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Supplementary Material:

Initialization and Alignment

for Adversarial Texture Optimization

This supplementary is structured as follows:

– Sec. A provides details regarding the scenes;
– Sec. B describes implementation details;
– Sec. C provides more quantitative results;
– Sec. D gives more ablation studies;
– Sec. E shows more qualitative results.

A UofI Texture Scenes Details

We provide detailed scene statistics in Tab. S1. As mentioned in Sec. 4.1, we
collect a dataset of 11 scenes: four indoor and seven outdoor scenes. This dataset
consists of a total of 2807 frames, of which 91, 2052, and 664 are of resolution
480 × 360, 960 × 720, and 1920 × 1440 respectively. For each scene, we reserve
10% of the views for evaluation. In contrast, prior work [24] “select(s) 10 views
uniformly distributed from the scanning video” for evaluation while using up to
thousands of frames for texture generation. The studied setting is hence more
demanding.

B Implementation Details

B.1 Network Structure for TexSmooth

As mentioned in Sec. 3.2, we utilize a convolutional neural network for the dis-
criminator D in Eq. (13). Specifically, we follow [24]’s code release3 to utilize
five convolutional layers with structures (6, 64, 2), (64, 128, 2), (128, 128, 2),
(128, 128, 1), (128, 1, 1), where (in, out, s) indicates the number of input chan-
nels, the number of output channels, and stride respectively. All layers employ
a 4 × 4 kernel and use VALID padding. Regarding activation functions, the first
four layers contain leakyReLUs while the last one uses a sigmoid activation.

B.2 Hyperparameters

The weight for the L1 loss in Eq. (13) is � = 10. We decay it by a factor of 0.8
every 960 steps. We use Adam [26] with �1 = 0.5 and �2 = 0.999. The learning
rates for the texture and discriminator are set to 1e�3 and 1e�4 respectively.
We run AdvOptim for 4000 iterations for AdvTex-C and our TexSmooth stage,
following the code release.3 For AdvTex-B, AdvOptim runs for 50000 iterations as
stated in their paper [24].

3
https://github.com/hjwdzh/AdversarialTexture

https://github.com/hjwdzh/AdversarialTexture
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Table S1: Statistics of UofI Texture Scenes. For each column, the format is indi-
cated below the header. We reserve 10% views for evaluation. “Angular Diff” measures
the the angular differences between test set view directions and their nearest neighbour
in the training sets.

Mesh
#Faces

#Views
total (test)

Resolution
value (#count)

Angular Diff
avg (min/max)

1 77,528 160 (16) 1920×1440 (160) 2.04� (0.38�/4.26�)

2 104,684 195 (20) 960×720 (195) 0.85� (0.06�/2.46�)

3 132,196 94 (10)
1920×1440 (3)
480×360 (91)

4.58� (1.14�/13.8�)

4 65,832 43 (5) 960×720 (43) 3.48� (0.12�/6.66�)

5 143,108 584 (59) 960×720 (584) 1.28� (0.19�/3.18�)

6 168,664 372 (38) 1920×1440 (372) 1.45� (0.36�/3.13�)

7 77,627 233 (24) 960×720 (233) 3.24� (0.67�/12.6�)

8 80,240 352 (36) 960×720 (352) 1.60� (0.27�/6.89�)

9 199,976 347 (35) 960×720 (347) 1.81� (0.21�/4.55�)

10 69,484 129 (13) 1920×1440 (129) 1.12� (0.19�/2.59�)

11 149,176 298 (30) 960×720 (298) 1.13� (0.27�/2.60�)

B.3 AdvOptim Reimplementation

As mentioned in Sec. 4.1, we re-implement AdvOptim using PyTorch based on the
official TensorFlow (TF) code. To verify the correctness of our implementation,
we compare results from the official code release and our re-implemented version
on the Chair dataset from [24], which contains 35 scanned chairs. Specifically,
similar to Sec. 4.1, we reserve 10% of the views from each scan for evaluation,
resulting in 14,836 training views and 1663 test views. As can be seen from
the 1st vs. 2nd row in Tab. S2, we observe 0.830 vs. 0.828 SSIM, 0.163 vs. 0.167
LPIPS, 0.068 vs. 0.069 S3, and 2.052 vs. 2.047 Grad. This verifies the correctness
of our re-implementation.

