Appendix

Fig.1: Comparison of depth predictions of traditional dense depth predictions
and depth predictions of PolyphonicFormer. From left to right: input images,
traditional dense depth predictions, and depth predictions of PolyphonicFormer.

A TImplementation Details

We report the implementation details in this section. To train the Polyphonic-
Former, we first pre-train the backbone on ImageNet-1K [8] and the pre-train
the panoptic path with Mapillary [5] and Cityscapes [3] datasets, following the
ViP-Deeplab [6]. When performing the pre-training on Mapillary, we resize the
original images to a random scale from 2048 x 1024 to 4096 x 2048 and randomly
crop a 1024 x 1024 sample. We do the Mapillary pre-training for 300 epochs.
For Cityscapes pre-training, we also perform random resize from 2048 x 1024
to 4096 x 2048, but crop to 2048 x 1024. After pre-training, we train the im-
age baseline of PolyphonicFormer on Cityscapes-DVPS. Training on Cityscapes-
DVPS requires 192 epochs and takes the same data augmentation strategy as
the Cityscapes dataset. The depth ground truth needs to be divided by the re-
size scale factor because resizing an image means zooming the image for depth
perception. The ablation studies are performed on the image baseline. With
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Fig.2: We present several videos . The left and middle are mask and depth
results of tracked instance examples output by PolyphonicFormer. The depth
results are merged into the final prediction (bottom right).

the image baseline, we fine-tune the PolyphonicFormer with a tracking head on
Cityscapes-DVPS and SemKITTI-DVPS respectively for 48 epochs. For each
sample, we randomly choose a reference frame from time t — 2, ¢t — 1, ¢ 4+ 1, and
t + 2 for source frame at time t. We do not perform random scale resizing on
SemKITTI-DVPS, and only pad the images to 1280 x 384 instead, which is the
minimum size that can be divided by 32 to cover all of the KITTI images. All
of the datasets we used are without extra data with pseudo labels [2] for self-
supervised or semi-supervised training. During inference, for simplicity, we use
single scale inference with the original image size from the datasets, and we do
not use the test time online depth refinement [1]. In general, except for that we
do not use the test-time augmentation and semi-supervised learning, we adopt
similar settings with ViP-Deeplab [6].

For the ICCV-2021 SemKITTI-DVPS Challenge submission, we take advan-
tage of the validation set for training. Before and after adding the extra validation
samples, PolyphonicFormer can achieve 63.6 and 64.6 DSTQ respectively in the
SemKITTI-DVPS test set.

B More Visualization analyses

We show more visualization analysis results in Figure 1. The depth predictions
of PolyphonicFormer are merged from depth predictions for each thing or stuff
mask. As shown in Figure 1, the final depth predictions of PolyphonicFormer
successfully distinguish the boundary between the instances or instances and
corresponding background and thus are more accurate than the dense prediction
results. We note that the results are presented with a high resolution, so we
recommend the readers zoom in to check the details about the depth results of
other instances.

We also illustrate the unified query learning with a video, as shown in Fig-
ure 2. The PolyphonicFormer generates temporal-consistent instance-level mask
and depth predictions and merges them into the final results.


