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Appendix
7 Details of Sparse Annotation Tool

(1) Annotation Pipeline. As mentioned in Section 3, we develop a user-
friendly annotation pipeline based on the off-the-shelf software. Note that, this
tool is important to justify the feasibility/suitability of the low-cost random
sparse annotation scheme, as most existing methods have directly overlooked this
or taken it for granted that such tool is available. Here, we provide more detailed
information on the pipeline. Specifically, given large-scale raw point clouds, the
sparse annotation pipeline could be generally divided into the following steps:

1. Load the raw point clouds;

2. Random downsample to a specified ratio (e.g., 0.1%);

3. Increase the point size of the downsampled points;

4. Visualize the original point cloud and the down-sampled point cloud simul-
taneously;

. Annotate downsampled points in polygonal edition mode;

6. Refine point labels.

ot

We also provide a video illustrating the annotation pipeline, which can be
viewed at: https://youtu.be/NOUAeY31msY.

(2) The Number of Annotated Points on 7 Datasets. Considering that
the existing large-scale point cloud datasets usually have millions of points, and
typically have relatively high density, we therefore follow [66,24] to perform grid
downsampling of raw point clouds at the beginning, and then execute the random
based annotation steps in practice. Note that, all experiments of our SQN on the
seven public datasets follow this setting. As shown in Table 9, the grid downsam-
pling at the beginning can significantly reduce the number of raw points. Taking
the Semantic3D dataset which has high density as an example, the total number
of points after grid downsampling becomes 1/50 of the original point clouds.
Following the 0.1% sparse annotation pipeline in our SQN, the total number of
annotated points is only 78100, which is an approximately 0.002% of the total
raw points. To avoid confusion, we still report the 0.1% labeling ratio in the main
paper to keep consistency (i.e., the number of annotated points after grid down-
sampling / the total number of points after grid downsampling). Importantly,
this is significantly different from 1T1C [37] and cannot be directly compared,
which calculates its labeling ratio by using the number of labeled instances di-
vided by the total number of points, so as to achieve an over-exaggerated labeling
ratio.

(3) Annotation Cost. The sparse annotation scheme used in our SQN can
greatly reduce the annotation cost in practice, especially for extremely large-
scale 3D point clouds with billions of points. Taking 0.1% sparse point annota-
tion as an example, with the developed CloudComapre-based labelling tool, a
professional annotator can finish the annotation of the whole SensatUrban [23]
dataset within 16 hours. By comparison, the original dense point-wise labeling
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Grid size Raw pts Grid sampled pts Anno. pts (0.1%)

S3DIS [2]  0.04 273M 18.6M 18,600
Semantic3D [18]  0.06  4000M 78.1M 78,100
ScanNet [658]  0.04 242M 60.2M 60,200
SemanticKITTI [3]  0.06  5299M 3401M 3.4M
DALES [68] 0.32 505M 211M 211,000
SensatUrban [23] 0.2 2847TM 221M 221,000
Toronto3D [58]  0.04  78.3M 24.3M 24,300

Table 9: A comparison of the total number of points (M: Million) before and
after grid sampling for seven public datasets. The grid size and the number of
actual annotated points under our 0.1% supervision setting are also reported.

costs 600 person-hours. Primarily, this is because the random annota-
tion based pipeline offers great error tolerance to avoid annotating
boundary areas (as only a very small number of points fall on the boundary),
hence advanced functions such as polygonal edition can be freely and flexibly
use, finally improve the productivity. In the traditional dense labeling pipeline,
annotators are usually required to rotate and zoom back and forth to accu-
rately separate the boundary areas, which consumes most of the labeling time.
However, the random annotation based pipeline used in our developed tool can
greatly reduce such time-consuming labelling of boundary areas, hence greatly
reducing the overall annotation cost. Note that, the annotation cost (i.e., the
total annotation time) could be further reduced if more advanced annotation
software such as QTModeler® is used, where the user interface is more friendly.

8 Implementation Tricks

(1) Data augmentation. We follow [37] to apply different data augmentation
techniques on the input point clouds during training, including random flipping,
random rotation, and random noise.

(2) Re-training with generated pseudo labels. We observe that different
datasets (e.g., S3DIS [2] vs. Semantic3D [18]) have significantly different num-
ber of total points (273 million vs. 4000 million points). Therefore, the actual
number of annotated points under our weak supervision setting (0.1%) are also
different (18600 wvs. 78100, as reported in Table 9). In the experiment, for the
relatively small-scale S3DIS dataset which has extremely sparse supervision sig-
nals, we empirically find that retraining a new model with the generated pseudo
labels can further increase the final segmentation performance. In particular,
we firstly train our SQN with the limited annotated 0.1% points, and then
infer the semantics of the entire training set. These estimated semantics are re-
garded as pseudo labels. After that, we retrain a new model of our SQN from
scratch with the generated pseudo labels. This retraining trick is able to fully
utilize the extremely limited but valuable supervision signals. However, for large-
scale datasets including Semantic3D [18], SensatUrban [23], SemanticKITTI [3],

8 https://appliedimagery.com/
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DALES [68] in Section 5.2, our SQN can achieve satisfactory results trained with
0.1% annotated points, while the retraining trick does not noticeably improve
the performance. Advanced techniques such as pseudo label refining [91] will be
further explored in future work.

