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Abstract. Labelling point clouds fully is highly time-consuming and
costly. As larger point cloud datasets with billions of points become
more common, we ask whether the full annotation is even necessary,
demonstrating that existing baselines designed under a fully annotated
assumption only degrade slightly even when faced with 1% random point
annotations. However, beyond this point, e.g., at 0.1% annotations, seg-
mentation accuracy is unacceptably low. We observe that, as point clouds
are samples of the 3D world, the distribution of points in a local neigh-
bourhood is relatively homogeneous, exhibiting strong semantic simi-
larity. Motivated by this, we propose a new weak supervision method
to implicitly augment highly sparse supervision signals. Extensive ex-
periments demonstrate the proposed Semantic Query Network (SQN)
achieves promising performance on seven large-scale open datasets under
weak supervision schemes, while requiring only 0.1% randomly annotated
points for training, greatly reducing annotation cost and effort.
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1 Introduction

Learning precise semantic meanings of large-scale point clouds is crucial for intel-
ligent machines to truly understand complex 3D scenes in the real world. This is
a key enabler for autonomous vehicles, augmented reality devices, etc., to quickly
interpret the surrounding environment for better navigation and planning.
With the availability of large amounts of labeled 3D data for fully-supervised
learning, the task of 3D semantic segmentation has made significant progress in
the past four years. Following the seminal works PointNet [46] and SparseC-
onv [16], a series of sophisticated neural architectures [417,34,11,24,66,38,103,10]
have been proposed in the literature, greatly improving the accuracy and effi-
ciency of semantic estimation on raw point clouds. The performance of these
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Fig.1: Qualitative results of RandLA-Net [24] and our SQN on the S3DIS
dataset. Trained with only 0.1% annotations, SQN achieves comparable or even
better results than the fully-supervised RandLA-Net. Red bounding boxes high-
light the superior segmentation accuracy of our SQN.

fully-supervised methods can be further boosted with the aid of self-supervised
pre-training representation learning as seen in recent studies [85,36,73,7,96,64].
The success of these approaches primarily relies on densely annotated per-point
semantic labels to train the deep neural networks. However, it is extremely
costly to fully annotate 3D point clouds due to the unordered, unstructured,
and non-uniform data format (e.g., over 1700 person-hours to annotate a typical
dataset [3] and around 22.3 minutes for a single indoor scene (5mx5mx2m) [14]).
In fact, for very large-scale scenarios e.g., an entire city, it becomes infeasible to
manually label every point in practice.

Inspired by the success of weakly-supervised learning techniques in 2D im-
ages, a few recent works have started to tackle 3D semantic segmentation using
fewer point labels to train neural networks. These methods can be generally di-
vided into five categories: 1) Using 2D image labels for training as in [72,102];
2) Using fewer 3D labels with gradient approximation/supervision propaga-
tion/perturbation consistency [37,94,75,79]; 3) Generating pseudo 3D labels from
limited indirect annotations [60,78]; 4) Using superpoint annotations from over-
segmentation [60,9,37], and 5) Contrastive pretraining followed by fine-tuning
with fewer 3D labels [22,85,97]. Although they achieve encouraging results on
multiple datasets, there are a number of limitations still to be resolved.

Firstly, existing approaches usually use custom methods to annotate differ-
ent amounts of data (e.g., 10%/5%/1% of raw points or superpoints) for training.
It is thus unclear what proportion of raw points should be annotated and how,
making fair comparison impossible. Secondly, to fully utilize the sparse annota-
tions, existing weak-labelling pipelines usually involve multiple stages including
careful data augmentation, self-pretraining, fine-tuning, and/or post-processing
such as the use of dense CRF [28]. As a consequence, it tends to be more diffi-
cult to tune the parameters and deploy them in practical applications, compared
with the standard end-to-end training scheme. Thirdly, these techniques do not
adequately consider the strong local semantic homogeneity of point neighbors
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in large-scale point clouds, or do so ineffectively, resulting in the limited, yet
valuable, annotations being under-exploited.

Motivated by these issues, we propose a new paradigm for weakly-supervised
semantic segmentation on large-scale point clouds, addressing the above short-
comings. In particular, we first explore weak-supervision schemes purely based
on existing fully-supervised methods, and then introduce an effective approach
to learn accurate semantics given extremely limited point annotations.

