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Abstract. Predicting futures of surrounding agents is critical for au-
tonomous systems such as self-driving cars. Instead of requiring accurate
detection and tracking prior to trajectory prediction, an object agnostic
Sequential Pointcloud Forecasting (SPF) task was proposed [28], which
enables a forecast-then-detect pipeline effective for downstream detec-
tion and trajectory prediction. One limitation of prior work is that it
forecasts only a deterministic sequence of future point clouds, despite
the inherent uncertainty of dynamic scenes. In this work, we tackle the
stochastic SPF problem by proposing a generative model with two main
components: (1) a conditional variational recurrent neural network that
models a temporally-dependent latent space; (2) a pyramid-LSTM that
increases the fidelity of predictions with temporally-aligned skip connec-
tions. Through experiments on real-world autonomous driving datasets,
our stochastic SPF model produces higher-fidelity predictions, reducing
Chamfer distances by up to 56.6% compared to its deterministic coun-
terpart. In addition, our model can estimate the uncertainty of predicted
points, which can be helpful to downstream tasks.

Keywords: Sequential point cloud forecasting; variational recurrent neu-
ral network; future uncertainty; self-driving cars.

1 Introduction

Uncertainty is an inherent challenge associated with different future prediction
tasks such as video prediction [4,30,31,23], trajectory prediction [33,15,18,29] and
sequential pointcloud forecasting (SPF) [28,21]. For SPF [28], given a sequence
of past point clouds captured by the LiDAR sensor, future point clouds are
uncertain because the future behaviors of entities in the scene are uncertain.
Although prior work in video prediction [7,20] and trajectory prediction [25,33]
has made significant advancements in developing generative models to handle
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Fig. 1. Different from prior work (top) that uses a deterministic model to predict a
single future of point clouds, our S2Net (bottom) can sample (e.g., green and brown)
sequences of latent variables to tackle future uncertainty. Also, each sequence of latent
variables is temporally-dependent to ensure consistency of forecasting.

future uncertainty, prior work in SPF is limited by predicting a deterministic
sequence of future point clouds.

In this work, we propose S2Net4, a Stochastic SPFNet that, for the first time,
enables prediction of stochastic future point clouds. Specifically, we follow the
LSTM (Long Short-Term Memory) encoder-decoder style as in [28] but extend
it with a conditional variational LSTM. At each frame, the LSTM hidden state
propagates past information up to the current frame, which we use as the context
and map to a prior distribution. Then, we can sample from this prior distribution
to predict the point cloud in the next frame through a decoder. As future point
clouds are supposed to be temporally-consistent, the uncertainty at each frame
should depend on the last frame. Therefore, we enforce the temporal dependency
between sampled latent variables across time as shown in Fig. 1.

4 Our project website is at https://www.xinshuoweng.com/projects/S2Net.

https://www.xinshuoweng.com/projects/S2Net
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Another limitation of prior work is blurry predictions or excessive smoothness
in the predicted point clouds. We alleviate this issue and improve the fidelity
of predicted point clouds by adding skip connections between encoders and de-
coders. Specifically, a pyramid of features at different levels of encoders are fed
into the decoders, which reduces the complexity of training the decoder because
now it only needs to learn residuals of features. However, naively adding skip
connections performs poorly in the SPF task as the timestamp of features in the
encoder is not aligned with the timestamp of features in the decoder. To tackle
this issue, we add additional LSTMs at every level of the pyramids before skip
connection so that we fuse temporally-aligned features in the decoder.

Through experiments on KITTI and nuScenes, we show that the pyramid
LSTMs is a key to produce sharper and more accurate point clouds than the
simple LSTM encoder-decoder framework in [28]. Combining with the condi-
tional variational LSTM, we reduce predictions errors by 56.6% relative to its
deterministic counterpart when sampling five predictions. By computing the
standard deviation of every point across five samples, we can measure how cer-
tain the network is about every predicted point, which can be useful to down-
stream tasks. Also, compared to [28], the addition of conditional variational
LSTM and temporally-aligned skip connections does not add significant compu-
tational overhead, so our method is still efficient and able to predict a sequence
of large-scale LiDAR point clouds (e.g., 122,880 points per frame) for a time
horizon of 3 seconds. Our contributions are summarized below:

1. a stochastic SPF model (S2Net) with temporally-dependent latent space that
can sample predictions of point clouds to tackle future uncertainty;

2. a pyramid-LSTM module that can increase the fidelity and sharpness of the
predicted future point clouds over prior work;

3. an efficient network design that allows prediction of a sequence of large-scale
LiDAR point clouds over a long horizon.