(3) Code Release. The code is available at: https://github.com/QingyongHu/
SQN.

9 Video Illustration

We also provide a video illustrating the proposed SQN, which can be viewed at
https://youtu.be/Q6wICSRRw3s.

10 Additional Ablation Results

(1) Varying backbones of our SQN framework. To further study the per-
formance of our SQN framework with different backbones, we further implement
our SQN based on the representative voxel-based baseline MinkowskiNet [11].
Specifically, we follow the implementation provided in [59], and the point local
feature extractor, in this case, includes 4 encoding layers, each containing a 3D
convolution block (kernel size and stride are set as 2) and 2 residual blocks (ker-
nel size and stride are set as 3 and 1, respectively). Additionally, the feature
query network gathers feature vectors from multi-level feature volumes through
trilinear interpolation, and then simply concatenated and sent to MLPs (256-
128-96) for semantic prediction.

The experimental results achieved by our SQN and baseline networks on
the SemanticKITTI dataset under different weak supervision settings are shown
in Table 10. We can see that our SQN achieves comparable performance with
the baseline under 0.1% settings, primarily because the supervision signal is still
sufficient at this time, considering the large scale of the dataset. However, we can
clearly observe that our SQN outperforms the baseline by a large margin (6.8%
improvement in mIoU scores) when there are only 0.01% points are annotated.
This further demonstrates the effectiveness of our semantic query framework.

(2) Detailed Results on Varying Annotated Points. In Section 5.3, we
evaluate the sensitivity of the proposed SQN to different randomly annotated
points. Here, we provide detailed experimental results on Table 11. It can be seen
that the major performance variations are in minor categories such as door, sofa,
and board, indicating that the underrepresented categories are more sensitive to
our weakly-supervised settings, i.e., 0.1% random annotated point labels. This
is not surprising because such imbalanced distribution issue also widely exists
in fully-supervised methods.

11 Additional Discussion

(1) Performance on Boundary Areas. We further evaluate the segmentation
performance of our SQN on the boundary points, since the assumption about
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MinkUNet 0.1%55.5 21.9 92.5 79.0 43.0 0.9 88.7 95.0 64.5 0.9 47.4 46.4 87.3 63.4 73.7 45.3 70.3 0.3 53.4 59.9 43.2

SQN (MinkUNet) 0.1%(55.8 8.8 91.5 78.0 41.1 0.9 88.5 94.9 66.8 5.7 43.2 43.6 88.2 64.0 75.5 49.5 66.3 0.0 55.9 61.1 45.2

MinkUNet 0.01%(43.2 21.9 89.3 74.8 32.1 0.0 87.6 92.4 25.8 0.0 24.8 20.1 87.1 56.4 73.2 9.6 15.9 0.0 55.1 48.2 28.3
SQN (MinkUNet) 0.01%|50.0 8.8 89.7 75.6 31.9 0.2 87.6 93.5 47.2 0.2 35.6 31.6 88.2 58.0 76.0 33.8 59.1 0.0 52.9 52.1 36.4

Table 10: Quantitative results achieved by our SQN (MinkUNet) on the valida-
tion set of the SemanticKITTT dataset under different weak supervision settings.
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OA(%) mIoU(%) ceil. floor wall beam col. wind. door table chair sofa book. board clut.

ITterl 86.53 60.97  92.33 96.70 78.99 0.00 25.01 56.76 58.99 74.22 79.06 58.41 67.73 53.29 51.08
Tter2 85.63 59.24 91.72 97.01 77.35 0.00 20.10 53.55 65.28 71.63 83.61 51.44 65.57 43.37 49.49
Iter3 86.39 60.93 91.96 96.02 78.88 0.00 25.31 55.80 63.43 70.71 82.80 51.18 68.39 56.53 51.05
Tterd 86.32 59.40 92.22 96.07 78.85 0.00 19.00 50.10 65.19 68.37 83.27 49.79 67.09 51.33 50.89
Iter5 86.40 61.56  91.88 95.97 78.89 0.00 24.95 55.88 63.73 70.75 83.20 59.29 68.25 56.37 51.13
Average 86.25 60.42 92.02 96.35 78.59 0.00 22.87 54.42 63.32 71.14 82.39 54.02 67.41 52.18 50.73
STD 0.32 0.93 0.22 042 062 0.00 2.74 241 229 183 1.68 399 103 4.82 0.62