To explore weak supervision schemes, we take into account two key questions:
1) whether, and how, do existing fully-supervised methods deteriorate given dif-
ferent amounts of annotated data for training? 2) given fewer and fewer labels,
where the weakly supervised regime actually begins? Fundamentally, by doing
so, we aim to explore the limit of current fully-supervised methods. This al-
lows us to draw insights about the use of mature architectures when addressing
this challenging task, instead of naively borrowing off-the-shelf techniques de-
veloped in 2D images [61]. Surprisingly, we find that the accuracy of existing
fully-supervised baselines drops only slightly when faced with 1% of random la-
belled points. However, beyond this point, e.g., 0.1% of the full annotations, the
performance degrades rapidly.

With this insight, we propose a novel yet simple Semantic Query Network,
named SQN, for semantic segmentation given as few as 0.1% labeled points for
training. Our SQN firstly encodes the entire raw point cloud into a set of hierar-
chical latent representations via an existing feature extractor, and then takes an
arbitrary 3D point position as input to query a subset of latent representations
within a local neighborhood. These queried representations are summarized into
a compact vector and then fed into a series of multilayer perceptrons (MLPs)
to predict the final semantic label. Fundamentally, our SQN explicitly and effec-
tively considers the semantic similarity between neighboring 3D points, allowing
the extremely sparse training signals to be back-propagated to a much wider
spatial region, thereby achieving superior performance under weak supervision.

Overall, this paper takes a step to bridge the gap between the highly success-
ful fully-supervised methods to the emerging weakly-supervised schemes, in an
attempt to reduce the time and labour cost of point-cloud annotation. However,
unlike the existing weak-supervision methods, our SQN does not require any self-
supervised pretraining, hand-crafted constraints, or complicated post-processing
steps, whilst obtaining close to fully-supervised accuracy using as few as 0.1%
training labels on multiple large-scale open datasets. Remarkably, for similar ac-
curacy, we find that labelling costs (time) can be reduced up to 98% according
to our empirical evaluation in Appendix. Figure 1 shows the qualitative results
of our method. Our key contributions are:

— We propose a new weakly supervised method that leverages a point neigh-
bourhood query to fully utilize the sparse training signals.

— We observe that existing fully-supervised methods degrade slowly until 1%
point annotations, showing that dense labelling is redundant and unnecessary.

— We demonstrate a significant improvement over baselines in our benchmark,
and surpass the state-of-the-art weak-supervision methods by large margins.
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2 Related Work

2.1 Learning with Full Supervision

End-to-End Full Supervision. With the availability of densely-annotated
point cloud datasets [23,2,18,3,52,68,58], deep learning-based approaches have
achieved unprecedented development in semantic segmentation in recent years.
The majority of existing approaches follow the standard end-to-end training
strategy. They can be roughly divided into three categories according to the rep-
resentation of 3D point clouds [17]: 1) Voxel-based methods. They [10,88,16,12]
usually voxelize the irregular 3D point clouds into regular cubes [63,11], cylin-
ders [103], or spheres [33]. 2) 2D Projection-based methods. This pipeline
projects the unstructured 3D points into 2D images through multi-view [4,29],
bird-eye-view [1], or spherical projections [43,13,80,81,86], and then uses the
mature 2D architectures [39,21] for semantic learning. 3) Point-based meth-
ods. These methods [24,46,47,66,34,83,100] directly operate on raw point clouds
using shared MLPs. Hybrid representations, such as point-voxel representation
[59,38,19], 2D-3D representation [92,26], are also studied.

Self-supervised Pretraining + Full Finetuning. Inspired by the success of
self-supervised pre-training representation learning in 2D images [7,20], several
recent studies [85,36,73,96,64,53,27,8] apply contrastive techniques for 3D seman-
tic segmentation. These methods usually pretrain the networks on additional 3D
source datasets to learn initial per-point representations via self-supervised con-
trastive losses, after which the networks are carefully finetuned on the target
datasets with full labels. This noticeably improves the overall accuracy.
Although these methods have achieved remarkable results on existing datasets,
they rely on a large amount of labeled data for training, which is costly and pro-
hibitive in real applications. By contrast, this paper aims to learn semantics from
a small fraction of annotations, which is cheaper and more realistic in practice.

2.2 Unsupervised Learning

Saudar and Sievers [53] learn the point semantics by recovering the correct voxel
position of every 3D point after the point cloud is randomly shuffled. Sun et
al. propose Canonical Capsules [57] to decompose point clouds into object parts
and elements via self-canonicalization and auto-encoding. Although they have
obtained promising results, they are limited to simple objects and cannot process
the complex large-scale point clouds.