2 Related Work

Sequential Pointcloud Forecasting was proposed in [28] for large-scale Li-
DAR point clouds. It has been shown that, by scaling up the learning of SPF
in a fully unsupervised manner, the downstream trajectory prediction task can
be improved. Instead of using 1D-LSTM, [27] proposed to use ConvLSTM for
SPF. Instead of directly predicting point locations, [9] proposes to predict flow
which can be added to the input point cloud to generate future point locations.
However, [9] only predicts the next frame of point cloud, which does not strictly
follow the design of sequence prediction. Recently, [21] proposes to use 3D con-
volutions to jointly encode spatial and temporal information for SPF, which
shows improved performance over [28]. However, all these prior works propose
deterministic models, whereas our method can predict stochastic futures of point
cloud sequences to tackle future uncertainty.

Sequence Point Cloud Processing is closely related to SPF as it also pro-
cesses a sequence of point clouds. The difference to SPF is that, the term “point
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cloud” here is loose and does not necessarily mean large-scale LiDAR point
cloud. For example, it can be processing of image pixels such as moving MNIST
[12] with 64 × 64 = 4096 pixels as in [14], or processing severely downsampled
LiDAR point clouds of about 1, 024 points as in [12], or processing mobile traffic
with about 5, 000 points as in [34], or processing human hand joints with less
than 50 points as in [22]. Because it does not necessarily process large-scale Li-
DAR point clouds, network efficiency is not a critical concern in prior work of
sequence point cloud processing. As a result, these works may not be directly
transferred to SPF and process full LiDAR point cloud data, although we can
draw inspiration from these works in designing our method for SPF. In contrast,
our method is designed specifically for SPF, and can operate on a sequence of
≥ 100, 000 points, i.e., a total of ≥ 1M points for 10 frames.

Variational Models in Sequence Modeling. Stochastic recurrent networks
[3,8,6] are commonly used to model variations and uncertainty in sequential data,
which is significantly different from standard VAE/CVAE[16] that is designed
to model variations for a single frame of data. STORNs [3] incorporates a latent
variable into every timestamp of the recurrent network, where the latent vari-
ables are independent across time. VRNN [8] models the dependency between
the RNN’s hidden state at the current timestamp and the latent variable in the
last timestamp. As the latent variable in the current timestamp also depends
on the RNN’s hidden state, there is an indirect temporal dependency between
latent variables. [6] further improves VRNN by allowing direct temporal depen-
dency between latent variables5. However, the use of these stochastic recurrent
networks in large-scale future prediction tasks is still under-explored, and in this
work we explore how we can adapt them to stochastic SPF.

Point Cloud Generation. Most prior work focuses on generating a point cloud
of a single object at a single frame. [11] proposes to optimize object point cloud
generation using Chamfer distance [11] and Earth Mover’s distance [24]. [19]
projects the point cloud into 2d images from multiple views and optimizes for
the re-projection error. Other works focus on stochastic object point cloud gener-
ation, where normalizing flow [32], generative adversarial networks (GANs)[26],
or variational autoencoders (VAEs) [17] can be used. Different from these works
which are designed to generate the point cloud for an object or a scene at a
single frame, our work aims to predict a long horizon of large-scale point clouds.

3 Approach: S2Net

The goal of stochastic SPF (Sequential Pointcloud Forecasting) is to learn a func-
tion that can sample different sequences of future point clouds given a sequence
of observed past point clouds. Let Sp = {S1−M , . . . ,S0} denote M frames of
past point clouds of a scene and Sf = {S1, . . . ,SN} denote N frames of future

point clouds. Each frame of point cloud St = {(x, y, z)j}Kt
j=1 = {uj}Kt

j=1 con-
tains a set of unordered points, where t ∈ [1-M, · · ·, N ] denotes the frame index,

5 An illustrative comparison between these works can be found in [6].
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j ∈ [1, · · ·,Kt] denotes the index of point and Kt denotes the number of points
at frame t. Then, we aim to learn a function F that can map Sp and sampled
latent variables Z = {z1, . . . ,zN} to a sequence of future point clouds Sf :

Sf = F(Sp,Z). (1)

In this work, we use LiDAR point clouds as S to validate our approach, but
our approach can also be applied to other types of point clouds such as those
captured by indoor RGB-D cameras or generated by stereo images. The main
challenge of working with LiDAR point clouds is that the data is typically large-
scale, that is more than 100, 000 points per frame or 1 million of points for a
sequence of 10 frames, so efficiency is the key in approach design.