Table 11: Sensitivity analysis of the proposed SQN on the S3DIS dataset (Area
5) by running 5 times. Overall Accuracy (OA, %), mean IoU (mloU, %), and
per-class IoU (%) are reported. Bold represents the best result.

the consistency of neighborhood semantics may not hold at the boundary ar-
eas with different semantics. Specifically, we first define the boundary points as
follows: if the queried spherical neighboring points within a radius r have dif-
ferent semantics, the query point is regarded as on the boundary (red points in
the Figure 6). Not surprisingly, given a smaller r, the performance drops signifi-
cantly for both RandLA-Net (full supervision) and SQN (0.1%), showing that it
is still a common issue for existing methods. We will leave this issue for future
exploration.

(2) Flexibility of SQN. Thanks to the flexibility of the SQN framework, the
proposed method should be able to take any point in the space as input and
infer its semantic label through query and interpolation (even if that point itself
does not exist in the point clouds). To further validate this, we tried to train
our SQN on the partial point clouds (i.e., raw point clouds), but test on the
aggregated point clouds based on the SemanticKITTI dataset. The qualitative
results are shown in Figure 7. It can be seen that the proposed SQN can still
achieve satisfactory performance on the complete point clouds, even though our
model is only trained with partial and incomplete point clouds. Considering that
point clouds are irregularly sampled points from the continuous surface, it would
be interesting to further explore the continuous semantic surface learning based
on our framework.

(3) Potential Negative Societal Impact. Our work aims to achieve label-
efficient learning of large-scale 3D point clouds, which could potentially be used
in autonomous driving or robotics systems. It is targeted for semantic segmenta-
tion of 3D point clouds with weak supervision, hence there is no known society
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y(r— . 5) u y —Oﬁ) u ryv(r:()liiZ) All Points
RandLA (Full sup.) 383 46.6 53.7 63.0
SQN (0.1%) 34.3 427 50.5 61.4

Fig. 6: Quantitative comparison of RandLA-Net and the proposed SQN on the
boundary areas.
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Fig. 7: Qualitative performance achieved by SQN on the SemanticKITTI dataset
when trained on partial point clouds.

negative impact. However, the robustness, security, safety issues should be fur-
ther checked before being applied in real-world data.

(4) Limitation and Future Work. Our SQN is intuitive simple yet effective.
Extensive experiments have demonstrated the superiority on large-scale datasets.
However, it still relies on human annotations, albeit extremely sparse. Ideally,
the 3D semantics can be automatically discovered from raw point clouds. We
leave this unsupervised learning of 3D semantic segmentation for our future
exploration.

12 Additional Experimental Results

(1) Detailed Results of Fully Supervised Baselines under Sparse An-
notations. As mentioned in Section 3, we evaluate several baseline methods
under different forms of weak supervision. Here, we further provide the detailed
benchmarking results on Table 12, with per-class IoU scores reported. Note that,
this table is corresponding to Figure 2 in the main paper.
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Settings Methods mIoU (%) ceil. floor wall beam col. win. door chair table book. sofa board clutter
100% PointNet [10] 39.15  89.65 93.37 70.32 0.00 0.85 36.22 3.03 57.29 44.40 0.02 56.21 19.65 37.95
(Full PointNet++ [17] 52.36  88.84 90.88 75.83 0.18 10.47 43.57 13.86 71.90 82.81 35.71 67.28 51.60 47.80

supervision) |[RandLA-Net [21]  63.75  92.19 97.67 81.12 0.00 20.22 61.02 41.49 78.53 88.04 70.65 74.21 70.65 53.01
10% PointNet [16]  38.41  88.6594.20 71.11 0.00 0.15 27.16 4.28 58.34 45.28 0.05 54.58 18.89 36.63
(Random) PointNet++ [17]  52.34  86.67 90.68 76.37 0.00 10.63 43.76 20.14 70.37 83.34 40.97 68.00 41.88 47.64
RandLA-Net [21 61.87 91.8797.58 79.71 0.00 19.24 60.76 39.36 77.06 86.44 61.77 70.63 67.50 52.34

1]
1% PointNet [16]  37.23  88.93 94.90 68.94 0.00 0.18 21.76 3.22 56.44 44.29 0.06 52.08 17.78 35.47
(Random) PointNet++ [17]  48.61  87.65 89.39 73.98 0.01 7.05 39.15 12.98 66.28 73.94 28.97 66.87 40.13 45.56
RandLA-Net [21]  59.13  90.86 96.96 78.34 0.00 16.40 60.33 25.73 75.30 83.05 59.10 69.00 64.84 48.73
0.1% PointNet [16]  33.26  83.48 89.40 61.66 0.00 0.01 20.85 3.82 48.57 31.80 3.77 41.08 21.99 25.96
(Random) PointNet++ [17]  42.57  85.43 88.76 69.87 0.00 1.00 24.61 7.30 57.72 66.28 24.90 58.80 30.89 37.82
RandLA-Net [21]  52.90  89.90 95.90 75.28 0.00 7.46 52.38 26.48 62.19 74.48 49.10 60.15 49.26 45.08
0.01% PointNet [16]  21.28  72.13 81.79 53.48 0.00 0.00 7.03 4.66 24.40 8.39 0.00 8.51 0.00 16.30
§ PointNet++ [17]  33.53  77.84 83.87 67.09 0.23 3.89 34.83 16.60 41.49 30.65 0.79 39.23 13.81 25.50
(Random) 24]