2.3 Learning with Weak Supervision

Limited Indirect Annotations. Instead of having point-level semantic anno-

tations, only sub-cloud level or seg-level labels are available. Wei et al. [78] firstly
train a classifier with sub-cloud labels, and then generate point-level pseudo
labels using class activation mapping technique [101]. Tao et al. [60] present

a grouping network to learn semantic and instance segmentation of 3D point
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clouds, with the seg-level labels generated by over-segmentation pre-processing.
Ren et al. [18] present a multi-task learning framework for both semantic seg-
mentation and 3D object detection with scene-level tags.

Limited Point Annotations. Given a small fraction of points with accurate

semantic labels for training, Xu and Lee [87] propose a weakly supervised point
cloud segmentation method by approximating gradients and using handcrafted
spatial and color smoothness constraints. Zhang et al. [94] explicitly added a
perturbed branch, and achieve weakly-supervised learning on 3D point clouds by
enforcing predictive consistency. Shi et al. [55] further investigate label-efficient
learning by introducing a super-point-based active learning strategy. In addition,
self-supervised pre-training methods [54,35,22,96,36,97] are also flexible to fine-

tune networks on limited annotations. Our SQN is designed for limited point
annotations which we believe has greater potential in practical applications. It
does not require any pre-training, post-processing, or active labelling strategies,
while achieving similar or even higher performance than the fully-supervised
counterpart with only 0.1% randomly annotated points for training.

Fair comparison with 1T1C [37]. In the interests of fair and reproducible
comparison, we point out that a few published works claim state-of-the-art re-
sults yet make misleading assumptions. Specifically, 1T1C [37] reports impressive
results in the paper. However, a deeper investigation of its official GitHub code-
base reveals two serious issues:

— Ground truth label leakage. 1T1C [37] uses the ground truth instance
segments as the super-voxel partition for training on ScanNet®. However,
given the semantic label of 1 click on ground truth instance segments, the
super-voxel semantic labels used by 1T1C are actually dense and full ground
truth semantic labels, rather than weak labels.

— Misleading (over-exaggerated) labeling ratios. 1T1C calculates its la-
beling ratio by using the number of labeled instances divided by the total
number of raw points, resulting in a fantastically low labeling ratio (e.g.,
0.02%)°. A fairer method, as used in prior art [37,97,93], is to use the total
number of labelled points (i.e., to keep consistency) divided by the total
number of points.

For these reasons, 1T1C [37] and its follow-up work PointMatch [84] can be
regarded as almost full supervision (all instances are fully annotated) methods on
ScanNet. Therefore, our method cannot directly compare with them on ScanNet.

3 Exploring Weak Supervision

As weakly-supervised 3D semantic segmentation is still in its infancy, there is no
consensus about what are the sensible formulations of weak training signals, and
what approach should be used to sparsely annotate a dataset such that a direct

® https://github.com/liuzhengzhe/One-Thing-One-Click/issues/13
S https://github.com/liuzhengzhe/One-Thing-0ne-Click/issues/8
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Fig.2: Left: Illustration of the sparse annotation tool. Right: Degradation of
three baselines in the Area-5 of S3DIS [2] when decreasing proportions of points
that are randomly annotated. (Logarithmic scale used in horizontal axis).

comparison is possible. We first explore this, then we investigate how existing
fully supervised techniques perform under a weak labelling regime.

Weak Annotation Strategy: The fundamental objective of weakly-supervised
segmentation is to obtain accurate estimations with as low as possible annotation
cost, in terms of labeller time. However, it is non-trivial to compare the cost of
different annotation methods in practice. Existing annotation options include 1)
randomly annotating sparse point labels [87,94,93], 2) actively annotating sparse
point labels [22,55] or region-wise labels [32], 3) annotating seg-level labels or
superpoint labels [60,37,9] and 4) annotating sub-cloud labels [78]. All meth-
ods have merits. For the purpose of fair reproducibility, we opt for the random
point annotation strategy, considering the practical simplicity of building such
an annotation tool.

Annotation Tool: To verify the feasibility of random sparse annotations
in practice, we develop a user-friendly labelling pipeline based on the off-the-
shelf CloudCompare” software. Specifically, we first import raw 3D point clouds
to the software and randomly downsample them to 10%/1%/0.1% of the total
points for sparse annotation. Considering the sparsity of the remaining points, we
explicitly enlarge the size of selected points and take the original full point clouds
as a reference. As illustrated in left part of Figure 2, we then use the standard
labelling mode such as polygonal edition for point-wise annotating. (Details and
video recordings of our annotation pipeline are supplied in the appendix).

