
Initialization and Alignment

for Adversarial Texture Optimization

Xiaoming Zhao, Zhizhen Zhao, Alexander G. Schwing

University of Illinois, Urbana-Champaign
{xz23, zhizhenz, aschwing}@illinois.edu

https://xiaoming-zhao.github.io/projects/advtex init align

Abstract. While recovery of geometry from image and video data has
received a lot of attention in computer vision, methods to capture the tex-
ture for a given geometry are less mature. Specifically, classical methods
for texture generation often assume clean geometry and reasonably well-
aligned image data. While very recent methods, e.g ., adversarial texture
optimization, better handle lower-quality data obtained from hand-held
devices, we find them to still struggle frequently. To improve robustness,
particularly of recent adversarial texture optimization, we develop an
explicit initialization and an alignment procedure. It deals with complex
geometry due to a robust mapping of the geometry to the texture map
and a hard-assignment-based initialization. It deals with misalignment
of geometry and images by integrating fast image-alignment into the
texture refinement optimization. We demonstrate efficacy of our texture
generation on a dataset of 11 scenes with a total of 2807 frames, ob-
serving 7.8% and 11.1% relative improvements regarding perceptual and
sharpness measurements.

Keywords: scene analysis, texture reconstruction

1 Introduction

Accurate scene reconstruction is one of the major goals in computer vision.
Decades of research have been devoted to developing robust methods like ‘Struc-
ture from Motion,’ ‘Bundle Adjustment,’ and more recently also single view re-
construction techniques. While reconstruction of geometry from image and video
data has become increasingly popular and accurate in recent years, recovered 3D
models remain often pale because textures aren’t considered.

Given a reconstructed 3D model of a scene consisting of triangular faces, and
given a sequence of images depicting the scene, texture mapping aims to find for
each triangle a suitable texture. The problem of automatic texture mapping has
been studied in different areas since late 1990 and early 2000. For instance, in the
graphics community [12, 29, 30], in computer vision [45, 27, 43], architecture [19]
and photogrammetry [14]. Many of the proposed algorithms work very well in a
controlled lab-setting where geometry is known perfectly, or in a setting where
accurate 3D models are available from a 3D laser scanner.

https://xiaoming-zhao.github.io/projects/advtex_init_align

2 X. Zhao, Z. Zhao, A. G. Schwing.

(a) TexInit

(b) TexSmooth

Fig. 1: We study texture generation given RGBD images with associated camera pa-
rameters as well as a reconstructed mesh. (a) TexInit: we initialize the texture using
an assignment-based texture generation framework. (b) TexSmooth: a data-driven ad-
versarial loss is utilized to optimize out artifacts incurred in the assignment step.

However, applying texture mapping techniques to noisy mesh geometry ob-
tained on the fly from a recent LiDAR equipped iPad reveals missing robustness
because of multiple reasons: 1) images and 3D models are often not perfectly
aligned; 2) 3D models are not accurate and the obtained meshes aren’t neces-
sarily manifold-connected. Even recent techniques for mesh flattening [41] and
texturing [16, 54, 24] result in surprising artifacts due to streamed geometry and
pose inaccuracies as shown later.

To address this robustness issue we find equipping of the recently-proposed
adversarial texture optimization technique [24] with classical initialization and
alignment techniques to be remarkably effective. Without the added initialization
and alignment, we find current methods don’t produce high-quality textures.
Concretely and as illustrated in Fig. 1, we aim for texture generation which
operates on a sequence of images and corresponding depth maps as well as
their camera parameters. Moreover, we assume the 3D model to be given and
fixed. Importantly, we consider a streaming setup, with all data obtained on

the fly, and not further processed, e.g ., via batch structure-from-motion. The
setup is ubiquitous and the form of data can be acquired easily from consumer-
grade devices these days, e.g ., from a recent iPad or iPhone [1]. We aim to
translate this data into texture maps. For this, we first flatten the triangle mesh
using recent advances [41]. We then use a Markov Random Field (MRF) to
resolve overlaps in flattened meshes for non-manifold-connected data. In a next
step we determine the image frame from which to extract the texture of each
mesh triangle using a simple optimization. We refer to this as TexInit, which
permits to obtain a high-quality initialization for subsequent refinement. Next we
address inaccuracies in camera poses and in geometry by automatically shifting
images using the result of a fast Fourier transformation (FFT) [6]. The final
optimized texture is obtained by integrating this FFT-alignment component
into adversarial optimization [24]. We dub this stage TexSmooth. The obtained
texture can be used in any 3D engine for downstream applications.

To study efficacy of the proposed framework we acquire 11 complex scenes
using a recent iPad. We establish accuracy of the proposed technique to generate
and use the texture by showing that the quality of rendered views is superior to

Initialization and Alignment for AdvTex 3

prior approaches on these scenes. Quantitatively, our framework improves prior
work by 7.8% and 11.1% relatively with respect to perceptual (LPIPS [53]) and
sharpness (S3 [47]) measurements respectively. Besides, our framework improves
over baselines on ScanNet [11], demonstrating the ability to generalize.

2 Related Work

We aim for accurate recovery of texture for a reconstructed 3D scene from a
sequence of RGBD images. For this, a variety of techniques have been pro-
posed, which can be roughly categorized into four groups: 1) averaging-based;
2) warping-based; 3) learning-based; and 4) assignment-based. Averaging-based
methods find all views within which a point is visible and combine the color
observations. Warping-based approaches either distort or synthesize source im-
ages to handle mesh misalignment or camera drift. Learning-based ones learn
the texture representation. Assignment-based methods attempt to find the best
view and ‘copy’ the observation into a texture. We review these groups next:
Averaging-based: Very early work by Marshner [29] estimates the parameters
of a bidirectional reflectance distribution function (BRDF) for every point on
the texture map. To compute this estimation, all observations from the recorded
images where the point is visible are used. Similar techniques have been investi-
gated in subsequent work [9].

Similarly, to compute a texture map, [30] and [12] perform a weighted blend-
ing of all recorded images. The weights take visibility and other factors into
account. The developed approaches are semi-automatic as they require an ini-
tial estimate of the camera orientations which is obtained from interactively
selected point correspondences or marked lines. Multi-resolution textures [33],
face textures [36] and blending [31, 8] have also been studied.
Warping-based: Aganj et al . [4] morph each source image to align to the
mesh. Furthermore, [54, 23] propose to optimize camera poses and image warping
parameters jointly. However, this line of vertex-based optimization has stringent
requirements on the mesh density and cannot be applied to a sparse mesh. More
recently, Bi et al . [10] follow patch-synthesis [50, 7] to re-synthesize aligned target
images for each source view. However, such methods require costly multiscale
optimization to avoid a large number of local optima. In contrast, the proposed
approach does not require those techniques.
Learning-based: Recently, learning-based methods have been introduced for
texture optimization. Some works focus on specific object and scene categories [18,
40] while we do not make such assumptions. Moreover, learned representa-
tions, e.g ., neural textures, have also been developed [46, 44, 5]. Meanwhile,
generative models are developed to synthesize a holistic texture from a single
image or pattern [21, 32] while we focus on texture reconstruction. AtlasNet [20]
and NeuTex [52] focus on learning a 3D-to-2D mapping, which can be utilized in
texture editing, while we focus on reconstructing realistic textures from source
images. The recently-proposed adversarial texture optimization [24] utilizes ad-
versarial training to reconstruct the texture. However, despite advances, adver-

4 X. Zhao, Z. Zhao, A. G. Schwing.

sarial optimization still struggles with misalignments. We improve this shortcom-
ing via an explicit high-quality initialization and an efficient alignment module.
Assignment-based: Classical assignment-based methods operated within con-
trolled environments [38, 39, 14, 15] or utilized special camera rigs [15, 19]. These
works suggest computing for each vertex a set of ‘valid’ images, which are sub-
sequently refined by iterating over each vertex and adjusting the assignment to
obtain more consistency. Finally, texture data is ‘copied’ from the images. In
contrast, we aim to create a texture in an uncontrolled setting. Consequently,
3D geometry is not accurate and very noisy. Other early work [13, 28, 22, 51, 39]
focuses on closed surfaces and small-scale meshes, making them not applicable
to our setting. More recently, upon finding the best texture independently for
each face using cues like visibility, orientation, resolution, and distortion, re-
finement techniques like texture coordinate optimization, color adjustments, or
scores-based optimization have been discussed [34, 48, 3].

Fig. 2: Noisy geometry.
The wall has two layers.

Related to our approach are methods that formu-
late texture selection using a Markov Random Field
(MRF) [27, 42, 16]. Shu et al . [42] suggest visibility as
the data term and employ texture smoothness to reduce
transitions. Lempitsky et al . [27] study color-continuity
which integrates over face seams. Fu et al . [16] addi-
tionally use the projected 2D face area to select a tex-
ture assignment for each face. However, noisy geome-
try like the one shown in Fig. 2, makes it difficult for
assignment-based methods to yield high quality results,
which we will show later. Therefore, different from these
methods, we address texture drift in a data-driven re-
finement procedure rather than in an assignment stage.