RandLA-Net [21 33.16  85.15 89.20 61.54 0.00 3.66 13.17 9.11 29.15 42.29 6.52 46.78 16.86 27.72
Table 12: Detailed benchmark results of three baselines in the Area-5 of the
S3DIS [2] dataset. Different amount of points are randomly annotated for weak
supervision.

Methods OA (%) mAcc(%) mIoU(%) ceil. floor wall beam col. wind. door table chair sofa book. board clut.

PointNet [16] 78.6 66.2 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 382 29.4 35.2

RSNet [27] - 66.5 56.5 92.5 92.8 78.6 32.8 34.4 51.6 68.1 59.7 60.1 16.4 50.2 44.9 52.0

3P-RNN [90] 86.9 - 56.3 92.9 93.8 73.1 42.5 25.9 47.6 59.2 60.4 66.7 24.8 57.0 36.7 51.6

SPG [31] 86.4 73.0 62.1 89.9 95.1 76.4 62.8 47.1 55.3 68.4 73.5 69.2 63.2 459 8.7 529

Full P()i.ntCNN [34] 88.1 75.6 65.4 94.8 97.3 75.8 63.3 51.7 58.4 57.2 71.6 69.1 39.1 61.2 52.2 58.6
supervision PointWeb [99]  87.3 76.2 66.7 93.5 94.2 80.8 52.4 41.3 64.9 68.1 71.4 67.1 50.3 62.7 62.2 58.5
ShellNet [95] 87.1 - 66.8 90.2 93.6 79.9 60.4 44.1 64.9 52.9 71.6 84.7 53.8 64.6 48.6 59.4

PointASNL [39] 88.8 79.0 68.7 95.3 97.9 81.9 47.0 48.0 67.3 70.5 71.3 77.8 50.7 60.4 63.0 62.8

KPConv (rigid) [66] - 78.1 69.6 93.7 92.0 82.5 62.5 49.5 65.7 77.3 57.8 64.0 68.8 71.7 60.1 59.6

KPConv (deform) [66] - 791 706  93.6 924 83.1 63.9 543 66.1 76.6 57.8 640 69.3 749 613 603
RandLA-Net [21] 88.0 82.0 70.0 93.1 96.1 80.6 62.4 48.0 64.4 694 694 76.4 60.0 64.2 659 60.1

‘Weak sup. Ours (0.1%) 85.3 76.3 63.7 92.5 95.4 77.1 50.8 43.6 58.5 67.0 67.7 54.1 54.9 61.0 53.0 52.7

Table 13: Quantitative results of different approaches on S3DIS [2] (6-fold cross-
validation). Overall Accuracy (OA, %), mean class Accuracy (mAcc, %), mean
IoU (mloU, %), and per-class IoU (%) are reported.

(2) Additional Results on S3DIS. In Section 5.1, we provide the quantitative
results achieved on the Area-5 subset of the S3DIS dataset. Here, we further
report the detailed 6-fold cross-validation results achieved by our SQN and other
baselines on this dataset in Table 13.

(3) Additional Results on ScanNet. The ScanNet [14] dataset consists of
1613 indoor scans (1201 for training, 312 for validation, and 100 for online test-
ing). It has nearly 242 million points sampled from the densely reconstructed
3D meshes. We provided the detailed per class IoU results on Table 14.