Annotation Cost: With the developed annotation tool, it takes less than 2
minutes to annotate 0.1% of points of a standard room in the S3DIS dataset. For
comparison, it requires more than 20 minutes to fully annotate all points for the
same room. Note that, the sparse annotation scheme is particularly suitable for
large-scale 3D point clouds with billions of points. As detailed in the appendix,
it only takes about 18 hours to annotate 0.1% of the urban-scale SensatUrban
dataset [23], while annotating all points requires more than 600 person-hours.

Experimental Settings: We choose the well-known S3DIS dataset [2] as
the testbed. The Areas {1/2/3/4/6} are selected as the training point clouds,

7 https://www.cloudcompare.org/
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the Area 5 is fully annotated for testing only. With the random sparse annota-
tion strategy, we set up the following four groups of weak signals for training.
Specifically, we only annotate the randomly selected 10%/1%/0.1%/0.01% of the
3D points in each room in all training areas.

Using Fully-supervised Methods as Baselines. We select the semi-
nal works PointNet/PointNet++ [16,17] and the recent large-scale-point-cloud
friendly RandLA-Net [24] as baselines. These methods are end-to-end trained
on the four groups of weakly annotated data without using any additional mod-
ules. During training, only the labeled points are used to compute the loss for
back-propagation. In total, 12 models (3 models/group x 4 groups) are trained
for evaluation on the full Area 5. Detailed results can be found in Appendix.

Results and Findings. Figure 2 shows the mloU scores of all models for
segmenting the total 13 classes. The results under full supervision (100% anno-
tations for all training data) are included for comparison. It can be seen that:

— The performance of all baselines only decreases marginally (less than 4%) even
though the proportion of point annotations drops significantly from 100% to
1%. This clearly shows that the dense annotations are actually unnecessary to
obtain a comparable and favorable segmentation accuracy under the simple
random annotation strategy.

— The performance of all baselines drops significantly once the annotated points
are lower than 0.1%. This critical point indicates that keeping a certain
amount of training signals is also essential for weak supervision.

Above all, we may conclude that for segmenting large-scale point clouds
which are usually dominated by major classes and have numerous repeatable lo-
cal patterns, it is desirable to develop weakly-supervised methods which have an
excellent trade-off between annotation costs and estimation accuracy. With this
motivation, we propose SQN which achieves close to fully-supervised accuracy
using only 0.1% labels for training.

4 SQN

4.1 Overview

Given point clouds with sparse annotations, the fundamental challenge for weakly-
supervised learning is how to fully utilize the sparse yet valuable training signals
to update the network parameters, such that more geometrically meaningful
local patterns can be learned. To resolve this, we design a simple SQN which
consists of two major components: 1) a point local feature extractor to learn
diverse visual patterns; 2) a flexible point feature query network to collect as
many as possible relevant semantic features for weakly-supervised training. As
shown in Figure 3, our two sub-networks are illustrated by the stacked blocks.

4.2 Point Local Feature Extractor

This component aims to extract local features for all points. As discussed in
Section 2.1, there are many excellent backbone networks that are able to extract
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Fig. 3: The pipeline of our SQN at the training stage with weak supervision. We
only show one query point for simplicity.

per-point features. In general, these networks stack multiple encoding layers
together with downsampling operations to extract hierarchical local features.
In this paper, we use the encoder of RandLA-Net [24] as our feature extrac-
tor thanks to its efficiency on large-scale point clouds. Note that SQN is not
restricted to any particular backbone network e.g. as we demonstrate in the
Appendix with MinkowskiNet [11].

As shown in the top block of Figure 3, the encoder includes four layers of
Local Feature Aggregation (LFA) followed by a Random Sampling (RS) oper-
ation. Details refer to RandLA-Net [24]. Given an input point cloud P with N
points, four levels of hierarchical point features are extracted after each encoding
layer, i.e., 1) & x 32, 2)5 x 128, 3) & x 256, and 4) £ x 512. To facilitate
the subsequent query network, the correspondlng point location zyz are always
preserved for each hierarchical feature vector.