3 Approach

We want to automatically create the texture T from a set of RGBD images I =
{I1, . . . , IT }, for each of which we also know camera parameters {pt}

T
t=1, i.e., ex-

trinsics and intrinsics. We are also given a triangular scene meshM = {Trii}
|M |
i=1,

where Trii denotes the i-th triangle. This form of data is easily accessible from
commercially available consumer devices, e.g ., a recent iPhone or iPad.

We construct the texture T in two steps that combine advantages of assignment-
based and learning-based techniques: 1) TexInit: we generate a texture ini-
tialization Tinit ∈ R

H×W×3 of height H, width W and 3 color channels in an
assignment-based manner (Sec. 3.1); 2) TexSmooth: we then refine Tinit with an
improved data-driven adversarial optimization that integrates an efficient align-
ment procedure (Sec. 3.2). Formally, the final texture T is computed via

T = TexSmooth
(

Tinit, {It}
T
t=1, {pt}

T
t=1,M

)

,

where Tinit = TexInit
(

{It}
T
t=1, {pt}

T
t=1,M

)

. (1)

We detail each component next.

Initialization and Alignment for AdvTex 5

<latexit sha1_base64="SUcSxxMiogs1LlU+TwsU3cKxcBE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqu7eX9YaYRFHGU7gFM7Bg2towB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AueOPVQ==</latexit>

· ·
·

<latexit sha1_base64="SUcSxxMiogs1LlU+TwsU3cKxcBE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqu7eX9YaYRFHGU7gFM7Bg2towB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AueOPVQ==</latexit>

· · ·

<latexit sha1_base64="IsFDioUhreFbrxEhwEMSPsQc0WQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi94q9gvaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFtfWNzq7hd2tnd2z8oHx61TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg1cJJwP6JDJULBKFrp8b6P/XLFrbpzkFXi5aQCOer98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6l1V3YfLSq2Rx1GEEziFc/DgGmpwB3VoAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPHzBejco=</latexit>

It

<latexit sha1_base64="BaF2ilKK51aqpg9e5/zCD5QxrpQ=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4Kokoeix48VihX9DEstlu2qWbTdidCCX0b3jxoIhX/4w3/43bNgdtfTDweG+GmXlhKoVB1/121tY3Nre2Szvl3b39g8PK0XHbJJlmvMUSmehuSA2XQvEWCpS8m2pO41DyTji+m/mdJ66NSFQTJykPYjpUIhKMopX83A8jgtNHnxrsV6puzZ2DrBKvIFUo0OhXvvxBwrKYK2SSGtPz3BSDnGoUTPJp2c8MTykb0yHvWapozE2Qz2+eknOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vl2F0G+RCpRlyxRaLokwSTMgsADIQmjOUE0so08LeStiIasrQxlS2IXjLL6+S9mXNu665D1fVerOIowSncAYX4MEN1OEeGtACBik8wyu8OZnz4rw7H4vWNaeYOYE/cD5/AATrkbo=</latexit>

t∗

(c) Color Transfer

<latexit sha1_base64="SUcSxxMiogs1LlU+TwsU3cKxcBE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqu7eX9YaYRFHGU7gFM7Bg2towB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AueOPVQ==</latexit>

· ·
·

<latexit sha1_base64="p2sqAkbu+mwBFj6oktLe7pUYZFI=">AAACEXicbZDLSsNAFIYn9VbrLerChZtgEVyVRIq6LLhxWaE3aEKYTCft0JkkzJyIJQR8Bx/BrT6AO3HrE7j2RZy0XdjWAwM//3+Gc84XJJwpsO1vo7S2vrG5Vd6u7Ozu7R+Yh0cdFaeS0DaJeSx7AVaUs4i2gQGnvURSLAJOu8H4tsi7D1QqFkctmCTUE3gYsZARDNryzRNXYBgRzLNW7rtAHyFjEYPcN6t2zZ6WtSqcuaiieTV988cdxCQVNALCsVJ9x07Ay7AERjjNK26qaILJGA9pX8sIC6q8bHpAbp1rZ2CFsdQvAmvq/v2RYaHURAS6s1hXLWeF+V/WTyG88fRFSQo0IrNBYcotiK2ChjVgkhLgEy0wkUzvapERlpiAZrYwJQhEXtFUnGUGq6JzWXOuavX7erXReZrxKaNTdIYukIOuUQPdoSZqI4Jy9IJe0ZvxbLwbH8bnrLVkzJkeo4Uyvn4BnXme6g==</latexit>

Tinit
<latexit sha1_base64="SUcSxxMiogs1LlU+TwsU3cKxcBE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqu7eX9YaYRFHGU7gFM7Bg2towB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AueOPVQ==</latexit>

· · ·

<latexit sha1_base64="SUcSxxMiogs1LlU+TwsU3cKxcBE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqu7eX9YaYRFHGU7gFM7Bg2towB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AueOPVQ==</latexit>

· · ·
<latexit sha1_base64="IsFDioUhreFbrxEhwEMSPsQc0WQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi94q9gvaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6LrfTmFtfWNzq7hd2tnd2z8oHx61TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg1cJJwP6JDJULBKFrp8b6P/XLFrbpzkFXi5aQCOer98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPEzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6l1V3YfLSq2Rx1GEEziFc/DgGmpwB3VoAoMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPHzBejco=</latexit>

It

<latexit sha1_base64="bBl/6d5armSJDlarcBFsoUrNZq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kokoeix48SK00C9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dtbWNza3tgs7xd29/YPD0tFxS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju5nffkKleSwbZpKgH9Gh5CFn1Fip/tAvld2KOwdZJV5OypCj1i999QYxSyOUhgmqdddzE+NnVBnOBE6LvVRjQtmYDrFrqaQRaj+bHzol51YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IS3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2RRtCN7yy6ukdVnxritu/apcbeRxFOAUzuACPLiBKtxDDZrAAOEZXuHNeXRenHfnY9G65uQzJ/AHzucPq8mM5w==</latexit>

M

<latexit sha1_base64="W19hU5WWvtluwOJhSwvBd2C1pg0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseCF48V+wVtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vp7CxubW9U9wt7e0fHB6Vj0/aJk414y0Wy1h3A2q4FIq3UKDk3URzGgWSd4LJ3dzvPHFtRKyaOE24H9GREqFgFK30mAxwUK64VXcBsk68nFQgR2NQ/uoPY5ZGXCGT1Jie5yboZ1SjYJLPSv3U8ISyCR3xnqWKRtz42eLUGbmwypCEsbalkCzU3xMZjYyZRoHtjCiOzao3F//zeimGt34mVJIiV2y5KEwlwZjM/yZDoTlDObWEMi3srYSNqaYMbTolG4K3+vI6aV9VvVrVfbiu1Jt5HEU4g3O4BA9uoA730IAWMBjBM7zCmyOdF+fd+Vi2Fpx85hT+wPn8AWvIjfE=</latexit>

pt

<latexit sha1_base64="SUcSxxMiogs1LlU+TwsU3cKxcBE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqu7eX9YaYRFHGU7gFM7Bg2towB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AueOPVQ==</latexit>

· · ·

<latexit sha1_base64="YrcuEYJge+R335Gct14xHshUnFc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi94q9gvaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j2XDTBL0IzqUPOSMGis93ve9frniVt05yCrxclKBHPV++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndVdR8uK7VGHkcRTuAUzsGDa6jBHdShCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDKw42H</latexit>

I1

<latexit sha1_base64="yKEURvtcXm7nPBFcsEWoIe5dmJc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR9FjworeK/YI2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7BT3N3bPzgsHR23dJwqhk0Wi1h1AqpRcIlNw43ATqKQRoHAdjC+nfntJ1Sax7JhJgn6ER1KHnJGjZUe7/vVfqnsVtw5yCrxclKGHPV+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2naEPwll9eJa1qxbuquA+X5Vojj6MAp3AGF+DBNdTgDurQBAZDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwDMR42I</latexit>

I2

<latexit sha1_base64="3/5lwlL8dphlk27h2H69aRohEAU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI8BL3qLmBckS5idzCZDZmeXmV4hLPkELx4U8eoXefNvnCR70GhBQ1HVTXdXkEhh0HW/nMLK6tr6RnGztLW9s7tX3j9omTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbFq4CThfkSHSoSCUbTSw13/vF+uuFV3DvKXeDmpQI56v/zZG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyYpUBCWNtSyGZqz8nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlv6R1VvUuq+79RaXWyOMowhEcwyl4cAU1uIU6NIHBEJ7gBV4d6Tw7b877orXg5DOH8AvOxzfNy42J</latexit>