(4) Additional results on Semantic3D. This dataset consists of 30 urban
and rural street-scenarios (15 for training and 15 for online testing). There are
4 billion points in total acquired by the terrestrial laser. In particular, we also
train our SQN with only 0.01% randomly annotated points, considering the
extremely large amount of 3D points scanned. The detailed experimental results
achieved on the Semantic8 and Reduced8 subset of the Semantic3D dataset are
reported in Table 15 and Table 16. In addition, we also show the qualitative
results achieved by our SQN on the Reduced-8 subset with 0.1% labels in Fig 8.
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Settings Method mIoU (%) bath_bed bkshf cab_chair cnir_curt_desk door floor other pic_Jridg show sink sofa table toil wall wind
ScanNet [11]  30.6  20.3 36.6 50.1 31.1 524 20.1 0.2 342 189 78.6 14.5 10.2 24.5 15.2 31.8 34.8 30.0 46.0 43.7 18.2
PointNet++ [17]  33.9  58.4 47.8 458 25.6 36.0 25.0 24.7 27.8 26.1 67.7 183 117 21.2 145 36.4 34.6 232 54.8 52.3 25.2
SPLATNETSD [56] ~ 39.3  47.2 51.1 60.6 31.1 65.6 24.5 40.5 32.8 19.7 92.7 227 0.0 0. 24.9 27.1 51.0 38.3 59.3 69.9 26.7
Tangent-Conv [62] ~ 43.8  43.7 64.6 47.4 36.9 64.5 353 25.8 28.2 27.9 91.8 29.8 14.7 28.3 20.4 48.7 56.2 42.7 619 63.3 35.2
PointCNN [34]  45.8  57.7 61.1 35.6 32.1 71.5 29.9 37.6 32.8 31.9 94.4 28.5 164 21.6 22.9 484 54.5 45.6 75.5 70.9 47.5
Full PointConv [53]  55.6  63.6 64.0 57.4 47.2 73.9 43.0 43.3 41.8 44.5 944 37.2 185 46.4 57.5 54.0 63.9 50.5 82.7 76.2 5.5
supervision| SPH3D-GCN [33]  61.0  85.8 77.2 48.9 53.2 79.2 64.3 57.0 50.7 93.5 414 4.6 70.2 60.2 70.5 54.9 85.9 77.3 53.4
KPConv [66]  68.4 847 75.8 78.4 64.7 814 47.3 77.2 60.5 59.4 93.5 45.0 7 80.5 69.0 78.5 61.4 88.2 81.9 63.2
SparseConvNet [16] ~ 72.5  64.7 82.1 84.6 72.1 86.9 53.3 75.4 60.3 614 57.2 32.5 71.0 87.0 724 82.3 62.8 93.4 86.5 68.3

SegGCN [32]  58.9  83.3 73.1 53.9 514 78.9 44.8 46.7 57.3 48.4 9 . 50.7 59.4 .
RandLA-Net [24] 645 77.8 73.1 69.9 57.7 82.9 44.6 73.6 47.7 52.3 945 454 26.9 48.4 749 61.8 73.8 59.9 82.7 79.2 62.1
Weak sup. Ours (0.1%) _56.9 _ 67.6 69.6 65.7 49.7 77.9 42.4 54.8 51.5 37.6 90.2 42.2 35.7 37.9 45.6 59.6 65.9 54.4 68.5 66.5 55.6

Table 14: Quantitative results of different approaches on ScanNet (online test
set). Mean IoU (mloU, %), and per-class IoU (%) scores are reported.

Settings Methods mIoU (%) OA(%) man-made. natural. high veg. low veq. buildings hard scape scanning art. cars
TML-PC [11] 39.1 74.5 80.4 66.1 42.3 41.2 64.7 124 0.0 5.8

TMLC-MS [19] 49.4 85.0 91.1 69.5 32.8 21.6 87.6 25.9 11.3 55.3

PointNet++ [17] 63.1 85.7 81.9 78.1 64.3 51.7 75.9 36.4 43.7 72.6

EdgeConv [12] 64.4 89.6 91.1 69.5 65.0 56.0 89.7 30.0 43.8 69.7

Full SnapNet [1] 67.4 91.0 89.6 79.5 74.8 56.1 90.9 36.5 34.3 77.2
supervision PointGCR [11] 69.5 92.1 93.8 80.0 64.4 66.4 93.2 39.2 34.3 85.3
T RGNet [07] 72.0 90.6 86.4 70.3 69.5 68.0 96.9 43.4 52.3 89.5
LCP [0] 74.6 94.1 94.7 85.2 7.4 70.4 94.0 52.9 29.4 92.6

SPGraph [31] 76.2 92.9 91.5 75.6 783 717 94.4 56.8 52.9 88.4

ConvPoint [5] 76.5 93.4 92.1 80.6 76.0 7.9 95.6 47.3 61.1 87.7

RandLA-Net [21] 75.8 95.0 97.4 93.0 70.2 65.2 94.4 49.0 44.7 92.7
WreathProdNet [76] 771 946  95.2 871 753 611 961 51.3 510 934

Weak Ours (0.1%) 72.3 94.8 97.9 93.2 65.5 63.4 94.9 44.9 47.4 70.9
supervision Ours (0.01%) 58.8 91.9 96.7 90.3 56.6 53.3 90.7 13.6 24.0 44.9

Table 15: Quantitative results of different approaches on Semantic3D (semantic-
8) [18]. This test consists of 2,091,952,018 points. The scores are obtained from
the recent publications. Bold represents the best result in weakly-supervised
methods, and underlined represents the best results in fully-supervised methods.