The network architecture of our approach is illustrated in Fig. 2, which con-
tains the following parts: 1) a shared encoder to obtain features rlt at different
levels of the pyramid and at all frames, where t ∈ [1 − M, · · ·, N ] denotes the
frame index and l ∈ [1, · · ·, L] denotes the pyramid level; 2) a pyramid of LSTMs
to propagate features from the past frame hl

t−1 to the future hl
t; 3) a temporally-

dependent latent model that computes the prior distribution and sample latent
variable zt conditioned on previous latent zt−1 and current hidden state h1

t ; 4)
a shared decoder to predict the next frame’s point cloud S ′

t given zt, h
l
t, where

l ∈ [1, · · ·, L]. Here we omit the details about how to compute the prior and pos-
terior distribution to sample latent variables during training and testing, which
can be found in Sec. 3.4. During testing, our model performs auto-regressive
prediction, which uses the predicted point cloud as input for the next frame.

3.1 Input/Output Representation: Range Map

To represent a point cloud S = {(x, y, z)j}Kj=1, we follow prior work [21,28] and

use the range map representation R ∈ RH×W×1. Each range map can be viewed
as a 1-channel image, with every pixel corresponding to a point in 3D and the
pixel value storing the Euclidean distance d =

√
x2 + y2 + z2 of the point to

the LiDAR sensor. To convert a point cloud to a range map, we use spherical
projection. Specifically, for a point p = (x, y, z) in the Cartesian coordinate (z
is the height), its coordinate in the range map q = (θ, ϕ) can be computed as:

θ = arctan(y/x), ϕ = arcsin(z/
√

x2 + y2 + z2) = arcsin(z/d), (2)

where θ, ϕ are the azimuth, elevation angle. Since d is stored in the range map,
one can also apply inverse spherical projection to recover the p = (x, y, z) as:

z = sin(ϕ)× d, dground = cos(ϕ)× d, (3)

where dground is the projected distance on the x-y ground plane. Then,

x = cos(θ)× dground, y = sin(θ)× dground. (4)

Although range map is an image representation, it is very different from other
image representations which often involves loss of information during projection
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Fig. 2. (Left) Extracting features from past frames. Given a point cloud St in the
past, we first convert it into a 2D range map Rt (spherical projection) and then extract
features rl

t = {r1
t , r

2
t , · · · , rL

t } at different layers with a 2D CNN (range encoder).
To learn temporal dynamics, features at different layers rl

t are propagated through
time via pyramid LSTMs and output hidden states hl

0 = {h1
0,h

2
0, · · · ,hL

0 }. (Right)
Autoregressive future prediction. To begin at input frame 0, given propagated
hidden states hl

0 and extracted feature pyramids rl
0, we further propagate the LSTM

hidden states into frame 1. Combining h1
1 with the initialized latent variable z0, a

prior distribution is computed during testing where we can sample multiple z1. We
then predict the range map R′

1 and range mask M′
1 via the range decoder, conditioned

on the propagated hidden states (h1
1,h

2
1, · · · ,hL

1 ) and sampled latent variable z1. For
illustration, we only show using three past frames of inputs (S−2,S−1,S0) to predict two
frames of future (S ′

1,S ′
2). Also, only one branch of the encoder-decoder is shown while

we have two sets of encoders and decoders for range map and range mask separately.

such as the camera image with perspective projection (losing depth information)
or the Bird’s eye view projection (losing height information). In contrast, there
is no loss of information in theory6 when converting a point cloud to range map
since the range map preserves full LiDAR data. Also, it is very efficient to process
range maps with CNNs (Convolutional Neural Networks) due to the nature of
image representation, which is the key to our efficient network design.