I3

<latexit sha1_base64="AKXZtzOmArq1M9BPbxy6V9dMJzU=">AAAB+HicbVBNS8NAEJ3Ur1o/GvXoJVgETyURRfFU8OKxQr+gDWGz3bZLN5uwOxFr6C/x4kERr/4Ub/4bt20O2vpg4PHeDDPzwkRwja77bRXW1jc2t4rbpZ3dvf2yfXDY0nGqKGvSWMSqExLNBJesiRwF6ySKkSgUrB2Ob2d++4EpzWPZwEnC/IgMJR9wStBIgV3uIXtExKyh+DTwbgK74lbdOZxV4uWkAjnqgf3V68c0jZhEKojWXc9N0M+IQk4Fm5Z6qWYJoWMyZF1DJYmY9rP54VPn1Ch9ZxArUxKdufp7IiOR1pMoNJ0RwZFe9mbif143xcG1n3GZpMgkXSwapMLB2Jml4PS5YhTFxBBCFTe3OnREFKFosiqZELzll1dJ67zqXVbd+4tKrZHHUYRjOIEz8OAKanAHdWgChRSe4RXerCfrxXq3PhatBSufOYI/sD5/APAqk1E=</latexit>

Tri1 :

<latexit sha1_base64="SUcSxxMiogs1LlU+TwsU3cKxcBE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqu7eX9YaYRFHGU7gFM7Bg2towB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AueOPVQ==</latexit>

· · ·

<latexit sha1_base64="YrcuEYJge+R335Gct14xHshUnFc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi94q9gvaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j2XDTBL0IzqUPOSMGis93ve9frniVt05yCrxclKBHPV++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndVdR8uK7VGHkcRTuAUzsGDa6jBHdShCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDKw42H</latexit>

I1

<latexit sha1_base64="yKEURvtcXm7nPBFcsEWoIe5dmJc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR9FjworeK/YI2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7BT3N3bPzgsHR23dJwqhk0Wi1h1AqpRcIlNw43ATqKQRoHAdjC+nfntJ1Sax7JhJgn6ER1KHnJGjZUe7/vVfqnsVtw5yCrxclKGHPV+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2naEPwll9eJa1qxbuquA+X5Vojj6MAp3AGF+DBNdTgDurQBAZDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwDMR42I</latexit>

I2

<latexit sha1_base64="3/5lwlL8dphlk27h2H69aRohEAU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI8BL3qLmBckS5idzCZDZmeXmV4hLPkELx4U8eoXefNvnCR70GhBQ1HVTXdXkEhh0HW/nMLK6tr6RnGztLW9s7tX3j9omTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbFq4CThfkSHSoSCUbTSw13/vF+uuFV3DvKXeDmpQI56v/zZG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyYpUBCWNtSyGZqz8nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlv6R1VvUuq+79RaXWyOMowhEcwyl4cAU1uIU6NIHBEJ7gBV4d6Tw7b877orXg5DOH8AvOxzfNy42J</latexit>

I3

<latexit sha1_base64="lqA7B8MMsSjMZcdIaWh2ZXegPJ8=">AAAB+HicbVBNS8NAEJ34WetHox69BIvgqSRFUTwVvHis0C9oQ9hst+3SzSbsTsQa+ku8eFDEqz/Fm//GbZuDtj4YeLw3w8y8MBFco+t+W2vrG5tb24Wd4u7e/kHJPjxq6ThVlDVpLGLVCYlmgkvWRI6CdRLFSBQK1g7HtzO//cCU5rFs4CRhfkSGkg84JWikwC71kD0iYtZQfBpUbwK77FbcOZxV4uWkDDnqgf3V68c0jZhEKojWXc9N0M+IQk4FmxZ7qWYJoWMyZF1DJYmY9rP54VPnzCh9ZxArUxKdufp7IiOR1pMoNJ0RwZFe9mbif143xcG1n3GZpMgkXSwapMLB2Jml4PS5YhTFxBBCFTe3OnREFKFosiqaELzll1dJq1rxLivu/UW51sjjKMAJnMI5eHAFNbiDOjSBQgrP8Apv1pP1Yr1bH4vWNSufOYY/sD5/APGvk1I=</latexit>

Tri2 :

<latexit sha1_base64="SUcSxxMiogs1LlU+TwsU3cKxcBE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqu7eX9YaYRFHGU7gFM7Bg2towB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AueOPVQ==</latexit>

···

MRF

<latexit sha1_base64="BaF2ilKK51aqpg9e5/zCD5QxrpQ=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4Kokoeix48VihX9DEstlu2qWbTdidCCX0b3jxoIhX/4w3/43bNgdtfTDweG+GmXlhKoVB1/121tY3Nre2Szvl3b39g8PK0XHbJJlmvMUSmehuSA2XQvEWCpS8m2pO41DyTji+m/mdJ66NSFQTJykPYjpUIhKMopX83A8jgtNHnxrsV6puzZ2DrBKvIFUo0OhXvvxBwrKYK2SSGtPz3BSDnGoUTPJp2c8MTykb0yHvWapozE2Qz2+eknOrDEiUaFsKyVz9PZHT2JhJHNrOmOLILHsz8T+vl2F0G+RCpRlyxRaLokwSTMgsADIQmjOUE0so08LeStiIasrQxlS2IXjLL6+S9mXNu665D1fVerOIowSncAYX4MEN1OEeGtACBik8wyu8OZnz4rw7H4vWNaeYOYE/cD5/AATrkbo=</latexit>

t∗

(b) Triangle-Image Assignment

<latexit sha1_base64="SUcSxxMiogs1LlU+TwsU3cKxcBE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqu7eX9YaYRFHGU7gFM7Bg2towB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AueOPVQ==</latexit>

· · ·

<latexit sha1_base64="YrcuEYJge+R335Gct14xHshUnFc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi94q9gvaUDbbSbt0swm7G6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLa+sbmVnG7tLO7t39QPjxq6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j2XDTBL0IzqUPOSMGis93ve9frniVt05yCrxclKBHPV++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndVdR8uK7VGHkcRTuAUzsGDa6jBHdShCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwDKw42H</latexit>

I1

<latexit sha1_base64="yKEURvtcXm7nPBFcsEWoIe5dmJc=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR9FjworeK/YI2lM120i7dbMLuRiihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7BT3N3bPzgsHR23dJwqhk0Wi1h1AqpRcIlNw43ATqKQRoHAdjC+nfntJ1Sax7JhJgn6ER1KHnJGjZUe7/vVfqnsVtw5yCrxclKGHPV+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2naEPwll9eJa1qxbuquA+X5Vojj6MAp3AGF+DBNdTgDurQBAZDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwDMR42I</latexit>

I2

<latexit sha1_base64="3/5lwlL8dphlk27h2H69aRohEAU=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI8BL3qLmBckS5idzCZDZmeXmV4hLPkELx4U8eoXefNvnCR70GhBQ1HVTXdXkEhh0HW/nMLK6tr6RnGztLW9s7tX3j9omTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbFq4CThfkSHSoSCUbTSw13/vF+uuFV3DvKXeDmpQI56v/zZG8QsjbhCJqkxXc9N0M+oRsEkn5Z6qeEJZWM65F1LFY248bP5qVNyYpUBCWNtSyGZqz8nMhoZM4kC2xlRHJllbyb+53VTDK/9TKgkRa7YYlGYSoIxmf1NBkJzhnJiCWVa2FsJG1FNGdp0SjYEb/nlv6R1VvUuq+79RaXWyOMowhEcwyl4cAU1uIU6NIHBEJ7gBV4d6Tw7b877orXg5DOH8AvOxzfNy42J</latexit>

I3

<latexit sha1_base64="ynzCo1/YNQGPtql5ue9CiRlQImA=">AAAB+HicbVDJSgNBEO1xjXHJqEcvjUHwFGZcUDwFvHiMkA2SYejpVJImPQvdNWIc8iVePCji1U/x5t/YSeagiQ8KHu9VUVUvSKTQ6Djf1srq2vrGZmGruL2zu1ey9w+aOk4VhwaPZazaAdMgRQQNFCihnShgYSChFYxup37rAZQWcVTHcQJeyAaR6AvO0Ei+XeoiPCJiVldi4p/f+HbZqTgz0GXi5qRMctR8+6vbi3kaQoRcMq07rpOglzGFgkuYFLuphoTxERtAx9CIhaC9bHb4hJ4YpUf7sTIVIZ2pvycyFmo9DgPTGTIc6kVvKv7ndVLsX3uZiJIUIeLzRf1UUozpNAXaEwo4yrEhjCthbqV8yBTjaLIqmhDcxZeXSfOs4l5WnPuLcrWex1EgR+SYnBKXXJEquSM10iCcpOSZvJI368l6sd6tj3nripXPHJI/sD5/APM0k1M=</latexit>

Tri3 :

<latexit sha1_base64="SUcSxxMiogs1LlU+TwsU3cKxcBE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqu7eX9YaYRFHGU7gFM7Bg2towB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AueOPVQ==</latexit>