(5) Additional Results on SensatUrban. This is a new urban-scale pho-
togrammetry point cloud dataset covering over 7.6 square kilometers of urban
areas in the UK. It has nearly 3 billion points in total. Note that, this dataset
is extremely challenging due to the imbalanced class distributions. The detailed
experimental results achieved on the SensatUrban dataset are reported in Table
17. In addition, we also show the qualitative results achieved by our SQN trained
with only 0.1% labels on this dataset in Fig. 9.

(6) Additional Results on Toronto3D. This dataset consists of 1KM urban
road point clouds acquired by vehicle-mounted mobile laser systems. It has 78.3
million points belonging to 8 semantic categories. Here, we provide the quanti-
tative comparison of our SQN and several fully-supervised methods in Table 18.
Following [24], we also additionally report the performance of our method with
and without color information. It can be seen that our SQN outperforms several
fully-supervised methods such as KPConv, with merely 0.1% of point annota-
tions for training. We also notice that the usage of color information closes the
gap between our method and the top-performing RandLA-Net [24]. This implies
that it could be helpful to introduce auxiliary information under the setting of
weak supervision.

(7) Additional Results on DALES. This dataset consists of large-scale
earth scans acquired by an aerial LiDAR. It covers over 10 km? spatial ranges
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Settings Methods mIoU (%) OA(%) man-made. natural. high veg. low veg. buildings hard scape scanning art. cars
SnapNet_ [1] 59.1 88.6 82.0 77.3 79.7 229 91.1 18.4 37.3 64.4

SEGCloud [63] 61.3 88.1 83.9 66.0 86.0 40.5 91.1 30.9 27.5 64.3

RF_MSSF [65] 62.7 90.3 87.6 80.3 81.8 36.4 92.2 24.1 42.6 56.6

MSDeepVoxNet [51] 65.3 88.4 83.0 67.2 83.8 36.7 92.4 313 50.0 78.2

Full ShellNet [95] 69.3 93.2 96.3 90.4 83.9 41.0 94.2 34.7 43.9 70.2
supervision GACNet [71]  70.8 91.9 86.4 7.7 8.5  60.6 94.2 37.3 435 77.8
SPG [31] 73.2 94.0 97.4 92.6 87.9 44.0 83.2 31.0 63.5 76.2

KPConv [66] 74.6 92.9 90.9 82.2 84.2 47.9 94.9 40.0 773 79.9

RGNet [07] 4.7 94.5 97.5 93.0 88.1 48.1 94.6 36.2 72.0 68.0

RandLA-Net 2] 774 948 956 914 866 515 957 515 698 7638

Weak Ours (0.1%) 74.7 93.7 97.1 90.8 84.7 48.5 93.9 37.4 71.0 74.5
supervision Ours (0.01%)  65.6 90.3 96.6 87.5 80.6 37.1 88.5 16.9 56.6 60.9

Table 16: Quantitative results of different approaches on Semantic3D (reduced-
8) [18]. This test consists of 78,699,329 points. The scores are obtained from
the recent publications. Bold represents the best result in weakly-supervised
methods, and underlined represents the best results in fully-supervised methods.
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Fig. 8: Qualitative results achieved by our SQN on the reduced-8 split of Seman-
tic3D. Note that, the ground truth of the test set is not publicly available.

with 5 million points belonging to 8 semantic categories. We compare our SQN
with strong fully-supervised approaches. As shown in Table 19, our method
achieves higher mIoU scores than PointNet++ [17], ConvPoint [6], SPGraph
[31], PointCNN [34] and ShellNet [98], with only 0.1% labels for training. How-
ever, there is still a performance gap compared with the leading fully-supervised
counterparts such as RandLA-Net [24], primarily due to our weak performance
on minor categories such as trucks and cars. The potential reason is that the
simple random annotation strategy may happen to ignore the underrepresented
classes.

(8) Additional Results on SemanticKITTI. This large-scale dataset con-
sists of point cloud sequences captured by LiDAR for autonomous driving. In
particular, it has 22 sequences, 43552 sparse scans, and nearly 4 billion points.
Note that, RGB is not available in this dataset. We compare our SQN with
fully-supervised techniques on the online test set in Table 20. It can be seen that
our approach achieves a satisfactory mIoU score, outperforming several strong
baselines with only 0.1% labels for training. In addition, our model only has 1.05
million trainable parameters, and is extremely lightweight and suitable for real-
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PointNet [10] 80.78 30.32 23.71 67.96 89.52 80.05 0.00 0.0 3.95 0.00 31.55 0.00 35.14 0.00 0.00 0.00
PointNet++ [17] 84.30 39.97 32.92 72.46 94.24 84.77 272 2.09 25.79 0.00 31.54 11.42 38.84 7.12 0.00 56.93