B.4 Determine T resolution

To determine the H and W of the texture T , we use the following three steps: 1)
for each of the |Y| planes mentioned in Sec. 3.1’s “Overlap Detection”, we use a
resolution of 5122, 10242, or 20482 based on whether the major RGB resolution’s
larger side is 480, 960, or 1920; 2) all |Y| planes are concatenated to obtain the
texture T ’s H and W ; 3) For a fair comparison, AdvTex baselines use the same
resolution as ours.
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Table S2: Quantitative results on Chair dataset. We report in the form of
mean±std.

SSIM↑ LPIPS↓ S3 ↓ Grad↓

1 TF 0.830±0.072 0.163±0.072 0.068±0.020 2.052±1.267

2 PyTorch 0.828±0.072 0.167±0.073 0.069±0.020 2.047±1.275

3
TexInit +
TexSmooth

0.827±0.073 0.167±0.073 0.068±0.019 2.071±1.289

C More Quantitative Results

C.1 Scene-level Quantitative Results

We provide scene-level quantitative results in Tab. S5. As can be seen from the
number for the Best or 2nd-Best results (last two rows), our technique improves
upon all baselines. Specifically, ours dominates the count (ours vs. runner-up)
for “best” (17 vs. 14), “2nd-best” (14 vs. 13), and “best or 2nd-best” (31 vs. 18).

C.2 Results on Existing Dataset

We apply our TexInit + TexSmooth on the Chair dataset. We directly utilize the
provided conformal mapping to ensure a fair comparison. Quantitative results
are shown in 2nd vs. 3rd row of Tab. S2. Our method performs on par with the
baseline. This is expected as we do not observe geometry and images of those
scans to be misaligned. Beneficially and as expected, the proposed technique
doesn’t harm the result if geometry and images are well aligned.

C.3 Robustness to Inaccurate Camera Poses

To verify the robustness of the proposed pipeline, we conduct studies by deliber-
ately adding more noise to camera poses in the training split. Concretely, given
a camera pose with rotation (rx, ry, rz) (represented in Euler angles) and trans-
lation (tx, ty, tz), we add uniformly-sampled noise, i.e., we have brx = rx + ✏rx ,
where ✏rx ∼ U(−0.05 · |rx|, 0.05 · |rx|), and analogously bry, brz,btx,bty,btz. We ap-
ply AdvTex-B/C and ours on data with these corrupted camera poses. Tab. S3
corroborates the robustness of the method: we outperform baselines on SSIM
(0.456 vs. 0.452, ↑ is better), LPIPS (0.472 vs. 0.490, ↓ is better), and sharpness
S3 (0.142 vs. 0.153, ↓ is better).

D More Ablations

D.1 Unary vs. Pairwise Cues

As stated in Eq. (6), we use pure-unary cues for TexInit. To verify this design
choice, we ablate with a setup where TexInit considers both unary and pairwise
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Table S3: Evaluation with noise added to camera poses on UofI Texture

Scenes. Results are in the form of mean±std. Ours is the most robust.

SSIM" LPIPS# S3 # Grad#

1-1 AdvTex-B 0.378±0.158 0.503±0.091 0.160±0.040 9.193±4.562
1-2 AdvTex-C 0.452±0.191 0.490±0.082 0.153±0.072 7.949±4.364

2 Ours 0.456±0.196 0.472±0.078 0.142±0.050 8.177±4.441

cues. Concretely, we consider the following optimization problem:

t⇤ = argmax
t

|M |X

i=1

 i(ti) +
X

(i,j)2A

 i,j(ti, tj), (S1)

where A is the adjacency used in Eq. (2). Here  i refers to the unary cues
in Eq. (6) while  i,j captures pairwise ones. Therefore, besides C1, C2, and C3
discussed in Sec. 3.1, we take into account another cue C4:

 i,j(ti, tj)
.
=  C4

i,j(ti, tj). (S2)

•Explicit adjacency encouragement (C4). Intuitively, adjacent triangles Trii
and Trij maintain smoothness if they are assigned textures from the same frame.
We encourage this choice using  C4

i,j(ti, tj) = (ti = tj) and set !4 > 0.
In our experiments, we set !4 = 1 for TexInit. The TexSmooth stage remains

the same. Quantitative results are shown in Column 1-1 vs. 1-2 in Tab. S6.
We do not observe a big difference when integrating pairwise cues. Concretely,
when comparing pairwise vs. unary only cues, we have 0.601 vs. 0.602 (SSIM),
0.305 vs. 0.309 (LPIPS), 0.120 vs. 0.120 (S3), and 6.872 vs. 6.871 (Grad), which
corroborate our design.