6 There might be still a small amount of information loss due to discretization unless
one uses very high-resolution range map as we do in the experiments.
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3.2 Range Encoder

To process the range map Rt converted from the point cloud St, we follow
[28] and use a 2D CNNs as shown in reddish-brown in Fig. 2. This 2D CNNs
contains a series of blocks, with each block having a 2D convolution, batch
normalization (BN) and LeakyReLU activation, except for the last block which
does not have BN and LeakyReLU. The output of the encoder is a pyramid of
features [r1t , · · ·, rLt ] after each layer of convolution. The range encoder is shared
for all past frames (R1−M , · · · ,R0) and also used to extract features from the
predicted range maps (R′

1, · · · ,R′
N−1).

In addition to the range map encoder, we have another range mask encoder
that has the exactly same architecture as the range map encoder, which we omit
in Fig. 2 for simplicity. The goal of the range mask encoder is to learn features to
predict the range mask M′

t, which masks out “empty” pixels7 in the predicted
range map R′

t. The inputs to the range mask encoder are the same as the range
map encoder, i.e., Rt, while the weights of two encoders are not shared.

3.3 Pyramid LSTMs

After extracting features at different levels rlt for all past frames, we propagate
them through time using LSTMs to learn temporal dynamics of the point cloud
sequence. As the encoder CNNs output a vector in the last layer r1t , we use stan-
dard LSTM as shown in blue in Fig. 2 to propagate r1t through time. However,
for features at other levels except for the last layer, we use Convolutional LSTMs
(ConvLSTM) as shown in orangish-yellow in Fig. 2 because rlt is a 2D feature
map when l > 1. The outputs of pyramid LSTMs at frame t− 1 are propagated
to obtain hidden states hl

t (with a shift of one timestep), where l ∈ [1, · · ·, L].
The motivation to keep other levels of features (besides r1t ) being propagated

through time is to prepare for temporally-aligned skip connection in the decoder
at multiple pyramid levels, which we realize is a key to increase the prediction
accuracy compared to using only one level of features as shown in the ablation
in Table 3 (right). Also, if only extracting feature pyramids for naive skip con-
nection without propagating them through time, e.g., directly feeding r20, r

3
0, r

4
0

(rather than h2
1,h

3
1,h

4
1) to the decoder at frame 0, the timestamps of features

in the decoder are not consistent which turns out can mess up the training.

3.4 CVAE Prior and Posterior

To enable prediction of stochastic futures, we adapt standard CVAE (Conditional
Variational Auto-encoder) framework to our sequence-to-sequence problem. As
shown in related stochastic video prediction work [10], learnable prior N (µ,σ2),
where µ and σ of the Gaussian are conditioned on context features, works better

7 Unlike RGB images, not every pixel in the range map is valid. This is because there
are pixels without corresponding points in 3D due to no return of the LiDAR beam
in that direction, e.g., when the LiDAR beam shots to the sky.
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Fig. 3. (Left) Computing the prior. To better accommodate prediction at a long
horizon, we learn the prior N (µp

t ,σ
p
t
2) = N (µϕ1(S1−M :t−1), σϕ2(S1−M :t−1)), instead

of using a fixed Gaussian N (0, I). The inputs are the concatenated feature of zt−1

and h1
t , where h1

t is the context feature while zt−1 enforces temporal dependency in
the latent space. We then compute the mean µp

t and variance σp
t via MLPs so we

can sample latent variable zp
t . (Right) Computing the posterior. Except for one

additional input, that is the future range map Rt and its extracted feature r1
t , we use

the same architecture as the learnable prior to compute the posterior, although weights
are not shared between posterior and prior computation. A KL divergence loss Lkl

t is
applied between the computed prior and posterior distributions during training.

than fixed Gaussian prior N (0, I) in the sequence-to-sequence problem, so we
also use learnable prior for our S2Net.