Ful | TagentConv [62] 76.97 43.71 33.30 7154 9138 75.00 35.22 0.00 4534 0.00 26.69 19.24 67.58 0.0L 0.00 0.00
] SPGraph [31] 85.27 44.39 37.29 69.93 94.55 88.87 32.83 12.58 15.77 15.48 30.63 22.96 56.42 0.54 0.00 44.24
SUPCIVISION| g arseCony [16] 88.66 63.28 42.66 74.10 97.90 94.20 63.30 7.50 24.20 0.00 30.10 34.00 74.40 0.00 0.00 54.80
KPConv [66] 93.20 63.76 57.58 87.10 98.91 95.33 74.40 28.69 41.38 0.00 55.99 54.43 85.67 40.39 0.00 86.30

RandLA-Net [21] 89.78 69.64 52.69 80.11 98.07 91.58 48.88 40.75 51.62 0.00 56.67 33.23 80.14 32.63 0.00 71.31
‘Weak Ours (0.1%) 90.97 70.84 53.97 83.41 98.22 94.22 48.38 50.84 40.89 14.53 50.72 38.48 75.62 34.03 0.00 72.26
supervision| Ours (0.01%) 85.57 49.40 37.17 74.89 96.67 88.77 32.43 7.49 12.84 0.00 29.32 22.15 67.25 0.02 0.00 51.38

Table 17: Benchmark results of the baselines on our SensatUrban. Overall
Accuracy (OA, %), mean class Accuracy (mAcc, %), mean IoU (mloU, %),
and per-class ToU (%) scores are reported. Bold represents the best result in
weakly-supervised methods, and underlined represents the best results in fully-
supervised methods.

Settings Methods OA(%) mIoU(%) Road Rd mrk. Natural Building Util. line Pole  Car Fence
PointNet++ [17] 84.88 41.81  89.27 0.00 69.06 54.16 43.78  23.30 52.00 2.95
PointNet++ (MSG) [17] 92.56 59.47 9290 0.00 86.13 82.15 60.96 62.81 76.41 14.43

DGCNN [77] 9424 6179 93.88 0.00 9125 80.30 6240 62.32 88.26 15.81

KPFCNN [66] 9539  69.11 94.62 0.06 9607 9151 87.68 8156 85.66 15.72

MS-PCNN [10] 90.03 6589 93.84 3.83 9346 8259 67.80 7195 91.12 22.50

TGNet [37] 94.08 6134 9354 0.00 90.83 8L57 6526 62.98 88.73 7.85

MS-TGNet [58] 95.71  70.50 9441 17.19 95.72 88.83  76.01 73.97 94.24 23.64
RandLA-Net (w/ RGB)' [21] 97.15  81.88  96.69 64.10 96.85 94.14  88.03 77.48 9321 44.53
RandLA-Net (w/o RGB) [24] 95.63  77.72  94.53 42.44 96.62 9310  86.56 76.83 92.55 39.14
Weak Ours (w/ RGB, 0.1%)' 96.67 77.75 96.69 65.67 94.58 91.34 83.36 70.59 88.87 30.91
supervision| Ours (w/o RGB, 0.1%) 92.84  69.35 93.74 16.83 9255 80.04 8250 63.98 88.17 28.01
Ours (w/ RGB, 0.01%)" 94.19  68.17 95.26 54.44 8820 84.07 7587 57.52 84.33 5.69
Ours (w/o RGB, 0.01%) 90.47  57.57  90.97 499 8410 80.29 6278 56.51 69.49 11.44

Table 18: Quantitative results of different approaches on the Toronto3D [58]
dataset. The scores of the baselines are obtained from [58]. Bold represents the
best result in weakly-supervised methods, and underlined represents the best
results in fully-supervised methods.

Full
supervision

world applications. Finally, we also visualize the segmentation results achieved
by our SQN on the validation set of the SemanticKITTI dataset in Fig. 10.
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Settings Method OA (%) mIoU (%) ground buildings cars trucks poles power lines fences vegetation
ShellNet [95]  96.4 57.4 96.0 954  32.2 39.6 20.0 27.4 60.0 88.4
PointCNN [34] 97.2 58.4 97.5 95.7 40.6 4.80 57.6 26.7 52.6 91.7
Full SuperPoint [31]  95.5 60.6 94.7 93.4 629 187 285 65.2 33.6 87.9
supervision ConvPoint [5] 97.2 67.4 96.9 96.3 75.5 21.7 40.3 86.7 29.6 91.9
PointNet++ [17] 95.7 68.3 94.1 89.1 75.4 30.3 40.0 79.9 46.2 91.2
KPConv [66] 97.8 81.1 97.1 96.6 85.3 41.9 75.0 95.5 63.5 94.1
RandLA-Net [21] 97.1 80.0 97.0 93.2 83.7 43.8 59.4 94.8 71.5 96.6
Pyramid Point [69] 98.3 83.6 97.8 973 884 479 T77.6 96.7 67.5 95.4
Weak Ours (0.1%) 97.1 72.0 96.7 92.0 75.2 27.3 87.4 48.1 53.7 95.8
supervision Ours (0.01%) 95.9 60.4 95.9 90.1 57.7 12.8 75.2 32.9 24.9 93.4