···

(a) Mesh Flattening

<latexit sha1_base64="bBl/6d5armSJDlarcBFsoUrNZq0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kokoeix48SK00C9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dtbWNza3tgs7xd29/YPD0tFxS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju5nffkKleSwbZpKgH9Gh5CFn1Fip/tAvld2KOwdZJV5OypCj1i999QYxSyOUhgmqdddzE+NnVBnOBE6LvVRjQtmYDrFrqaQRaj+bHzol51YZkDBWtqQhc/X3REYjrSdRYDsjakZ62ZuJ/3nd1IS3fsZlkhqUbLEoTAUxMZl9TQZcITNiYgllittbCRtRRZmx2RRtCN7yy6ukdVnxritu/apcbeRxFOAUzuACPLiBKtxDDZrAAOEZXuHNeXRenHfnY9G65uQzJ/AHzucPq8mM5w==</latexit>

M

Fig. 3: Texture initialization TexInit (Sec. 3.1). (a) Mesh flattening: we flatten a
3D mesh into the 2D plane using overlap detection. (b) Triangle-image assignment: we
develop a simple formulation to compute the triangle-image assignment t∗ from mesh
M , frames It and camera parameters pt. We assign frames to each triangle Trii based
on t∗. (c) Color transfer: based on the flattened mesh in (a) and the best assignment
t∗ from (b), we generate the texture Tinit.

3.1 Texture Initialization (TexInit)

The proposed approach to obtain the texture initialization Tinit is outlined in
Fig. 3 and consists of following three steps: 1) We flatten the provided mesh M .
For this we detect overlaps within the flattened mesh, which may happen due to
the fact that we operate with general meshes that are not guaranteed to have a
manifold connectivity. Overlap detection ensures that every triangle is assigned a
unique position in the texture. 2) We identify for each triangle the ‘best’ texture
index t∗. Hereby, ‘best’ is defined using cues like visibility and color consistency.
3) After identifying the index t∗ = (t∗1, . . . , t

∗
|M |) for each triangle, we create the

texture Tinit by transferring for all (u, v) ∈ [1, . . . ,W] × [1, . . . , H] locations in
the texture, the RGB data from the corresponding location (a, b) in image It.
1) Mesh Flattening:1) Mesh Flattening:1) Mesh Flattening:1) Mesh Flattening:1) Mesh Flattening:1) Mesh Flattening:1) Mesh Flattening:1) Mesh Flattening:1) Mesh Flattening:1) Mesh Flattening:1) Mesh Flattening:1) Mesh Flattening:1) Mesh Flattening:1) Mesh Flattening:1) Mesh Flattening:1) Mesh Flattening:1) Mesh Flattening: In a first step, as illustrated in Fig. 3 (left), we flatten the
given mesh M . For this we use the recently proposed boundary first flattening
(BFF) technique [41]. The flattening is fully automatic, with distortion mathe-
matically guaranteed to be as low or lower than any other conformal mapping.

However, despite those guarantees, BFF still requires meshes to have a man-
ifold connectivity. While we augment work by [41] using vertex duplication to
circumvent this restriction, flattening may still result in overlapping regions as
illustrated in Fig. 4. To fix this and uniquely assign a triangle to a position in
the texture, we perform overlap detection as discussed next.
Overlap Detection: Overlap detection operates on flattened and possibly over-
lapping triangle meshes like the one illustrated in Fig. 4a. Our goal is to assign
triangles to different planes. Upon re-packing the triangles assigned to different
planes, we obtain the non-overlapping triangle mesh illustrated in Fig. 4b.

In order to not break the triangle mesh at a random position and end up with
many individual triangles, i.e., in order to maintain large triangle connectivity,
we formulate this problem using a Markov Random Field (MRF). Formally,
let the discrete variable yi ∈ Y = {1, . . . , |Y|} denote the discrete plane index

6 X. Zhao, Z. Zhao, A. G. Schwing.

that the i-th triangle Trii is assigned to. Hereby, |Y| denotes the maximum
number of planes which is identical to the maximum number of triangles that
overlap initially at any one location. We obtain the triangle-plane assignment
y∗ = (y∗1 , . . . , y

∗
|M |) for all |M | triangles by addressing

y∗ = argmax
y

|M |
∑

i=1

φi(yi) +
∑

(i,j)∈A∪O

φi,j(yi, yj), (2)

whereA andO are sets of triangle index pairs which are adjacent and overlapping
respectively. Here, φi(·) denotes triangle Trii’s priority over Y when considering
only its local information, while φi,j(·) refers to Trii and Trij ’s joint preference
on their assignments. Eq. (2) is solved with belief propagation [17].

Intuitively, by addressing the program given in Eq. (2) we want a differ-
ent plane index for overlapping triangles, while encouraging mesh M ’s adjacent
triangles to be placed on the same plane. To achieve this we use

φi(yi) =

{

1.0, if yi = minYi,non-overlap

0.0, otherwise
, and (3)

φi,j(yi, yj) =

{

✶{yi = yj}, if (i, j) ∈ A

✶{yi ̸= yj}, if (i, j) ∈ O
. (4)

Here, ✶{·} denotes the indicator function and Yi,non-overlap contains all plane
indices where Trii has no overlap with others. Intuitively, Eq. (3) encourages to
assign the minimum of such indices to Trii.

As fast MRF optimizers remove most overlaps but don’t provide guarantees,
we add a light post-processing to manually assign the remaining few overlapping
triangles to separate planes. This guarantees overlap-free results. As mentioned
before, after having identified the plane assignment y∗ for each triangle we use
a bin packing to uniquely assign each triangle to a position in the texture.
Conversely, for every texture coordinate u, v we obtain a unique triangle index

i = G(u, v). (5)

A qualitative result is illustrated in Fig. 4b. Next, we identify the image which
should be used to texture each triangle.

2) Textures from Triangle-Image Assignments:2) Textures from Triangle-Image Assignments:2) Textures from Triangle-Image Assignments:2) Textures from Triangle-Image Assignments:2) Textures from Triangle-Image Assignments:2) Textures from Triangle-Image Assignments:2) Textures from Triangle-Image Assignments:2) Textures from Triangle-Image Assignments:2) Textures from Triangle-Image Assignments:2) Textures from Triangle-Image Assignments:2) Textures from Triangle-Image Assignments:2) Textures from Triangle-Image Assignments:2) Textures from Triangle-Image Assignments:2) Textures from Triangle-Image Assignments:2) Textures from Triangle-Image Assignments:2) Textures from Triangle-Image Assignments:2) Textures from Triangle-Image Assignments: Our goal is to identify a
suitable frame Iti , ti ∈ {1, . . . , T + 1}, for each triangle Trii, i ∈ {1, . . . , |M |}.
Note that the (T + 1)-th option IT+1 refers to an empty texture. We compute
the texture assignments t∗ = (t∗1, . . . , t

∗
|M |) using a purely local optimization:

t∗ = argmax
t

|M |
∑

i=1

ψi(ti). (6)

Here ψi captures unary cues. Note, we also studied pairwise cues but did not
observe significant improvements. Please see the Appendix for more details. Due
to better efficiency, we therefore only consider unary cues. Intuitively, we want

Initialization and Alignment for AdvTex 7

(a) Flattened mesh overlaps.

(b) Overlap-free.

Fig. 4: Flattening. (a) Red
triangles indicate where over-
lap happens. (b) The pro-
posed method (Sec. 3.1) re-
solves this issue while keeping
connectivity of areas.

(a) L2Avg. (b) Tinit.

Fig. 5: Initialization comparison. (a) We use Py-
Torch3D’s rendering pipeline [37] to project each pixel
of every RGB image back to the texture. The color of
each pixel in the texture is the average of all colors
that project to it. This texture minimizes the L2 loss
of the difference between the rendered and the ground
truth images. We dub it L2Avg. (b) Tinit from Sec. 3.1
permits to maintain details. The seam artifacts will
be optimized out using TexSmooth (Sec. 3.2). Besides
over-smoothness, without taking into account mis-
alignments of geometry and camera poses, L2Avg pro-
duces texture that overfits to available views, e.g ., the
sofa’s blue colors are painted onto the wall.

the program given in Eq. (6) to encourage triangle-image assignment to be ‘best’
for each triangle Trii. We describe the unary cues to do so next.