As shown in Fig. 3 (left), the inputs to compute the prior at frame t − 1
are sampled latent variable zt−1 and the context feature h1

t (propagated LSTM
hidden state). Two inputs are first concatenated to obtain an intermediate fea-
ture ot, which is then fed into a joint MLPp (Multi-Layer Perceptron) followed
by two separate MLPp

µ and MLPp
σ to compute the mean µp

t and variance σp
t of

the prior distribution at frame t − 1. During testing time, we can then ran-
domly sample latent variables zp

t from the prior distribution N (µp
t ,σ

p
t
2
) =

N (µϕ1(S1−M :t−1), σϕ2(S1−M :t−1)) to enable stochastic prediction, where the
MLPs are parametrized by ϕ1 and ϕ2. The process can be summarized below:

ot = zt−1 ⊕ h1
t , (5)

µp
t = MLPp

µ(MLPp(ot)), σp
t = MLPp

σ(MLPp(ot)), (6)

zt ∼ N (µp
t ,σ

p
t
2
). (7)

Similar to computing the prior distribution during testing, we compute the
posterior distribution N (µq

t ,σ
q
t
2
) (Fig. 3 right) during training for the KL loss.
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The main difference when computing the posterior at frame t − 1 is the use of
future range map Rt as input, in addition to zt−1 and the context h1

t . Here, a
future range encoder that has the same architecture as the range encoder (Sec.
3.2) is used to extract features from the future range data Rt. Similarly, we can

sample latent variable zq
t ∼ N (µq

t ,σ
q
t
2
) = N (µϕ3

(S1−M :t), σϕ4
(S1−M :t)), where

ϕ3 and ϕ4 summarize parameters of the MLPq,MLPq
µ,MLPq

σ and the future
range encoder. Then, the latent variable zq

t is passed to the decoder during
training. Note that during testing, we only compute the prior as in the standard
CVAE formulation because we do not need the KL loss and also the future range
data (ground truth) Rt is not available at testing.

3.5 Temporally-Dependent Latent Space

Given the prior and posterior, we can sample the latent variable at every frame.
However, if we sample latent variables independently at every frame, it is not
likely to generate temporally-consistent variations in the predicted point clouds
as the uncertainty is drawn from independent samples. This motivates us to
enforce temporal dependency in the latent space, that is the latent variable zt is
directly conditioned on the latent variable zt−1 sampled in the previous frame
as shown in Fig. 3. We realize that this temporally-dependent latent space is
especially useful to improve the performance of point cloud prediction for a long
time horizon. The first latent variable z0 is initialized with all zeros.

3.6 Range Decoder

To obtain predicted point clouds at every future frame, we first predict the range
map R′

t and range mask M′
t. Then, the range map R′

t is used to generate point
clouds via inverse spherical projection as explained in Eq. 3 and 4, and the range
mask is used in a mask operation to prevent “empty” pixels in the range map
to generate “bad” points. The mask decoder has the architecture as the range
map decoder except that the weights of decoders are different.

Now we describe how we predict the range map or mask. As we formulate
the stochastic SPF in a CVAE framework, the range decoder at frame t − 1 is
conditioned on the context feature (LSTM hidden state h1

t ), in addition to the
sampled latent variable zt. Two inputs are concatenated before feeding into the
range decoder, as shown in Figure 2. To reduce the complexity of predicting
full-resolution range map R′

t from only two low-dimensional features (h1
t and

zt), we add the temporally-aligned skip connections from pyramid LSTMs. As
higher-resolution feature maps are added as inputs to the decoder, we only need
to learn the residual of features for small local changes after one frame, which
increases the fidelity of point cloud prediction. In terms of the architecture, the
range decoder has the inverse structure as the range encoder introduced in Sec.
3.2 except that the input channel of the first layer is increased to accommodate
the added dimension of the latent variable zt.
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3.7 Training Objective

Since we formulate our stochastic SPF in a sequential CVAE framework, we use
the negative evidence lower bound (ELBO) Lelbo as our loss function:

Lelbo = Eq(z≤N |S≤N )

[∑N

t=1

(
− log p(St|z≤t,S<t) + KL( q(zt|S≤t, z<t)

∥∥ p(zt|S<t, z<t) )

)]
, (8)

where the KL loss aims to minimize the difference between the prior distribution
p(zt|S<t, z<t) and posterior distribution q(zt|S≤t, z<t). Also, to maximize the
log-likelihood log p(St|z≤t,S<t), we use the following reconstruction losses:

1. Chamfer distance [11] Lcd
t between the predicted point cloud S ′

t (after points
masking) and ground truth (GT) point cloud St:

Lcd
t =

∑
u′∈S′

t

min
u∈St

∥u− u′∥22 +
∑

u∈St

min
u′∈S′

t

∥u− u′∥22, (9)

