the best performing method, including ATRC [1]
and PAD-Net [7], on the challenging DAVIS video Dataset [5]. The results are
shown in the github page. All the models are trained on Pascal-Context with
5 tasks, i.e. semantic segmentation, surface normal estimation, human parsing,
saliency detection, and object boundary detection. Then the models are directly
tested on DAVIS to generate multi-task predictions in the demo video. Signifi-
cantly stronger generalization ability of our InvPT is observed and an example
frame is shown in Fig. 1.
Effect of Different Transformer Encoders. Similar to the results on PASCAL-
Context in the paper, we compare two families of transformer encoders: Swin
Transformer (Swin-T, Swin-B and Swin-L) [4] and ViT (ViT-B and ViT-L) [3] on
NYUD-v2 (Table 2). We observe that the bigger model of the same model family
consistently brings performance gain on semantic segmentation and monocular
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Table 2: Performance comparison of using different transformer encoder struc-
tures in InvPT on NYUD-v2.

Model
Semseg Depth Normal Boundary
mIoU ↑ RMSE ↓ mErr ↓ odsF ↑

Swin-T 44.27 0.5589 20.46 76.10
Swin-B 50.97 0.5071 19.39 77.30
Swin-L 51.76 0.5020 19.39 77.60

Vit-B 50.30 0.5367 19.00 77.60
Vit-L 53.56 0.5183 19.04 78.10

Table 3: Computation analysis of InvPT with different backbones.

InvPT w/ Swin-T w/ Swin-B w/ Swin-L w/ Vit-B w/ Vit-L

Runtime (sec/img) 0.0270 0.0375 0.0462 0.0356 0.0633
GPU memory (MB) 2921 3238 4973 3175 4977
Number of parameters 78M 162M 364M 138M 380M

Table 4: Computation efficiency of UP-Transformer Block.

Method Runtime (sec/img) GPU memory (MB) Number of parameters

InvPT w/ vanilla ViT Upsampling 0.1194 11827 400M
InvPT w/ UP-Transformer (ours) 0.0356 3175 138M

depth estimation, while on other dense tasks (i.e. saliency and boundary detec-
tion), it does not necessarily yield significantly better performance despite with
higher model capacity. This phenomenon may result from the distinct charac-
teristics of different dense prediction tasks.

Computation cost of InvPT We show the computation cost of the proposed
InvPT model in Table 3, including runtime per image, single-sample GPU-
memory consumption, and the model size (in terms of number of parameters)
of InvPT with different transformer backbone architectures. We run on the test
split (i.e. 5,105 images in total) of PASCAL-Context dataset and calculate the
average inference runtime per sample using a NVIDIA RTX 3090 GPU.

Computation efficiency of UP-Transformer Block Table 4 compares be-
tween our UP-Transformer block and a vallina vision transformer-based [3] up-
sampling block which also upsamples the multi-task outputs with the same three
stages. They use the same Vit-B encoder. It is clear that our design achieves sig-
nificant improvement on efficiency compared to the baseline (e.g. approximately
3×more efficient in terms of runtime, GPU memory, and number of parameters).

More Qualitative Results. We show more prediction results by InvPT (ours)
and the previous SOTA method ATRC [1] on the challenging PASCAL-Context
dataset in Fig. 2 and 3. It is clear that our method produces significantly better
results than ATRC, especially on semantic segmentation and human parsing.
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Qualitative Comparison of the Preliminary and Final Predictions of
InvPT. Fig. 4 shows the qualitative comparison of the preliminary predictions
and the final predictions generated by InvPT on PASCAL-Context. We can
observe that InvPT decoder successfully refines the preliminary predictions and
generates remarkably better results on all these dense prediction tasks.
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Fig. 2: Qualitative comparison with the best performing method ATRC [1] on
PASCAL-Context. Our method generates significantly better results especially
on semantic segmentation and human parsing.
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Fig. 3: Qualitative comparison with the best performing method ATRC [1] on
PASCAL-Context. Our method generates significantly better predictions espe-
cially on semantic segmentation and human parsing.
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Fig. 4: Qualitative comparison of the predictions from the preliminary decoder
and the final predictions of InvPT decoder on PASCAL-Context. The final pre-
dictions on all these tasks are significantly more accurate.
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