Unary Potentials ψi(ti) for each pair of triangle Trii and frame Iti are

ψi(ti) =

{

ψC
i (ti), if ψV

i (ti) = 1

−∞, otherwise
, (7)

where ψV
i (ti) and ψ

C
i (ti) represent validity check and potentials from cues respec-

tively. Concretely, we use

ψV
i (ti) = ✶{Iti ∈ SV

i }, (8)

ψC
i (ti) = ω1 · ψ

C1
i (ti) + ω2 · ψ

C2
i (ti) + ω3 · ψ

C3
i (ti), (9)

where SV
i denotes the set of valid frames for Trii and ω1, ω2, ω3 represent weights

for potentials ψC1
i , ψ

C2
i , ψ

C3
i . We discuss each one next:

• Validity (V). To assess whether frame Iti is valid for Trii, we check the
visibility of Trii in Iti . We approximate this by checking visibility of Trii’s
three vertices as well as its centroid. Concretely, we transform the vertices and
centroid from world coordinates to the normalized device coordinates of the ti-th
camera. If all vertices and centroid are visible, i.e., their coordinates are in the
interval [−1, 1], we add frame Iti to the set SV

i of valid frames for triangle Trii.

• Triangle area (C1). Based on a camera’s pose pti , a triangle’s area changes.
The larger the area, the more detailed is the information for Trii in frame Iti .

8 X. Zhao, Z. Zhao, A. G. Schwing.

<latexit sha1_base64="SUcSxxMiogs1LlU+TwsU3cKxcBE=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPBi8cK9gPaUDabTbt2kw27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvSKUw6LrfTmltfWNzq7xd2dnd2z+oHh61jco04y2mpNLdgBouRcJbKFDybqo5jQPJO8H4duZ3nrg2QiUPOEm5H9NhIiLBKFqp3WehQjOo1ty6OwdZJV5BalCgOah+9UPFspgnyCQ1pue5Kfo51SiY5NNKPzM8pWxMh7xnaUJjbvx8fu2UnFklJJHSthIkc/X3RE5jYyZxYDtjiiOz7M3E/7xehtGNn4skzZAnbLEoyiRBRWavk1BozlBOLKFMC3srYSOqKUMbUMWG4C2/vEraF3Xvqu7eX9YaYRFHGU7gFM7Bg2towB00oQUMHuEZXuHNUc6L8+58LFpLTjFzDH/gfP4AueOPVQ==</latexit>

· ·
·

<latexit sha1_base64="XPkVDL4rWygnay9HaZ6lprj2t8g=">AAAB6HicbVA9SwNBEJ2LXzF+RS1tFoNgFe7EoGXAxkZIwHxAcoS9zVyyZm/v2N0TwhGwt7FQxNafZOe/cfNRaOKDgcd7M8zMCxLBtXHdbye3tr6xuZXfLuzs7u0fFA+PmjpOFcMGi0Ws2gHVKLjEhuFGYDtRSKNAYCsY3Uz91iMqzWN5b8YJ+hEdSB5yRo2V6ne9YsktuzOQVeItSAkWqPWKX91+zNIIpWGCat3x3MT4GVWGM4GTQjfVmFA2ogPsWCpphNrPZodOyJlV+iSMlS1pyEz9PZHRSOtxFNjOiJqhXvam4n9eJzXhtZ9xmaQGJZsvClNBTEymX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvUrZrV+Wqs2neRx5OIFTOAcPrqAKt1CDBjBAeIZXeHMenBfn3fmYt+acRYTH8AfO5w/SY41p</latexit>

M
<latexit sha1_base64="/nC4zP+gM3hV6+L81HdDMSumNCU=">AAACEXicbZDLSgMxGIUz9VbrbdSFCzfBIrgqM1LUZcGN7irYC7TDkEkzbWgyMyT/iGUY8B18BLf6AO7ErU/g2hcxvSxs64HA4Zw//MkXJIJrcJxvq7Cyura+UdwsbW3v7O7Z+wdNHaeKsgaNRazaAdFM8Ig1gINg7UQxIgPBWsHwety3HpjSPI7uYZQwT5J+xENOCZjIt4+6AwL41s8SP+sCe4QMiMrz3LfLTsWZCC8bd2bKaKa6b/90ezFNJYuACqJ1x3US8DKigFPB8lI31SwhdEj6rGNsRCTTXjb5QI5PTdLDYazMiQBP0r83MiK1HsnATEoCA73YjcP/uk4K4ZWX8ShJgUV0uihMBYYYj2ngHleMghgZQ6ji5q2YDogiFAyzuS1BIPOSoeIuMlg2zfOKe1Gp3lXLtebTlE8RHaMTdIZcdIlq6AbVUQNRlKMX9IrerGfr3fqwPqejBWvG9BDNyfr6BU8Gnrw=</latexit>

Îptar

<latexit sha1_base64="9ar2WgGc52nXuqx9ZL9uIx4Z+Rk=">AAACDHicbZDLSsNAFIYn9VbrLdalm8EiuCqJiLosuNFdBXuBNoTJdNIOnUzCzIm0hIBP4CO41QdwJ259B9e+iNPLwrb+MPDz/2c4hy9IBNfgON9WYW19Y3OruF3a2d3bP7APy00dp4qyBo1FrNoB0UxwyRrAQbB2ohiJAsFawfBm0rcemdI8lg8wTpgXkb7kIacETOTb5Ts/S/ysC2wEGRCV57lvV5yqMxVeNe7cVNBcdd/+6fZimkZMAhVE647rJOBlRAGnguWlbqpZQuiQ9FnHWEkipr1senuOT03Sw2GszJOAp+nfHxmJtB5HgZmMCAz0cjcJ/+s6KYTXXsZlkgKTdLYoTAWGGE9A4B5XjIIYG0Oo4uZWTAdEEQoG18KWIIjykqHiLjNYNc3zqntZvbi/qNSaTzM+RXSMTtAZctEVqqFbVEcNRNEIvaBX9GY9W+/Wh/U5Gy1Yc6ZHaEHW1y+4G5zR</latexit>

Iptar

<latexit sha1_base64="XhS73rTeMqnMCM4We/NDtSSu5/c=">AAACBHicbZDLSgMxFIYz9VbrrerSzWARXJUZKeqy4MZlBXuBzlAyaaYNTTIhOSOWYcCVj+BWH8CduPU9XPsippeFbf0h8PP/J5zDFynODHjet1NYW9/Y3Cpul3Z29/YPyodHLZOkmtAmSXiiOxE2lDNJm8CA047SFIuI03Y0upn07QeqDUvkPYwVDQUeSBYzgsFGgeoFQB8hA6zzXrniVb2p3FXjz00FzdXolX+CfkJSQSUQjo3p+p6CMMMaGOE0LwWpoQqTER7QrrUSC2rCbHpz7p7ZpO/GibZPgjtN//7IsDBmLCI7KTAMzXI3Cf/ruinE12HGpEqBSjJbFKfchcSdAHD7TFMCfGwNJprZW10yxBoTsJgWtkSRyEuWir/MYNW0Lqr+ZbV2V6vUW08zPkV0gk7ROfLRFaqjW9RATUSQQi/oFb05z8678+F8zkYLzpzpMVqQ8/ULIWuZzA==</latexit>

ptar FFT

AdvOptim

Offset
Aligned Images

<latexit sha1_base64="sAmh1Ktu3WjXmy0J8HMecxbVn1o=">AAACJnicbZDLSgMxFIYzXmu9jbp0EyyCCykzUtRlwY3uKtgLdIYhk2ba0MyF5IxahgGfwafwEdzqA7gTcSf4IqYXxLYeCPz5/3M4yecngiuwrE9jYXFpeWW1sFZc39jc2jZ3dhsqTiVldRqLWLZ8opjgEasDB8FaiWQk9AVr+v2LYd68ZVLxOLqBQcLckHQjHnBKQFueeXzlZYmXOcDuIVOS5rkjebcHRMr4Dv8m+p7nuWeWrLI1Kjwv7IkooUnVPPPb6cQ0DVkEVBCl2raVgJsRCZwKlhedVLGE0D7psraWEQmZcrPRr3J8qJ0ODmKpTwR45P6dyEio1CD0dWdIoKdms6H5X9ZOITh3Mx4lKbCIjhcFqcAQ4yEi3OGSURADLQiVXL8V0x6RhIIGObXF98O8qKnYswzmReOkbJ+WK9eVUrXxMOZTQPvoAB0hG52hKrpENVRHFD2iZ/SCXo0n4814Nz7GrQvGhOkemirj6wcaAqjC</latexit>

Ipsrc→ptar

<latexit sha1_base64="p2sqAkbu+mwBFj6oktLe7pUYZFI=">AAACEXicbZDLSsNAFIYn9VbrLerChZtgEVyVRIq6LLhxWaE3aEKYTCft0JkkzJyIJQR8Bx/BrT6AO3HrE7j2RZy0XdjWAwM//3+Gc84XJJwpsO1vo7S2vrG5Vd6u7Ozu7R+Yh0cdFaeS0DaJeSx7AVaUs4i2gQGnvURSLAJOu8H4tsi7D1QqFkctmCTUE3gYsZARDNryzRNXYBgRzLNW7rtAHyFjEYPcN6t2zZ6WtSqcuaiieTV988cdxCQVNALCsVJ9x07Ay7AERjjNK26qaILJGA9pX8sIC6q8bHpAbp1rZ2CFsdQvAmvq/v2RYaHURAS6s1hXLWeF+V/WTyG88fRFSQo0IrNBYcotiK2ChjVgkhLgEy0wkUzvapERlpiAZrYwJQhEXtFUnGUGq6JzWXOuavX7erXReZrxKaNTdIYukIOuUQPdoSZqI4Jy9IJe0ZvxbLwbH8bnrLVkzJkeo4Uyvn4BnXme6g==</latexit>

Tinit

Fig. 6: Texture smoothing TexSmooth (Sec. 3.2). We utilize adversarial optimization
(AdvOptim) [24] to refine the texture Tinit from Sec. 3.1. Differently: 1) We initialize
with Tinit. 2) To resolve the issue of misalignment between rendering and ground truth
(GT), we integrate an alignment module based on the fast Fourier transform (FFT).