Table 19: Quantitative results of different approaches on the DALES dataset.
Overall Accuracy (OA, %), mean class Accuracy (mAcc, %), mean IoU (mloU,
%), and per-class IoU (%) are reported. Bold represents the best result in
weakly-supervised methods, and underlined represents the best results in fully-
supervised methods.
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Settings Methods & & 2 B 2 38 S s =2 g S H s ! 8 3 E &£ 8 =
PointNet [10] 14.6 3 61.6 35.7 158 1.4 414 463 0.I 13 03 08 3.0 4.6 17.6 02 02 0.0 129 24 3.7
SPG [31] 17.4 0.25 45.0 285 0.6 0.6 64.3 49.3 0.1 02 0.2 0.8 489 27.2 246 0.3 2.7 0.1 20.8
SPLATNet [5(] 134 0.8 64.6 39.1 04 0.0 583 582 0.0 0.0 0.0 00 711 9.9 193 0.0 0.0 0.0 23.
PointNet++ [17] 20.1 6 72.0 41.8 187 5.6 62.3 53.7 0.9 1.9 0.2 02 46.5 13.8 30.0 0.9 1.0 0.0 16.9
TangentConv [62] 409 0.4 83.9 63.9 334 154 83.4 90.8 152 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.
LatticeNet [50] 52.2 - 88.8 73.8 64.6 25.6 86.9 88.6 43.3 12.0 20.8 24.8 76.4 57.9 54.7 34.2 39.9 60.9 55.2
Full PolarNet [07)] 513 14 90.8 74.4 61.7 21.7 90.0 93.8 22.9 40.2 30.1 28.5 84.0 65.5 67.8 43.2 40.2 5.6 61.3
cupervision| RandLA-Net [24] 559 1.24 90.5 74.0 61.8 24.5 89.7 94.2 43.9 47.4 32.2 39.1 83.8 63.6 68.6 48.4 47.4 9.4 60.4 5L
SqueezeSeg [0] 29.5 1 854 54.3 26.9 4.5 57.4 688 3.3 160 4.1 3.6 60.0 24.3 53.7 12.9 13.1 0.9 29.0
SqueezeSegV2 [31] 39.7 1 88.6 67.6 45.8 17.7 73.7 81.8 13.4 18.5 17.9 14.0 71.8 35.8 60.2 20.1 25.1 3.9 41.1 2
DarkNet21Seg [3] 474 25 91.4 74.0 57.0 26.4 81.9 85.4 18.6 26.2 26.5 15.6 77.6 48.4 63.6 31.8 33.6 4.0 52.3
DarkNet53Seg [3] 49.9 50 91.8 74.6 64.8 27.9 84.1 86.4 25.5 24.5 32.7 22.6 78.3 50.1 64.0 36.2 33.6 4.7 55.0
RangeNet53++ [13] 52.2 50 91.8 75.2 65.0 27.8 87.4 91.4 25.7 25.7 34.4 23.0 80.5 55.1 64.6 38.3 38.8 4.8 58.6
SalsaNext [13] 54.5 6.73 90.9 74.0 58.1 27.8 87.9 90.9 2.7 36.4 20.5 19.9 81.8 61.7 66.3 52.0 52.7 16.0 58.2 58.
SqueezeSegV3 [50] 55.9 26 91.7 74.8 63.4 26.4 89.0 92.5 29.6 38.7 36.5 33.0 82.0 58.7 65.4 45.6 46.2 20.1 59.4 49.6 58.9
Weak Ours (0.1%) 50.8 1.05 90.5 72.9 56.8 19.1 84.8 92.1 36.7 39.3 30.1 26.0 80.8 59.1 67.0 36.4 25.3 7.2 53.3 44.5 44.0
supervision Ours (0.01%) 39.1 1.05 86.6 66.4 43.0 16.9 80.0 85.5 12.9 4.0 1.4 18.4 72.7 49.6 58.8 16.9 22.3 4.3 42.3 31.7 16.6

Table 20: Quantitative results of different approaches on SemanticKITTT [3].
The scores are obtained from the recent publications. Bold represents the best
result in weakly-supervised methods, and underlined represents the best results
in fully-supervised methods.
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Fig.9: Qualitative results achieved by our SQN on the validation set (Sequence
08) of SensatUrban[23] dataset. Best viewed in color.
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Fig. 10: Qualitative results achieved by our SQN on the validation set (Sequence
08) of SemanticKITTT [3] dataset. The red circle highlights the failure case.
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