https://github.com/HarborYuan/PolyphonicFormer

Appendix 3

DVPQ?! on Cityscapes-DVPS | k=1 | k=2 | k=3 | k=4 | Average  |FLOPs
PolyphonicFormer A = 0.50 [64.3 | 56.0 | 70.3|57.1 | 43.1 | 67.2|54.0 | 37.0 | 66.3|52.3 | 34.3 | 65.3|56.9 | 42.6 | 67.3
PolyphonicFormer A = 0.25 [59.7 | 53.3 | 64.4|53.0 | 41.3 | 61.5|49.9 | 35.3 | 60.5(48.6 | 33.0 | 60.0|52.8 | 40.7 | 61.6
PolyphonicFormer A = 0.10 (39.3 | 31.8 | 44.7(34.3 | 23.3 | 42.3(32.7 | 20.3 | 41.7(31.5 | 18.6 | 40.8|34.5 | 23.5 | 42.4
Average: PolyphonicFormer |54.4 | 47.0 | 50.848.1 | 35.9 | 57.0/45.5 | 30.9 | 56.2/44.1 | 28.6 | 55.4|48.1 | 35.6 | 57.1] 411G
DVPQ! on SemKITTI-DVPS| k=1 | k=5 | k=10 | k=20 | Average |FLOPs
PolyphonicFormer A = 0.50 [50.5 | 44.0 | 55.3]45.7 | 34.8 | 53.7|44.4 | 32.4 | 53.1|43.7 | 31.4 | 52.7|46.1 | 35.7 | 53.7
PolyphonicFormer A = 0.25 [47.9 | 42.2 | 52.143.2 | 33.3 | 50.4|42.0 | 31.1 | 49.9|41.3 | 30.3 | 49.4|43.6 | 34.2 | 50.5
PolyphonicFormer A = 0.10 (35.9 | 33.6 | 37.631.2 | 25.2 | 35.5/29.6 | 22.9 | 34.5(28.5 | 21.5 | 33.6/31.3 | 25.8 | 35.3
Average: PolyphonicFormer |44.8 | 30.9 | 48.3(40.0 | 311 | 46.5(38.7 | 28.8 | 45.8/37.8 | 27.7 | 45.2/40.3 | 31.9 | 46.5| 99G

Table 1: Experimental results on Cityscapes-DVPS and SemKITTI-DVPS datasets
with Resnet-50 backbone. Each cell shows DVPQ% | DVPQ%-Thing | DVPQ¥-Stuff
where A is the threshold of relative depth error, and k is the number of frames. Smaller
A and larger k correspond to a higher accuracy requirement. We also estimate the
computational cost (FLOPs) of ViP-Deeplab with Resnet-50 backbone and get 1,096G
and 280G on Cityscapes-DVPS and SemKITTI-DVPS respectively.

method abs rel| sq rel [RMSE|[RMSE loglo < 1.25]0 < 1.25%[0 < 1.253
DPT-Hybrid [7] 0.0697 | 0.4515 | 4.115 | 0.1106 | 0.9434 | 0.9914 | 0.9976
PolyphonicFormer|(|0.0647|0.3454|3.800| 0.1013 | 0.9524 | 0.9950 | 0.9985
Table 2: Comparison results of PolyphonicFormer and the representative depth esti-
mation method. The metrics with background means ”lower is better”. The
metrics with background means ”higher is better”. ViP-Deeplab [(] has a 0.0721
abs rel.

C DMore Experiments

We report more results of PolyphonicFormer in this section. The results of Poly-
phonicFormer with Swin-B backbone are already provided, and we report the
DVPQ results with Resnet-50 backbone in this section. As shown in Table 1,
with a Resnet-50 backbone, the PolyphonicFormer achieves 48.1, and 40.3 in
DVPQ on the Cityscapes-DVPS and SemKITTI-DVPS datasets, respectively.
We compare PolyphonicFormer with recently proposed DPT [7], which is one
of the state-of-the-art supervised monocular depth estimation methods on KITTI
(eigen split) [4]. As the KITTI dataset lacks the panoptic segmentation annota-
tion and the SemanticKITTT dataset has a very different split strategy compared
with eigen split, we cannot directly get the results on the KITTT eigen split. We
adopt the pre-trained model of DPT-Hybrid on MIX6 [7] (meta-datasets con-
taining 10 datasets) and KITTI eigen split, and fine-tune on Cityscapes-DVPS
with the same schedule of PolyphonicFormer. As in Table 2, our proposed Poly-
phonicFormer outperforms the DPT-Hybrid [7] and ViP-Deeplab [6].

D More Visualization Results

We show some of the visualization results from the Cityscapes-DVPS and SemKITTI-
DVPS datasets along with PolyphonicFormer (Swin-B backbone) predictions in
Figure 3 and Figure 4.
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Appendix 5

Fig. 3: Prediction visualizations on Cityscapes-DVPS. From left to right: input
images, temporally consistent panoptic segmentation (TCPS), and depth pre-
dictions. Color change of the same instance of TCPS indicates an id switch.
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Fig. 4: Prediction visualizations on SemKITTI-DVPS. From left to right: input
images, temporally consistent panoptic segmentation (TCPS), and depth pre-
dictions. Color change of the same instance of TCPS indicates an id switch.
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