We encourage to assign Trii to frames Iti with large area by defining ψC1
i (ti) =

Areati(Trii) and set ω1 > 0.

• Discrepancy between z-buffer and actual depth (C2). For a valid frame
Iti ∈ SV

i , a triangle’s vertices and its centroid project to valid image coordinates.
We compute the discrepancy between: 1) the depth from frame Iti at the image
coordinates of the vertices and centroid; 2) the depth of vertices and centroid in
the camera’s coordinate system. We set ψC2

i (ti) to be the sum of absolute value
differences between both depth estimates while using ω2 < 0.

• Perceptual consistency (C3). Due to diverse illumination, triangle Trii’s
appearance changes across frames. Intuitively, we don’t want to assign a texture
to Trii using a frame that contains colors that deviate drastically from other
frames. Concretely, we first average all triangle’s three vertices color values across
all valid frames, i.e., across all Iti ∈ SV

i . We then compare this global average
to the local average obtained independently for the three vertices of every valid
frame Iti ∈ SV

i using an absolute value difference. We require ω3 < 0.
3) Color Transfer:3) Color Transfer:3) Color Transfer:3) Color Transfer:3) Color Transfer:3) Color Transfer:3) Color Transfer:3) Color Transfer:3) Color Transfer:3) Color Transfer:3) Color Transfer:3) Color Transfer:3) Color Transfer:3) Color Transfer:3) Color Transfer:3) Color Transfer:3) Color Transfer: Given the inferred triangle-frame assignments t∗ we com-
plete the texture Tinit by transferring RGB data from image It∗

i
for Trii, i ∈

{1, . . . , |M |}. For this we leverage the camera pose pt∗
i
which permits to trans-

form the texture coordinates (u, v) of locations within Trii to corresponding
image coordinates (a, b) in texture It∗

i
via the mapping F : R2 → R

2, i.e.,

(a, b) = F (u, v, t∗i , pt∗i). (10)

Intuitively, given the (u, v) coordinates on the texture in a coordinate system
which is local to the triangle Trii, and given the camera pose pt∗

i
used to record

image It∗
i
, the mapping F retrieves the image coordinates (a, b) corresponding

to texture coordinate (u, v). Using this mapping, we obtain the texture Tinit at
location (u, v), i.e., Tinit(u, v), from the image data It∗

i
(a, b) ∈ R

3 via

Tinit(u, v) = It∗
i
(F (u, v, t∗i , pt∗i)). (11)

Note, because of the overlap detection, we obtain a unique triangle index i =
G(u, v) for every (u, v) coordinate from Eq. (5). Having transferred RGB data for
all coordinates within all triangles results in the texture Tinit ∈ R

H×W×3, which

Initialization and Alignment for AdvTex 9

we compare to standard L2 averaging initialization in Fig. 5. We next refine this
texture via adversarial optimization. We observe that this initialization Tinit is
crucial to obtain high-quality textures, which we will show in Sec. 4.

3.2 Texture Smoothing (TexSmooth)

As can be seen in Fig. 5b, the texture Tinit contains seams that affect visual
quality. To reconstruct a seamless texture T , we extend recent adversarial opti-
mization (AdvOptim). Different from prior work [24] which initializes with blank
(paper) or averaged (code release1) textures, we initialize with Tinit. Also, we
find AdvOptim doesn’t handle common camera pose and geometry misalignment
well. To resolve this, we develop an efficient alignment module. This is depicted
in Fig. 6 and will be detailed next.

Smoothing with Adversarial Optimization:Smoothing with Adversarial Optimization:Smoothing with Adversarial Optimization:Smoothing with Adversarial Optimization:Smoothing with Adversarial Optimization:Smoothing with Adversarial Optimization:Smoothing with Adversarial Optimization:Smoothing with Adversarial Optimization:Smoothing with Adversarial Optimization:Smoothing with Adversarial Optimization:Smoothing with Adversarial Optimization:Smoothing with Adversarial Optimization:Smoothing with Adversarial Optimization:Smoothing with Adversarial Optimization:Smoothing with Adversarial Optimization:Smoothing with Adversarial Optimization:Smoothing with Adversarial Optimization: To optimize the texture, AdvOptim
iterates over camera poses. When optimizing for a specific target camera pose
ptar, AdvOptim uses three images: 1) the ground truth image Iptar

of the target

camera pose ptar; 2) a rendering Îptar
for the target camera pose ptar from the

texture map T ; and 3) a re-projection from another camera pose psrc’s ground
truth image, which we refer to as Ipsrc→ptar

. It then optimizes by minimizing an
L1 plus a conditional adversarial loss. However, we find AdvOptim to struggle
with alignment errors due to inaccurate geometry. Therefore, we integrate an
efficient alignment operation into AdvOptim. Instead of directly using the input
images, we first compute a 2D offset (∆hptar

, ∆wptar
) between Iptar

and Îptar
,

which we apply to align Iptar
and Îptar

as well as Ipsrc→ptar
via

IA
.
= Align(I, (∆h,∆w)), (12)

where IA marks aligned images. We then use the three aligned images as input:

L =λ∥IAptar
− ÎAptar

∥1 + EIA
ptar

,IA
psrc→ptar

[

logD(IApsrc→ptar
|IAptar

)
]

+ E
IA
ptar

,ÎA
ptar

[

log(1−D(ÎAptar
|IAptar

))
]

. (13)

Here, D is a convolutional deep-net based discriminator. When using the un-
aligned image I instead of IA, Eq. (13) reduces to the vanilla version in [24]. We
now discuss a fast way to align images.

Alignment with Fourier Transformation:Alignment with Fourier Transformation:Alignment with Fourier Transformation:Alignment with Fourier Transformation:Alignment with Fourier Transformation:Alignment with Fourier Transformation:Alignment with Fourier Transformation:Alignment with Fourier Transformation:Alignment with Fourier Transformation:Alignment with Fourier Transformation:Alignment with Fourier Transformation:Alignment with Fourier Transformation:Alignment with Fourier Transformation:Alignment with Fourier Transformation:Alignment with Fourier Transformation:Alignment with Fourier Transformation:Alignment with Fourier Transformation: To align ground truth Iptar
and

rendering Îptar
, one could use näıve grid-search to find the offset which results

in the minimum difference of the shifted images. However, such a grid-search
is prohibitively costly during an iterative optimization, especially with high-
resolution images (e.g ., we use a resolution up to 1920×1440). Instead, we use
the fast Fourier transformation (FFT) to complete the job [6]. Specifically, given
a misaligned image pair of I ∈ R

h×w×3 and Î ∈ R
h×w×3, we compute for every

1
https://github.com/hjwdzh/AdversarialTexture

https://github.com/hjwdzh/AdversarialTexture

10 X. Zhao, Z. Zhao, A. G. Schwing.

(a)

(b) (c) (d)

(e) (f) (g)

Before Alignment After Alignment

Fig. 7: Alignment with fast Fourier transforma-
tion (FFT) (Sec. 3.2). We show results for Tinit

(Sec. 3.1) and L2Avg (Fig. 5) in top and bottom rows.
(a): ground-truth (GT); (b) and (e): texture ren-
dering with (a)’s corresponding camera; (c) and (d):
difference between (a) and (b); (f) and (g): differ-
ence between (a) and (e). The top row: FFT success-
fully aligns GT image and rendering from Tinit. Within
expectation, there is almost no misalignment for the
texture L2Avg as it overfits to available views (Fig. 5).

(a) (b) (c)

Fig. 8: Alignment is im-
portant for evaluation
(Sec. 4.1). Clearly, (c) is
more desirable than (b).
However, before alignment,
LPIPS yields 0.3347 and
0.4971 for (a)-(b) and (a)-(c)
pairs respectively. This is
misleading as lower LPIPS
indicates higher quality. After
alignment, LPIPS produces
0.3343 and 0.2428 for the
same pairs, which provides
correct signals for evaluation.

channel the maximum correlation via

argmax
(i,j)

FFT−1
(

FFT(I) · FFT(Î)
)

[i, j]. (14)

Here, FFT(·) represents the fast Fourier transformation while FFT−1(·) denotes its

inverse and FFT(Î) refers to the complex conjugate. After decoding the maximum
correlation response and averaging across channels, we obtain the final offset
(∆h,∆w). As can be seen in Fig. 7(d), the offset (∆h,∆w) is very accurate.
Moreover, the computation finishes in around 0.4 seconds even for 1920× 1440-
resolution images. Note, we don’t need to maintain gradients for (∆h,∆w), since
the offset is only used to shift images and not to backpropagate through it.