4.3 Point Feature Query Network

Given the extracted point features, this query network is designed to collect as
many relevant features, to be trained using the available sparse signals. In par-
ticular, as shown in the bottom block of Figure 3, it takes a specific 3D query
point as input and then acquires a set of learned point features relevant to that
point. Fundamentally, this is assumed that the query point shares similar seman-
tic information with the collected point features, such that the training signals
from the query points can be shared and back-propagated for the relevant points.
The network consists of: 1) Searching Spatial Neighbouring Point Features, 2)
Interpolating Query Point Features, 3) Inferring Query Point Semantics.
Searching Spatial Neighbouring Point Features. Given a 3D query
point p with its location zyz, this module is to simply search the nearest K
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Fig.4: Qualitative results achieved by our SQN and the fully-supervised
RandLA-Net [24] on the Area-5 of the S3DIS dataset.

points in each of the previous 4-level encoded features, according to the point-
wise Euclidean distance. For example, as to the first level of extracted point
features, the most relevant K points are selected, acquiring the raw features
{F,,...F}}.

Interpolating Query Point Features. For each level of features, the
queried K vectors are compressed into a compact representation for the query
point p. For simplicity, we apply the trilinear interpolation method to compute a
feature vector for p, according to the Euclidean distance between p and each of K
points. Eventually, four hierarchical feature vectors are concatenated together,
representing all relevant point features from the entire 3D point cloud.

Inferring Query Point Semantics. After obtaining the unique and repre-
sentative feature vector for the query point p, we feed it into a series of MLPs,
directly inferring the point semantic category.

Overall, given a sparse number of annotated points, we query their neigh-
bouring point features in parallel for training. This allows the valuable training
signals to be back-propagated to a much wider spatial context. During testing, all
3D points are fed into the two sub-networks for semantic estimation. In fact, our
simple query mechanism allows the network to infer the point semantic category
from a significantly larger receptive field.

4.4 Implementation Details

The hyperparameter K is empirically set to 3 for semantic query in our frame-
work and kept consistent for all experiments. Our SQN follows the dataset pre-
processing used in RandLA-Net [24], and is trained end-to-end with 0.1% ran-
domly annotated points. All experiments are conducted on a PC with an Intel
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Methods mIoU (%) ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet [10] 41.1 88.8 97.3 69.8 0.1 3.9 46.3 10.8 58.9 52.6 5.9 40.3 26.4  33.2

superpoint labels'|SSPC-Net (0.01%) | 51.5 - - - - - - - -
1T Model (10%) | 163 918 971 738 0.0 5.1
MT (10%) [ 47.9 92.2 96.8 74.1 0.0 104

)
Xu (10%) | 48.0 90.9 97.3 74.8 0.0 8.4

PointCNN [34] 57.3 92.3 982 79.4 0.0 17.6 22.8 62.1 744 80.6 31.7 66.7 62.1 56.7
Full SPGraph [31] 58.0 89.4 96.9 781 0.0 428 489 61.6 84.7 754 69.8 52.6 2.1 522
supervision SPH3D [33] 59.5 933 97.1 81.1 0.0 33.2 45.8 43.8 79.7 86.9 33.2 715 54.1  53.7
PointWeb [99] 60.3 92.0 985 794 0.0 21.1 59.7 348 76.3 88.3 46.9 69.3 649 525
RandLA-Net [24] 63.0 92.4 96.7 80.6 0.0 18.3 61.3 433 772 852 715 710 69.2 523
KPConv rigid [66] 65.4 92.6 97.3 814 0.0 16.5 54.5 69.5 80.2 90.1 66.4 746 63.7 581
Limited 1T1C (0.02%) [37] 50.1 - - - - - - - - - - - - -
]
]
]
]

- 61.8 91.5 96.9 80.6 0.0 18.2
Limited

point-wise 2 —r = S TGS E T T A3 T R 070 515 O ST T RS — o fRT 65T AT~ Ta 3, PR

obole T Model (0.2%) [30] ~ 443~ ~ 89.0 97.0 715 0.0 3.6
. MT (0.2%) [61] 444 889 968 70.1 0.1 3.0
Xu (0.2%) [£7] 445  90.1 97.1 719 00 1.9

RandLA-Net (0.1%) ~ 529~ 89.9 959 7537 0.0 7.5
Ours (0.1%) 61.4  91.7 956 78.7 0.0 24.2

Table 1: Quantitative results of different me
dataset. Mean IoU (mloU, %), and per-class IoU (%) scores are reported. Bold
represents the best result in weakly labelled settings and underlined represents
the best under fully labelled settings. TAs mentioned in Sec. 2.3, misleading la-
beling ratio is reported, and hence a direct comparison is not possible.