2. L1 distance LL1
t between the predicted range map R′

t and GT range map
Rt ∈ RH×W×2 at every valid pixel:

LL1
t =

∑H

i

∑W

j
∥Mti,j(R′

ti,j −Rti,j)∥1, (10)

3. A binary cross-entropy loss Lbce
t between the predicted mask M′

t and GT
mask Mt at every pixel:

Lbce
t =

∑H

i

∑W

j
−Mti,j log(M′

ti,j)− (1−Mti,j) log(1−M′
ti,j), (11)

Combining the reconstruction losses with the KL loss, our full loss function is:

L =
∑N

t=1
(Lkl

t +Lreconstruction
t ) =

∑N

t=1
(βLkl

t + αLcd
t + κLL1

t + ωLbce
t ). (12)

We note that our Lelbo is different from many CVAE-based methods [25,33]
because our reconstruction loss has three components (rather than only a L2 loss
for regression). But we will show in the supplementary that all three components
are necessary to achieve strong practical performance.

3.8 Training and Testing Details

To stabilize the LSTM training, especially for large-scale data over a long time
horizon, we apply teacher forcing [9]. This means that, at the beginning of the
training when prediction is of low quality, we use GT point clouds (S1,S2, · · · )
as inputs at future frames to ease the training. Then, we gradually increase the
probability of using predicted point clouds (S ′

1,S ′
2, · · · ) as inputs, which matches

the style of autoregressive prediction during testing.
When generating GT range mask for training, we let all pixels have a value

of 1 if they have corresponding 3D points after spherical projection, while let
all pixels have a value of 0 if they do not have corresponding projected points.
During testing, as the predicted range mask M′

t contains scalars between 0 and
1 after the softmax function, we use a threshold Tm to determine whether to
mask out the point generated from every pixel of the predicted range map.
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4 Experiments

Hyper-parameters. For KITTI [13], we use H = 60 and W = 2048 for the
input range map, which results in a total of K = 122880 points per frame. For
nuScenes [5], we use H = 28 and W = 1024 for the input range map, which
results in a total of K = 28672 points per frame. We use α = κ = ω = 1 and
β = 3e− 5 for the loss weights, and Tm = 0.05 as the threshold of the mask.

Network details. To extract features from the range map, we use a 2D CNN
with 8 blocks of convolution, BN and LeakyReLU by increasing the channel
dimensions from the input of 2 to the output of 512 (2 → 4 → 8 → 16 → 32 →
64 → 128 → 256 → 512). Then, we use output features at all layers as inputs to
our pyramid LSTMs so L = 8. The feature dimension of latent variables zt is
32 and the feature dimension of hidden states h1

t is 512.

4.1 Evaluation Methodology

Datasets. We use real-world autonomous driving datasets (KITTI [13] and
nuScenes [5]) for training and evaluation. For nuScenes, we use the official data
split [2] of the nuScenes prediction challenge (500, 200, 150 sequences for train,
val, test). We evaluate the prediction horizon of 1 and 3 seconds. For KITTI, we
use the raw dataset [1], which is a superset of the KITTI odometry, tracking,
detection datasets, etc. As there is no official data split for the KITTI raw
dataset, we created our own balanced data split.

Metrics. To evaluate the accuracy of predicted point clouds, we use standard
Chamfer Distance (CD) [11] (Sec. 3.7) and Earth Mover’s Distance (EMD) [24]
to measure the distance between a sequence of GT future point clouds Sf and
a sequence of predicted future point clouds S ′

f :

EMD(Sf ,S ′
f ) =

1

N

∑N

t=1
min

ϕ:S′
t→St

∑
u′∈S′

t

∥u′ − ϕ(u′)∥2. (13)

To adapt standard EMD and CD to evaluate our stochastic model, we follow
similar idea in the domain of trajectory prediction by computing the best of
k CD and EMD (minCDk,minEMDk) over Ksa predicted samples, where each
sample Sf

′
k is a sequence of predicted point clouds:

minCDk = mink∈(1,··· ,Ksa) CD(Sf ,Sf
′
k), minEMDk = mink∈(1,··· ,Ksa) EMD(Sf ,Sf

′
k), (14)

where we use Ksa = 5 for evaluation on both nuScenes and KITTI. To measure
the accuracy of predicted range maps, we use standard L1, L2 distance and also
the perceptual metrics including Structural Similarity Index Measure (SSIM)
and Peak Signal-to-Noise Ratio (PSNR).