D.2 View Sparsity Analysis

To understand whether our framework is sensitive to the sparsity of training
views, we conduct an ablation: 1) we reserve 10% of the views, which are uni-
formly sampled, for evaluation. As a consequence, we have 90% of all views that
can be used for training; 2) within those 90% of all views, we again uniformly
sample images for optimization every k views. We use k ∈ {1, 2, 3, 4, 5}. Note,
the results reported in Tab. 1, Tab. 2, and Tab. S5 are situations where k = 1,
namely all 90% views are used. Quantitative results are reported in Column
1-1 to Column 5 in Tab. S6. As expected, when the number of training views
decreases, we observe the results’ quality to drop. However, our framework is
robust to the view sparsity as the performance gap is small. Specifically, we ob-
serve best vs. worst results as 0.604 vs. 0.580 (SSIM), 0.303 vs. 0.316 (LPIPS),
0.120 vs. 0.127 (S3), and 6.859 vs. 7.026 (Grad). The reason that k = 2 performs
slightly better than k = 1 is that 1) k = 2 still provides dense enough views for
TexInit and TexSmooth; 2) the initialization from TexInit can contain less seams
as less views are considered.
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Table S4: Patchwise alignment on UofI Texture Scenes. Results are in the form
of mean±std. X × Y in the ‘#Patches’ column denotes the number of patches created
by splitting along height (X) and width (Y ). See Fig. S1 for qualitative results.

#Patches SSIM" LPIPS# S3 # Grad#

1 1 ⇥ 1 0.602±0.189 0.309±0.086 0.120±0.058 6.871±4.342
2 2 ⇥ 2 0.556±0.184 0.330±0.069 0.123±0.055 7.122±4.306
3 4 ⇥ 4 0.545±0.175 0.338±0.064 0.122±0.054 7.163±4.257

(a) Patch 1x1 (b) Patch 2x2 (c) Patch 4x4

Fig. S1: Patch-wise alignment on UofI Texture Scenes. Highlighted issues: sofa
and plant colors are mapped to the wall in (b,c).

D.3 Patchwise Alignment

We assess the results of patch-wise alignment in our pipeline. Tab. S4 and Fig. S1
verify: a patch-wise method ignores global content and is inferior.

E More Qualitative Results

E.1 Alignment Visualizations

As mentioned in Sec. 3.2, we utilize the Fourier transformation to align ground-
truth image and rendering from Tinit. We show qualitative results of the align-
ment for all 11 scenes in Fig. S2. As can be seen clearly, our module successfully
mitigates the misalignment, verifying the efficacy.

E.2 Complete Qualitative Results

We display qualitative results for the six scenes that are not shown in the main
submission in Fig. S3. Compared to AdvTex-C, our TexInit + TexSmooth frame-
work largely reduces artifacts (Fig. S3e vs. Fig. S3f), yielding more perceptual
similarity while maintaining more sharpness (Fig. S3g).

In addition, we provide an HTML page in the supplementary to display more
rendering comparisons from those 10% evaluation views.
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Table S5: Scene-level quantitative results on UofI Texture Scenes. We use
bold and underline to mark best and 2nd-best results for each row respectively. If one
value’s difference from its higher-rank counterpart is no larger than 0.001, we treat
them as the same.

1 2 3 4 5 6 7 8 9 10

L2Avg ColorMap TexMap MVSTex AdvTex-B AdvTex-C Tinit Only w/o Tinit w/o Align Ours