Core™ 19-10900X CPU and an NVIDIA RTX Titan GPU. Note that, the pro-
posed SQN framework allows flexible use of different backbone networks such as
voxel-based MinkowskiNet [11], please refer to the appendix for more details.

5 Experiments

5.1 Comparison with SOTA Approaches

We first evaluate the performance of our SQN on three commonly-used bench-
marks including S3DIS [2], ScanNet [14] and Semantic3D [18]. Following [24],
we use the Overall Accuracy (OA) and mean Intersection-over-Union (mloU) as
the main evaluation metrics.

Evaluation on S3DIS. Following [37], we report the results on Area-5 in Table
1. Note that, our SQN is compared with three groups of approaches: 1) Fully-
supervised methods including SPGraph [31], KPConv [66] and RandLA-Net with
100% training labels; 2) Weakly supervised approaches that learn from lim-
ited superpoint annotations including 1T1C [37] and SSPC-Net [9]; 3) Weakly-
supervised methods [87,61,30] that learning from limited annotations. We also
list the proportion of annotations used for training.

Considering different backbones and different labelling ratios are used by
existing methods, we focus on the comparison of our SQN and the baseline
RandLA-Net, which under the same weakly-supervised settings. It can be seen
that our SQN outperforms RandLA-Net by nearly 9% under the same 0.1%
random sparse annotations. In particular, our SQN is also comparable to the
fully-supervised RandLA-Net [24]. Figure 4 shows qualitative comparisons of
RandLA-Net and our SQN.
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Settings Methods mIoU (%)
PointNet++ [ ] 33.9 Semantic8 ‘Reduced8
SPLATNet [506] 39.3 _ Methods OA(%) mloU (%) OA(%) mIt:(U(%)
- tComv [62] 438 SuapNet [] 910 674 886 591
Full angentLonv . PointNet++ [17] 85.7 63.1 - -
L. PointCNN [34] 45.8 Full ShellNet [08] - - 93.2 69.3
supervision PointConv [83]  55.6 m‘fp GACNet [71] - - 91.9 708
’ e RGNet [67]  90.6 72.0 94.5 747
SPH3D-GCN [33]  61.0 SPG [31] 929 762 940 732
KPConv [66]  68.4 KPConv [66] - - 929 746
RandLA-Net [24] 645 WronthyPolni [0] S84 763 - -
MPRM* [78] 411 reRaanldIiOA—Nit{ % 950 758 w ﬂ
Weak |Zhang et al. (1%) [93]  51.1 Zhang et al. (1%) [93] - - , 72.6
supervision PSD (1%) [ 54.7 Wealk IZ)SD (1(‘20)1[(7)] ois o3 oam ;ii
sup. urs (0.1% . . . .
Ours (0.1%) 56.9 Ours (0.01%) 91.9 58.8 90.3 65.6
Table 2: Quantitative results Table 3: Quantitative results on Seman-
on ScanNet (online test set). tic3D [18]. The scores are obtained from
E3 . .
MPRM [78] takes sub-cloud la- the recent publications.

bels as supervision signal.

Evaluation on ScanNet. We report the quantitative results achieved by dif-
ferent approaches on the hidden test set in Table 2 . It can be seen that our
SQN achieves higher mIoU scores with only 0.1% training labels, compared with
MPRM (78] which is trained with sub-cloud labels, and Zhang et al. [93] and
PSD [94] trained with 1% annotations. Considering that the actual training set-
tings in the ScanNet Data-Efficient benchmark cannot be verified, hence we do
not provide the comparison in this benchmark.

Evaluation on Semantic3D. Table 3 compares our SQN with a number of
fully-supervised methods. It can be seen that our SQN trained with 0.1% la-
bels achieves competitive performance with fully-supervised baselines on both
Semantic8 and Reduced8 subsets. This clearly demonstrates the effectiveness of
our semantic query framework, which takes full advantage of the limited annota-
tions. Additionally, we also train our SQN with only 0.01% randomly annotated
points, considering the extremely large amount of 3D points scanned. We can
see that our SQN trained with 0.01% labels also achieves satisfactory accuracy,
though there is space to be improved in the future.