Baselines. As SPF is still under-explored, there are mainly two baselines to our
knowledge which strictly follows the SPF design, i.e., [28] and [21]. We evaluate
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Table 1. Comparison on the test split of the KITTI raw dataset.

Prediction
horizon Methods

Range Map Point Cloud
L1↓ L2↓ SSIM↑ PSNR↑ CD↓ EMD↓

1
second

SPFNet [28] 0.865 3.108 0.845 24.610 0.341 123.826
[21] 0.707 3.603 0.873 30.453 0.202 96.426
S2Net (w/ Pyramid LSTMs only) 0.723 2.745 0.754 25.801 0.203 106.830
S2Net (w/ Pyramid LSTMs + Temporally-dependent latent) 0.675 2.433 0.868 30.294 0.148 84.418

3
seconds

SPFNet [28] 1.086 4.586 0.827 27.092 0.562 135.690
[21] 1.187 6.069 0.795 25.935 0.379 143.194
S2Net (w/ Pyramid LSTMs only) 1.008 4.413 0.869 29.668 0.360 130.325
S2Net (w/ Pyramid LSTMs + Temporally-dependent latent) 0.983 4.374 0.894 31.647 0.293 120.874

Table 2. Comparison on the test split of the nuScenes prediction dataset.

Prediction
horizon Methods

Range Map Point Cloud
L1↓ L2↓ SSIM↑ PSNR↑ CD↓ EMD↓

1
second

SPFNet [28] 0.669 1.406 0.708 23.545 0.456 239.798
S2Net (w/ Pyramid LSTMs only) 0.622 1.196 0.759 21.118 0.366 189.336
S2Net (w/ Pyramid LSTMs + Temporally-dependent latent) 0.545 1.285 0.785 23.274 0.321 172.069

3
seconds

SPFNet [28] 0.706 1.869 0.717 23.587 0.522 238.239
S2Net (w/ Pyramid LSTMs only) 0.712 1.644 0.702 21.452 0.421 205.269
S2Net (w/ Pyramid LSTMs + Temporally-dependent latent) 0.560 1.261 0.685 20.870 0.381 209.267

SPFNet [28]8 on both KITTI/nuScenes, while we evaluate [21] only on the KITTI
dataset because [21]9 did not provide method description or configuration files
on the nuScenes or other datasets.

4.2 Results and Analysis

Results on KITTI. Results on the test set are summarized in Table 1. Unsur-
prisingly, our method outperforms SPFNet [28] and the most recent work [21] in
all settings (1 or 3 seconds of horizon). Also, it is important to note that both of
the key innovations of our method (Pyramid LSTMs and temporally-dependent
latent space) are effective for the SPF task! For example, our method reduces
the CD in the 1-second setting by 40.5% (from 0.341 to 0.203) after adding Pyra-
mid LSTMs, and then reduces the CD in the 1-second setting by 27.1% (from
0.203 to 0.148) after adding temporally-dependent latent space, with an overall
of 56.6% error reduction (from 0.341 to 0.148) compared to SPFNet.

Results on nuScenes. We summarize the results in Table 2. Similar to the
trend in the KITTI experiments, S2Net also outperforms the SPFNet baseline
for both 1-second and 3-seconds settings. One interesting finding is that the
overall magnitude of CD and EMD on nuScenes is higher than those on KITTI.
We believe that this is due to sparser point clouds10 in nuScenes. In other words,

8 Note that the original numbers reported in [28] are different due to various changes
including improved network architectures, balanced data split, improved implemen-
tation of the metrics, etc.

9 Even for KITTI, [21] has only evaluated on the odometry dataset with only 22
sequences, i.e., a subset of the raw dataset, so we have re-trained their model on the
full KITTI raw dataset using the official code and KITTI configuration files.

10 We did not aggregate point clouds along the temporal dimension.
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Table 3. Ablation study. (Left): Effect of temporal dependency of the latent space.
(Right): Effect of pyramid LSTMs on the KITTI dataset.