S
ce
n
e
1

SSIM↑ 0.866 0.831 0.608 0.718 0.774 0.834 0.769 0.863 0.845 0.876

LPIPS↓ 0.235 0.361 0.387 0.260 0.227 0.261 0.251 0.215 0.228 0.187

S3 ↓ 0.042 0.058 0.088 0.073 0.064 0.051 0.070 0.043 0.046 0.041

Grad↓ 1.806 2.085 3.232 2.977 2.349 2.073 2.414 1.816 1.936 1.724

S
ce
n
e
2

SSIM↑ 0.584 0.428 0.384 0.494 0.486 0.541 0.521 0.592 0.532 0.626

LPIPS↓ 0.319 0.653 0.433 0.221 0.288 0.290 0.271 0.231 0.294 0.226

S3 ↓ 0.227 0.342 0.253 0.172 0.172 0.180 0.190 0.165 0.174 0.164

Grad↓ 8.910 11.09 11.75 10.28 9.909 9.499 9.749 8.488 9.707 8.067

S
ce
n
e
3

SSIM↑ 0.651 0.594 0.465 0.575 0.534 0.605 0.561 0.630 0.585 0.636

LPIPS↓ 0.362 0.533 0.459 0.301 0.383 0.344 0.354 0.324 0.348 0.309

S3 ↓ 0.135 0.170 0.188 0.129 0.153 0.121 0.132 0.128 0.124 0.121

Grad↓ 5.721 5.707 8.203 6.836 7.468 6.051 6.566 6.118 6.238 5.659

S
ce
n
e
4

SSIM↑ 0.217 0.182 0.168 0.155 0.133 0.187 0.176 0.198 0.180 0.244

LPIPS↓ 0.656 0.845 0.468 0.370 0.575 0.540 0.430 0.516 0.500 0.440

S3 ↓ 0.310 0.441 0.168 0.112 0.152 0.143 0.118 0.141 0.128 0.121

Grad↓ 16.79 18.35 16.68 15.78 18.05 16.07 16.76 15.95 16.13 16.09

S
ce
n
e
5

SSIM↑ 0.480 0.430 0.397 0.412 0.422 0.448 0.422 0.474 0.430 0.472

LPIPS↓ 0.427 0.615 0.391 0.268 0.343 0.351 0.308 0.332 0.321 0.293

S3 ↓ 0.326 0.403 0.267 0.213 0.225 0.227 0.223 0.220 0.210 0.205

Grad↓ 10.38 11.80 11.83 10.62 10.85 9.359 11.18 9.230 10.12 9.807

S
ce
n
e
6

SSIM↑ 0.684 0.615 0.330 0.392 0.509 0.598 0.480 0.637 0.591 0.642

LPIPS↓ 0.374 0.615 0.674 0.553 0.386 0.403 0.419 0.343 0.408 0.363

S3 ↓ 0.058 0.099 0.122 0.109 0.129 0.066 0.127 0.064 0.075 0.067

Grad↓ 3.020 3.552 4.925 4.790 4.500 3.435 4.476 3.360 3.551 3.256

S
ce
n
e
7

SSIM↑ 0.423 0.378 0.343 0.346 0.362 0.384 0.374 0.411 0.373 0.396

LPIPS↓ 0.465 0.650 0.475 0.347 0.436 0.442 0.356 0.448 0.392 0.367

S3 ↓ 0.280 0.385 0.262 0.215 0.216 0.245 0.220 0.239 0.203 0.200

Grad↓ 12.16 13.98 13.27 12.93 13.27 12.09 13.65 11.60 12.11 11.91

S
ce
n
e
8

SSIM↑ 0.846 0.808 0.265 0.629 0.679 0.815 0.740 0.839 0.816 0.842

LPIPS↓ 0.269 0.498 0.680 0.396 0.328 0.286 0.349 0.259 0.278 0.250

S3 ↓ 0.060 0.084 0.135 0.117 0.096 0.063 0.080 0.058 0.060 0.055

Grad↓ 2.062 2.489 4.627 4.405 3.181 2.275 2.877 2.070 2.257 2.011

S
ce
n
e
9

SSIM↑ 0.545 0.502 0.306 0.373 0.376 0.450 0.383 0.500 0.469 0.508

LPIPS↓ 0.483 0.709 0.509 0.371 0.460 0.520 0.419 0.474 0.454 0.451

S3 ↓ 0.194 0.254 0.197 0.146 0.146 0.163 0.132 0.159 0.138 0.143

Grad↓ 6.988 8.042 9.815 8.751 8.582 7.514 8.380 6.765 6.985 6.814

S
ce
n
e
1
0 SSIM↑ 0.853 0.800 0.493 0.718 0.716 0.810 0.744 0.828 0.816 0.839

LPIPS↓ 0.260 0.403 0.492 0.305 0.282 0.244 0.267 0.204 0.240 0.198

S3 ↓ 0.043 0.059 0.088 0.072 0.099 0.051 0.081 0.047 0.049 0.045

Grad↓ 2.159 2.476 3.740 3.366 3.295 2.564 3.081 2.416 2.421 2.283

S
ce
n
e
1
1 SSIM↑ 0.563 0.520 0.374 0.428 0.454 0.518 0.443 0.546 0.513 0.544

LPIPS↓ 0.398 0.510 0.399 0.292 0.350 0.337 0.334 0.307 0.345 0.312

S3 ↓ 0.229 0.278 0.198 0.167 0.178 0.177 0.179 0.165 0.167 0.158

Grad↓ 7.742 8.100 10.04 9.435 9.057 7.946 9.878 7.684 8.225 7.957

C
o
u
n
t Best 14 0 0 9 0 1 1 5 0 17

2nd-Best 4 1 0 0 0 2 4 13 3 14
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Table S6: Scene-level ablation results on UofI Texture Scenes. The fractions
below each header indicate the portion of training views utilized during optimization.
Note, we do not consider the already-reserved 10% views for evaluation. Namely, 1/1
means we use all 90% training views. For Column 1-1, we use pairwise cues for TexInit
while only unary cues are utilized for the remaining columns. We report mean±std.