5.2 Evaluation on Large-Scale 3D Benchmarks

To validate the versatility of our SQN, we further evaluate our SQN on four
point cloud datasets with different density and quality, including SensatUrban
[23], Toronto3D [58], DALES [68], and SemanticKITTI [3]. Note that, all existing
weakly supervised approaches are only evaluated on the dataset with dense point
clouds, and there are no results reported on these datasets. Therefore, we only
compare our approach with existing fully-supervised methods in this section.
As shown in Table 4, the performance of our SQN is on par with the fully-
supervised counterpart RandLA-Net on several datasets, whilst the model is only
supplied with 0.1% labels for training. In particular, our SQN trained with 0.1%
labels even outperforms the fully supervised RandLLA-Net on the SensatUrban
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Settings Methods DALES [65] SensatUrban [23] Toronto3D [58]  SemanticKITTI [3]
i ” OA (%) mIoU(%)|OA(%) mAcc (%) mIoU(%)|OA (%) mIoU (%) mlIoU (%)
PointNet [10] - - 80.8 30.3 23.7 - - 14.6
PointNet++ [17]  95.7 68.3 84.3 40.0 32.9 84.9 41.8 20.1
PointCNN [34] 97.2 58.4 - - - - - -
TangentConv [62] - - 77.0 43.7 33.3 - - 40.9
ShellNet [05] 964  57.4 - § § . . -
Full supervision DGCNN [77] - - - - - 94.2 61.8 -
SPG [31] 955  60.6 | 853  44.4 37.3 N . 174
SparseConv [16] - - 88.7 63.3 42.7 - - -
KPConv [66] 97.8 811 | 932 638 576 | 954 691 58.1
ConvPoint [5] 97.2 67.4 - - - - - -
RandLA-Net [21] 97.1  80.0 | 898  69.6 527 | 929 777 53.9
‘Weak Ours (0.1%) 97.0 72.0 91.0 70.9 54.0 96.7 7.7 50.8
supervision Ours (0.01%) 95.9 60.4 85.6 49.4 37.2 94.2 68.2 39.1

Table 4: Quantitative results of different approaches on the DALES [68], Sen-
satUrban [23], Toronto3D [58] and SemanticKITTT [3].

dataset. This shows the great potential of our method, especially for extremely
large-scale point clouds with billions of points, where the manual annotation is
unrealistic and impractical. The detailed results can be found in Appendix.

5.3 Ablation Study

To evaluate the effectiveness of each module in our framework, we conduct the
following ablation studies. All ablated networks are trained on Areas{1/2/3/4/6}
with 0.1% labels, and tested on the Area-5 of the S3DIS dataset.

(1) Varying Number of Queried Neigh-
bours. Intuitively, querying a larger neigh-
borhood is more likely to achieve better re-
sults. However, an overly large neighborhood
may include points with very different seman-
tics, diminishing overall performance. To in- s . ; . - .
vestigate the impact of the number of neigh- Number of auery points K

boring points used in our semantic query, we Fig.5: The results of our SQN

condgct experime-nts by varying the number with different number of query
of neighboring points from 1 to 25. As shown points on the Area-5 of the

in Figure 5, the overall performance with dif- S3DIS dataset.

fering numbers of neighboring points does not

change significantly, showing that our simple

query mechanism is robust to the size of the neighboring patch. Instead, the
mixture of different feature levels plays a more important role (Table 5).

mloU scores(%)

(2) Variants of Semantic Queries. The hierarchical point feature query
mechanism is the major component of our SQN. To evaluate this component,
we perform semantic query at different encoding layers. In particular, we train
four additional models, each of which has a different combination of queried
neighbouring point features. From Table 5 we can see that the segmentation
performance drops significantly if we only collect the relevant point features at a
single layer (e.g., the first or the last layer), whilst querying at the last layer can
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OA(%) mIoU(%)

Model|1st 2nd 3rd 4st]OA (%) mIoU(%) Triall 86.15  61.41
T 866 298 Trial2 85.63  59.24
Trial3 86.39  60.93

B v | 7554 46.02 .
C v 70.76 3818 Trial4 86.32 59.40
: : Trial5 86.40 61.56
D |\v v v 82.37  54.21 Mean 86.25  60.42
E |v v v v|86.15 61.41 STD 032 093

Table 5: Ablati.ons of different Table 6: Sensitivity analysis of the pro-
levels of semantic query. posed SQN on S3DIS dataset (Area 5)
over 5 runs.

achieve much better results than in the first layer. This is because the points in
the last encoding layer are quite sparse but representative, aggregating a large
number of neighboring points. Additionally, querying at different encoding lay-
ers and combining them is likely to achieve better segmentation results, mainly
because it integrates different spatial levels of semantic content and considers
more neighboring points.