4 Experiments

4.1 Experimental Setup

Data Acquisition. We use a 2020 iPad Pro and develop an iOS app to acquire
the RGBD images It, camera pose pt, and scene mesh M via Apple’s ARKit [1].
UofI Texture Scenes. We collect a dataset of 11 scenes: four indoor and seven
outdoor scenes. This dataset consists of a total of 2807 frames, of which 91, 2052,
and 664 are of resolution 480 × 360, 960 × 720, and 1920 × 1440 respectively.
For each scene, we use 90% of its views for optimization and the remainder for
evaluation. In total, we have 2521 training frames and 286 test frames. This set-
ting is more challenging than prior work where [24] “select(s) 10 views uniformly

Initialization and Alignment for AdvTex 11

distributed from the scanning video” for evaluation while using up to thousands
of frames for texture generation. On average, the angular differences between
test set view directions and their nearest neighbour in the training sets are 2.05◦

(min 0.85◦/max 13.8◦). Angular distances are computed following [25]. Please
see Appendix for scene-level statistics.
Implementation. We compare to five baselines for texture generation: L2Avg,
ColorMap [54], TexMap [16], MVSTex [48], and AdvTex [24]. For ColorMap,
TexMap, and MVSTex, we use their official implementations.2 For AdvOptim

(Sec. 3.2) used in both AdvTex and ours, we re-implement a PyTorch [35] version
based on their official release in TensorFlow [2].1 We evaluate AdvTex with two
different initializations: 1) blank textures as stated in the paper (AdvTex-B); 2)
the initialization used in the official code release (AdvTex-C). We run AdvOptim

using the Adam optimizer [26]. See Appendix for more details. For our TexInit
(Sec. 3.1), we use a generic set of weights across all scenes: ω1 = 1e−3 (triangle
area), ω2 = −10 (depth discrepancy), and ω3 = −1 (perception consistency),
which makes cue magnitudes roughly similar.

On a 3.10GHz Intel Xeon Gold 6254 CPU, ColorMap takes less than two
minutes to complete while TexMap’s running time ranges from 40 minutes to 4
hours. MVSTex can be completed in no more than 10 minutes. Our Tinit (Sec. 3.1)
completes in two minutes. Additionally, the AdvOptim takes around 20 minutes
for 4000 iterations to complete with an Nvidia RTX A6000 GPU.
Evaluation metrics. To assess the efficacy of the method, we study the qual-
ity of the texture from two perspectives: perceptual quality and sharpness. 1)
For perceptual quality, we assess the similarity between rendered and collected
ground-truth views using the Structural Similarity Index Measure (SSIM) [49]
and the Learned Perceptual Image Patch Similarity (LPIPS) [53]. 2) For sharp-
ness, we consider measurement S3 [47] and the norm of image gradient (Grad)
following [24]. Specifically, for each pixel, we compute its S3 value, whose differ-
ence between the rendered and ground truth (GT) is used for averaging across
the whole image. A similar procedure is applied to Grad. For all four metrics,
we report the mean and standard deviation across 11 scenes.
Alignment in evaluation. As can be seen in Fig. 8, evaluation will be mis-
leading if we do not align images during evaluation. Therefore, we propose the
following procedure: 1) for each method, we align the rendered image and the
GT using an FFT (Sec. 3.2); 2) to avoid various resolutions caused by different
methods, we crop out the maximum common area across methods. 3) we then
compute metrics on those cropped regions. The resulting comparison is fair as
all methods are evaluated on the same number of pixels and aligned content.

4.2 Experimental Evaluation

Quantitative evaluation. Tab. 1 reports aggregated results on all 11 scenes.
The quality of our texture T (Row 6) outperforms baselines on LPIPS, S3 and

2
ColorMap: https://github.com/intel-isl/Open3D/pull/339; TexMap: https://github.com/fdp0525/

G2LTex; MVSTex: https://github.com/nmoehrle/mvs-texturing

https://github.com/intel-isl/Open3D/pull/339
https://github.com/fdp0525/G2LTex
https://github.com/fdp0525/G2LTex
https://github.com/nmoehrle/mvs-texturing

12 X. Zhao, Z. Zhao, A. G. Schwing.

Table 1: Aggregated quantitative evaluation on UofI Texture Scenes. We re-
port results in the form of mean±std. Please see Fig. 9 for qualitative texture compar-
isons and Appendix ?? for scene-level quantitative results.

SSIM↑ LPIPS↓ S3 ↓ Grad↓

1 L2Avg 0.610±0.191 0.386±0.116 0.173±0.105 7.066±4.575

2 ColorMap 0.553±0.193 0.581±0.132 0.234±0.140 7.969±5.114

3 TexMap 0.376±0.113 0.488±0.097 0.179±0.062 8.918±4.174

4 MVSTex 0.476±0.164 0.335±0.086 0.139±0.047 8.198±3.936

5-1 AdvTex-B 0.495±0.174 0.369±0.092 0.148±0.047 8.229±4.586

5-2 AdvTex-C 0.563±0.191 0.365±0.096 0.135±0.067 7.171±4.272

6 Ours 0.602±0.189 0.309±0.086 0.120±0.058 6.871±4.342

Table 2: Ablation study. We report results in the form of mean±std.
Adv

Optim
FFT
Align

Tinit SSIM↑ LPIPS↓ S3 ↓ Grad↓

1 ✓ 0.510±0.175 0.342±0.060 0.141±0.052 8.092±4.488

2 ✓ ✓ 0.592±0.192 0.332±0.102 0.130±0.066 6.864±4.211

3 ✓ ✓ 0.559±0.196 0.346±0.082 0.125±0.057 7.244±4.359

4 ✓ ✓ ✓ 0.602±0.189 0.309±0.086 0.120±0.058 6.871±4.342

Grad, confirming the effectiveness of the proposed pipeline. Specifically, we im-
prove LPIPS by 7.8% from 0.335 (2nd-best) to 0.309, indicating high perceptual
similarity. Moreover, T maintains sharpness as we improve S3 by 11.1% from
0.135 (2nd-best) to 0.120 and Grad from 7.171 (2nd-best) to 6.871. Regarding
SSIM, we find it to favor L2Avg in almost all scenes (see Appendix) which aligns
with the findings in [53].

Ablation study.We verify the design choices of TexInit and TexSmooth in Tab. 2.
1) TexSmooth is required: we directly evaluate Tinit and 1st vs. 4th row confirms
the performance drop: -0.092 (SSIM), +0.033 (LPIPS), +0.021 (S3), and +1.221
(Grad). 2) Tinit is needed: we replace Tinit with L2Avg as it performs better
than ColorMap and TexMap in Tab. 1 and still incorporate FFT into AdvOptim.
We observe inferior performance: -0.010 (SSIM), +0.023 (LPIPS), +0.010 (S3)
in 2nd vs. 4th row. 3) Alignment is important: we use the vanilla AdvOptim

but initialize with Tinit. As shown in Tab. 2’s 3rd vs. 4th row, the texture quality
drops by -0.043 (SSIM), +0.037 (LPIPS), +0.005 (S3), and +0.373 (Grad).

Qualitative evaluation. We present qualitative examples in Fig. 9. Fig. 9a
and Fig. 9b demonstrate that L2Avg and ColorMap produce overly smooth tex-
ture. Meanwhile, due to noise in the geometry, e.g ., Fig. 2, TexMap fails to
resolve texture seams and cannot produce a complete texture (Fig. 9c). MVS-
Tex results in Fig. 9d are undesirable as geometries are removed. This is because
MVSTex requires ray collision checking to remove occluded faces. Due to the mis-
alignment between geometries and cameras, artifacts are introduced. We show
results of AdvTex-C in Fig. 9e as it outperforms AdvTex-B from Tab. 1. Ar-

Initialization and Alignment for AdvTex 13

(a) L2Avg.

(b) ColorMap [54].

(c) TexMap [16].

(d) MVSTex [48]. It removes geometry, which is not desirable.

(e) AdvTex-C [24]. We highlight artifacts with boxes. 1) Scene 1: sofa’s texture is mapped to the
wall and the figure on the wall is broken; 2) Scene 2: the door’s color is mapped to the floor and the
brick wall’s pattern is mapped to light; 3) Scene 3: ball’s color is projected to brick walls; 4) Scene
4: bench’s color is added to the bush and ground; 5) Scene 5: the crack breaks and stair’s color is
on the ground.