1-1 1-2 2 3 4 5

1/1-pairwise 1/1 1/2 1/3 1/4 1/5

S
ce
n
e
1

SSIM↑ 0.876 0.876 0.873 0.868 0.831 0.826

LPIPS↓ 0.186 0.187 0.185 0.187 0.216 0.213

S3 ↓ 0.040 0.041 0.042 0.044 0.058 0.063

Grad↓ 1.727 1.724 1.742 1.770 2.045 2.120

S
ce
n
e
2

SSIM↑ 0.622 0.626 0.624 0.617 0.614 0.610

LPIPS↓ 0.219 0.226 0.218 0.215 0.221 0.215

S3 ↓ 0.162 0.164 0.160 0.161 0.161 0.159

Grad↓ 8.070 8.067 8.053 8.105 8.162 8.124

S
ce
n
e
3

SSIM↑ 0.637 0.636 0.657 0.630 0.601 0.639

LPIPS↓ 0.307 0.309 0.293 0.312 0.314 0.265

S3 ↓ 0.120 0.121 0.117 0.125 0.133 0.112

Grad↓ 5.639 5.659 5.445 5.706 6.008 5.435

S
ce
n
e
4

SSIM↑ 0.237 0.244 0.258 0.240 0.219 0.204

LPIPS↓ 0.442 0.440 0.440 0.444 0.466 0.417

S3 ↓ 0.123 0.121 0.122 0.128 0.128 0.114

Grad↓ 16.21 16.09 16.09 16.33 16.00 16.45

S
ce
n
e
5

SSIM↑ 0.473 0.472 0.471 0.473 0.473 0.474

LPIPS↓ 0.294 0.293 0.288 0.288 0.290 0.287

S3 ↓ 0.206 0.205 0.205 0.205 0.205 0.203

Grad↓ 9.853 9.807 9.866 9.830 9.850 9.889

S
ce
n
e
6

SSIM↑ 0.644 0.642 0.643 0.627 0.621 0.618

LPIPS↓ 0.364 0.363 0.351 0.351 0.355 0.353

S3 ↓ 0.066 0.067 0.070 0.073 0.074 0.073

Grad↓ 3.245 3.256 3.284 3.349 3.375 3.352

S
ce
n
e
7

SSIM↑ 0.400 0.396 0.407 0.400 0.400 0.411

LPIPS↓ 0.367 0.367 0.368 0.366 0.366 0.354

S3 ↓ 0.201 0.200 0.199 0.200 0.201 0.194

Grad↓ 11.88 11.91 11.74 11.94 11.93 11.62

S
ce
n
e
8

SSIM↑ 0.837 0.842 0.827 0.816 0.814 0.815

LPIPS↓ 0.249 0.250 0.257 0.271 0.270 0.268

S3 ↓ 0.055 0.055 0.060 0.065 0.065 0.065

Grad↓ 2.035 2.011 2.115 2.209 2.224 2.224

S
ce
n
e
9

SSIM↑ 0.509 0.508 0.506 0.498 0.490 0.489

LPIPS↓ 0.440 0.451 0.441 0.441 0.441 0.428

S3 ↓ 0.143 0.143 0.142 0.141 0.142 0.140

Grad↓ 6.788 6.814 6.787 6.844 6.886 6.852

S
ce
n
e
1
0 SSIM↑ 0.839 0.839 0.839 0.826 0.802 0.801

LPIPS↓ 0.194 0.198 0.189 0.202 0.221 0.219

S3 ↓ 0.044 0.045 0.046 0.051 0.067 0.069

Grad↓ 2.256 2.283 2.282 2.379 2.599 2.636

S
ce
n
e
1
1 SSIM↑ 0.540 0.544 0.537 0.530 0.518 0.523

LPIPS↓ 0.297 0.312 0.310 0.311 0.315 0.311

S3 ↓ 0.155 0.158 0.157 0.159 0.160 0.159

Grad↓ 7.890 7.957 8.034 8.085 8.204 8.106

A
g
g
re
g
a
te
d SSIM↑ 0.601±0.189 0.602±0.189 0.604±0.184 0.593±0.184 0.580±0.180 0.583±0.182

LPIPS↓ 0.305±0.086 0.309±0.086 0.304±0.086 0.308±0.084 0.316±0.082 0.303±0.074

S3 ↓ 0.120±0.058 0.120±0.058 0.120±0.056 0.123±0.055 0.127±0.051 0.123±0.049

Grad↓ 6.872±4.364 6.871±4.342 6.859±4.321 6.959±4.355 7.026±4.233 6.983±4.296
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Fig. S2: Effect of alignment module. From top to bottom, we show alignment results