(3) Varying Annotated Points. To verify the sensitivity of our SQN to differ-
ent randomly annotated points, we train our models five times with exactly same
architectures, i.e., the only change is that different subsets of randomly selected
0.1% of points are labeled. The results are reported in Table 6. It can be seen
that there are slight, but not significant, differences between different runs. This
indicates that the proposed SQN is robust to the choice of randomly annotated
points. We also notice that the major performance change lies in minor cate-
gories such as door, sofa, and board, showing that the underrepresented classes
are more sensitive to weak annotation. Please refer to appendix for details.

(4) Varying Proportion of Annotated Points. We further examine the
performance of SQN with differing amounts of annotated points. As shown in
Table 7, the proposed SQN can achieve satisfactory segmentation performance
when there are only 0.1% labels available, but the performance drops signifi-
cantly when there are only 0.01% labeled points available, primarily because the
supervision signal is too sparse and limited in this case. It is also interesting to
see that our framework achieves slightly better mloU performance when using
10% labels compared with full supervision. In particular, the performance on
minority categories such as column/window/door has improved by 2%-5%. This
implies that: 1) In a sense, the supervision signal is sufficient in this case; 2) An-
other way to address the critical issue of imbalanced class distribution may be
to use a portion of training data (i.e., weak supervision). This is an interesting
direction for further research, and we leave it for future exploration.

(5) Extension to Region-wise Annotated Data. Beyond evaluating on ran-
domly point-wise annotated datasets, we also extend our SQN on the region-wise
sparsely labeled S3DIS dataset. Following [32], point clouds are firstly grouped
into regions by unsupervised over-segmentation methods [15], and then a sparse
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Settings Methods mIoU (%) ceil. floor wall beam col. win. door chair table book. sofa board clutter
100% SQN 63.73  92.76 96.92 81.84 0.00 25.93 50.53 65.88 79.52 85.31 55.66 72.51 65.78 55.85
10% SQN 64.67 93.04 97.45 81.55 0.00 28.01 55.77 68.68 80.11 87.67 55.25 72.31 63.91 57.02
1% SQN 63.65  92.03 96.41 81.32 0.00 21.42 53.71 73.17 77.80 85.95 56.72 69.91 66.57 52.49
0.1% SQN 61.41  91.72 95.63 78.71 0.00 24.23 55.89 63.14 70.50 83.13 60.67 67.82 56.14 50.63
0.01% SQN 45.30  89.16 93.49 71.28 0.00 4.14 34.67 41.02 54.88 66.85 25.68 55.37 12.80 39.57

Table 7: Quantitative results achieved by our SQN on Area-5 of S3DIS under
different amounts of labeled points.

SPVCNN [59] MinkowskiUnet [11] SQN (Ours)
Random 49.61 46.15 60.19
Softmax Confidence [71] 51.05 45.45 57.24
Softmax Margin [71] 50.80 44.33 57.94
Softmax Entropy [71] 50.35 49.99 57.98
MC Dropout [15]|  50.39 49.94 58.30
ReDAL [22]|  50.89 47.88 54.24

Table 8: Quantitative results achieved by different methods on the region-wise
labeled S3DIS dataset.

number of regions are manually annotated through various active learning strate-
gies [71,82,15]. As shown in Table 8, our SQN can consistently achieve better
results than vanilla SPVCNN [59] and MinkowskiNet [11] under the same su-
pervision signal (10 iterations of active selection), regardless of the active learn-
ing strategy used. This is likely because the SparseConv based methods [59,11]
usually have larger models and more trainable parameters compared with our
point-based lightweight SQN, thus naturally exhibiting a stronger demand and
dependence for more supervision signals. On the other hand, this result further
validates the effectiveness and superiority of our SQN under weak supervision.

6 Conclusion

In this paper, we propose SQN, a conceptually simple and elegant framework to
learn the semantics of large-scale point clouds, with as few as 0.1% supplied labels
for training. We first point out the redundancy of dense 3D annotations through
extensive experiments, and then propose an effective semantic query framework
based on the assumption of semantic similarity of neighboring points in 3D
space. The proposed SQN simply follows the concept of wider label propagation,
but shows great potential for weakly-supervised semantic segmentation of large-
scale point clouds. It would be interesting to extend this method for weakly-
supervised instance segmentation, panoptic segmentation, and further integrate
it into semantic surface reconstruction [70].
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