Datasets Horizon Methods CD EMD

KITTI

1 second
No dependency 0.171 87.564
Indirect dependency 0.155 92.586
Direct dependency 0.148 84.418

3 seconds
No dependency 0.357 120.391
Indirect dependency 0.316 126.498
Direct dependency 0.293 120.874

nuScenes

1 second
No dependency 0.352 194.640
Indirect dependency 0.334 173.642
Direct dependency 0.321 172.069

3 seconds
No dependency 0.485 212.755
Indirect dependency 0.482 222.665
Direct dependency 0.381 209.267

Horizon
Pyramid
LSTMs

No. of
Pyramids CD EMD

1 second

7 0.366 130.586
✓ 1 0.196 110.593
✓ 3 0.176 100.439
✓ 5 0.163 94.427
✓ 7 0.148 84.418

3 seconds

7 0.472 169.110
✓ 1 0.381 130.898
✓ 3 0.345 123.225
✓ 5 0.349 124.010
✓ 7 0.293 120.874

for each point, its nearest neighbor point in the GT point cloud generally has a
larger distance in nuScenes.

Effect of Temporally-Dependent Latent Space. To validate this key inno-
vation of our stochastic SPF approach, we experiment with two other variants
of our method: 1) No dependency. We remove the dependency between zt−1 and
zt when computing the prior and posterior; 2) Indirect dependency. Instead of
using zt−1 as a conditioning variable to zt, we now let h1

t depends on zt−1. As
zt depends on the context h1

t , so there is an indirect dependency between zt−1

and zt. The results for three variants are summarized in Table 3 (left), where
our method with direct dependency between latent variables achieves the best
performance consistently, compared to indirect dependency and no dependency.

Effect of Pyramid LSTMs. To validate the effectiveness of another key in-
novation of our S2Net, i.e., pyramid LSTMs, we experiment with the following
variants of our method: 1) Decrease the number of pyramids we use in pyramid
LSTMs, e.g., L = 1, 3, 5, compared to L = 7 we use in our full model; 2) Keep
L = 7 but remove the temporal alignment of the pyramid features, i.e., removing
the orangish-yellow ConvLSTM as shown in Fig. 2.

Results are summarized in Table 3 (right), where we use the temporally-
dependent latent space for all variants. First, when we compare the 5th row
with the 2nd, 3rd, 4th rows for both 1-second and 3-second settings, we can see
that using all levels of feature pyramids L = 7 achieves the best performance
compared to using fewer number of pyramids. This shows that adding the pyra-
mid features is indeed useful. Also, when we compare the 1st row and all other
rows, we can see that the prediction performance drops significantly if we re-
move the LSTMs between feature pyramids across timestamps. This confirms
that naively adding skip connection to our prediction model is not sufficient and
our design of pyramid LSTMs is reasonable.

Uncertainty Measurement. As our S2Net is a generative model, we can com-
pute the standard deviation (SD) of the pixel value from multiple samples of
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Fig. 4. (Left) GT point cloud. (Right) Predicted point cloud at the same frame col-
orized with computer point-wise uncertainty. The more red, the higher uncertainty.

predictions. We use this SD as the uncertainty measurement for each point. To
understand which predicted points our S2Net is uncertain about, we visualize
the predicted point cloud (1-second horizon) in Fig. 4 (right) where each point
is colorized with the SD computed from 5 samples. We can see that points with
high uncertainty (red) are mostly around the object boundary, which is reason-
able since object’s future motion is inherently uncertain.

Qualitative Results. Due to limited space, we refer readers to the supplemen-
tary for high-resolution visualization. The takeaway is that, with the addition of
pyramid LSTMs and temporally-dependent latent space, our S2Net can predict
higher-fidelity point clouds (better global structure, more clear freespace and
sharper object boundary) compared to SPFNet on different scenes with pedes-
trians and cars. Also, we provide more visualization of uncertainty measurements
in the supplementary, to show the inherent future uncertainty and the potential
benefits to the downstream tasks.

5 Conclusion

Our work opened a new direction of predicting stochastic futures of large-scale
LiDAR point clouds, which can deal with the inherent future uncertainty and
strengthen the forecast-then-detect pipeline proposed in [28] for autonomous
systems. We showed that both the addition of temporally-dependent latent space
and pyramid LSTMs are critical to obtaining significantly better performance.
In future work, we plan to investigate how this new stochastic SPF model can
be applied to downstream tasks such as tracking and planning.
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