for Scene 1 to 11 respectively. For each scene, from left to right, we display the ground-
truth image (GT), rendering from Tinit, difference between GT and rendering before
alignment, and difference after alignment.
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(a) L2Avg.

(b) ColorMap.

(c) TexMap.

(d) MVSTex. Besides removing geometries, we also highlight artifacts that MVSTex produces.

(e) AdvTex-C. We highlight artifacts: 1) Scene 6: chair’s texture is mapped to the door in the
background and the curtain’s pattern breaks; 2) Scene 7: leaf colors are fused into the ground; 3)
Scene 8: the boundary between lower gray and upper white areas are fused; 4) Scene 9: the color on
the wall breaks; 5) Scene 10: on the right: the texture of the bookshelf’s lower part is mapped to the
floor; on the left: the texture of carpet is mapped to the wall and the wall’s color breaks; 6) Scene
11: bricks’ cracks are mixed together.

(f) Ours. Compared to Fig. S3e, our method reduces artifacts.

(g) Highlights. From left to right and top to bottom, we show ground-truth image as well as
renderings at the same camera pose with texture from ColorMap, TexMap, MVSTex, AdvTex-C,
and ours respectively. 1) Compared to MVSTex: Besides our method producing more complete
geometry, we observe 1.1) Scene 6: MVSTex produces an apparent split of the color on the carpet;
1.2) Scene 7: MVSTex produces purple-like color at the far-end of the wall; 1.3) Scene 8: for MVSTex,
the top-middle of the image has an apparent color seam on the wall; 1.4) Scene 9: MVSTex produces
an apparent color seam at the far-end of the red ceramic ground; 1.5) Scene 10: MVSTex produces
apparent color seams on the door; 1.6) Scene 11: MVSTex generates large color seams on the meadow.
2) Compared to AdvTex-C: 2.1) Scene 6: the carpet’s pattern of our method is sharper and the
color is smoother; 2.2) Scene 7: our method generates a sharper pattern of the wall; 2.3) Scene 8:
our method produces a sharper boundary between the lower gray and upper white areas of the wall;
2.4) Scene 9: our method produces sharper boundaries of the architecture and there are no color
breaks on the ground; 2.5) Scene 10: our reconstruction has a sharper boundary for the door while
AdvTex-C fused the door and wall; 2.6) Scene 11: our method generates sharper cracks on the wall.

Fig. S3: Qualitative results on UofI Texture Scenes. For each method, we show
results for Scene 6 to 11 from left to right. Best viewed in color and zoomed-in.
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