(f) Ours. Compared to Fig. 9e, our method reduces artifacts.

(g) Highlights. From left to right and top to bottom, we show ground-truth image and renderings
at the same camera pose with texture from ColorMap, TexMap, MVSTex, AdvTex-C, and ours
respectively. Compared to AdvTex-C: 1) Scene 1: ours produces much more complete and sharper
pattern for the sofa; 2) Scene 2: ours generates sharper cracks on brick walls; 3) Scene 3: our balls are
more complete while AdvTex-C maps the top of the ball to the left brick wall; 4) Scene 4: AdvTex-C
maps the bench to the bush while ours is much cleaner; 5) Scene 5: the pattern on the ground from
ours is much sharper.

Fig. 9: Qualitative results on UofI Texture Scenes. For each method, we show
results for Scene 1 to 5 from left to right. Best viewed in color and zoomed-in.

14 X. Zhao, Z. Zhao, A. G. Schwing.

Table 3: ScanNet results. We report results in the form of mean±std. Note, this can’t
be directly compared to [23]’s Tab. 2: while we reserve 10% views for evaluation, [23]
reserves only 10/2011 (≈ 0.5%), where 2011 is the number of average views per scene.

SSIM↑ LPIPS↓ S3 ↓ Grad↓

1-1 AdvTex-B 0.534±0.074 0.557±0.071 0.143±0.028 3.753±0.730

1-2 AdvTex-C 0.531±0.074 0.558±0.075 0.161±0.044 4.565±1.399

2 Ours 0.571±0.069 0.503±0.090 0.127±0.031 3.324±0.826

Fig. 10: Remaining six scenes with our textures. See Appendix for all methods’
results on these scenes.

Fig. 11: Results on ScanNet. Left to right: AdvTex-B/C and ours. Ours alleviates
artifacts: colors from box on the cabinet are mapped to the backpack and wall.

tifacts are highlighted. Our method can largly mitigate such seams, which can
be inferred from Fig. 9f. In Fig. 9g, we show renderings, which demonstrate the
effectiveness of the proposed method. Please see Appendix for complete qualita-
tive results of scenes in Fig. 10.

On ScanNet [11]. Following [24], we study scenes with ID≤ 20 (Fig. 11, Tab. 3).
We improve upon baselines (AdvTex-B/C) by a margin on SSIM (0.534 →
0.571), LPIPS (0.557 → 0.503), S3 (0.143 → 0.127), and Grad (3.753 → 3.324).

5 Conclusion

We develop an initialization and an alignment method for fully-automatic tex-
ture generation from a given scene mesh, and a given sequence of RGBD images
and their camera parameters. We observe the proposed method to yield appeal-
ing results, addressing robustness issues due to noisy geometry and misalignment
of prior work. Quantitatively we observe improvements on both perceptual sim-
ilarity (LPIPS from 0.335 to 0.309) and sharpness (S3 from 0.135 to 0.120).

Acknowledgements: Supported in part by NSF grants 1718221, 2008387, 2045586,
2106825, MRI #1725729, and NIFA award 2020-67021-32799.

Initialization and Alignment for AdvTex 15

References

1. Augmented Reality - Apple Developer. https://developer.apple.com/

augmented-reality/ (2021), accessed: 2021-11-14 2, 10

2. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D.G., Steiner, B., Tucker, P.A., Vasudevan, V., Warden, P., Wicke, M.,
Yu, Y., Zhang, X.: Tensorflow: A system for large-scale machine learning. In: OSDI
(2016) 11

3. Abdelhafiz, A., Mostafa, Y.G.: Automatic texture mapping mega-projects. Journal
of Spatial Science (2020) 4

4. Aganj, E., Monasse, P., Keriven, R.: Multi-view Texturing of Imprecise Mesh. In:
ACCV (2009) 3

5. Aliev, K.A., Ulyanov, D., Lempitsky, V.S.: Neural Point-Based Graphics. In: ECCV
(2020) 3

6. Anuta, P.E.: Spatial Registration of Multispectral and Multitemporal Digital Im-
agery Using FastFourierTransform Techniques. Trans. Geoscience Electronics (1970)
2, 9

7. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.B.: PatchMatch: a random-
ized correspondence algorithm for structural image editing. In: SIGGRAPH (2009)
3

8. Baumberg, A.: Blending Images for Texturing 3D Models. BMVC (2002) 3

9. Bernardini, F., Martin, I., Rushmeier, H.: High Quality Texture Reconstruction
from Multiple Scans. TVCG (2001) 3

10. Bi, S., Kalantari, N.K., Ramamoorthi, R.: Patch-based optimization for image-
based texture mapping. TOG (2017) 3

11. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T.A., Nießner, M.:
Scannet: Richly-annotated 3d reconstructions of indoor scenes. CVPR (2017) 3, 14

12. Debevec, P., Taylor, C., Malik, J.: Modeling and rendering architecture from pho-
tographs: A hybrid geometry and image-based approach. SIGGRAPH (1996) 1,
3

13. Duan, Y.: Topology Adaptive Deformable Models for Visual Computing. Ph.D.
thesis, State University of New York (2003) 4

14. El-Hakim, S., Gonzo, L., Picard, M., Girardi, S., Simoni, A.: Visualization of Fres-
coed surfaces: Buonconsiglio Castle – Aquila Tower, “Cycle of the Months”. IAPRS
(2003) 1, 4

15. Früh, C., Sammon, R., Zakhor, A.: Automated texture mapping of 3D city models
with oblique aerial imagery. 3DPVT (2004) 4

16. Fu, Y., Yan, Q., Yang, L., Liao, J., Xiao, C.: Texture Mapping for 3D Reconstruc-
tion with RGB-D Sensor. CVPR (2018) 2, 4, 11, 13

17. Globerson, A., Jaakkola, T.: Fixing Max-Product: Convergent Message Passing
Algorithms for MAP LP-Relaxations. In: NIPS (2007) 6

18. Goel, S., Kanazawa, A., Malik, J.: Shape and Viewpoint without Keypoints. In:
ECCV (2020) 3

19. Grammatikopoulos, L., Kalisperakis, I., Karras, G., Petsa, E.: Automatic multi-
view texture mapping of 3D surface projections. International Workshop 3D-ARCH
(2007) 1, 4

20. Groueix, T., Fisher, M., Kim, V.G., Russell, B.C., Aubry, M.: AtlasNet: A Papier-
Mâché Approach to Learning 3D Surface Generation. CVPR (2018) 3

https://developer.apple.com/augmented-reality/
https://developer.apple.com/augmented-reality/

16 X. Zhao, Z. Zhao, A. G. Schwing.

21. Henzler, P., Mitra, N.J., Ritschel, T.: Learning a Neural 3D Texture Space From
2D Exemplars. CVPR (2020) 3

22. Hernández-Esteban, C.: Stereo and Silhouette Fusion for 3D Object Modeling
from Uncalibrated Images Under Circular Motion. Ph.D. thesis, École Nationale
Supérieure des Télécommunications (2004) 4

23. Huang, J., Dai, A., Guibas, L., Nießner, M.: 3Dlite: Towards Commodity 3D Scan-
ning for Content Creation. ACM TOG (2017) 3

24. Huang, J., Thies, J., Dai, A., Kundu, A., Jiang, C.M., Guibas, L., Nießner, M.,
Funkhouser, T.: Adversarial Texture Optimization From RGB-D Scans. CVPR
(2020) 2, 3, 8, 9, 10, 11, 13, 14

25. Huynh, D.: Metrics for 3D Rotations: Comparison and Analysis. Journal of Math-
ematical Imaging and Vision (2009) 11

26. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization. ArXiv (2015)
11

27. Lempitsky, V., Ivanov, D.: Seamless mosaicing of image-based texture maps. CVPR
(2007) 1, 4

28. Lensch, H., Heidrich, W., Seidel, H.P.: Automated texture registration and stitch-
ing for real world models. Graphical Models (2001) 4

29. Marshner, S.R.: Inverse rendering for computer graphics. Ph.D. thesis, Cornell
University (1998) 1, 3

30. Neugebauer, P.J., Klein, K.: Texturing 3d models of real world objects from mul-
tiple unregistered photographic views. Eurographics (1999) 1, 3

31. Niem, W., Wingbermühle, J.: Automatic reconstruction of 3D objects using a
mobile camera. IVC (1999) 3

32. Oechsle, M., Mescheder, L.M., Niemeyer, M., Strauss, T., Geiger, A.: Texture
Fields: Learning Texture Representations in Function Space. ICCV (2019) 3

33. Ofek, E., Shilat, E., Rappoport, A., Werman, M.: Multiresolution Textures from
Image Sequences. Computer Graphics & Applications (1997) 3

34. Pan, R., Taubin, G.: Color adjustment in image-based texture maps. Graphical
Models (2015) 4

35. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,
Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., Chintala,
S.: Pytorch: An imperative style, high-performance deep learning library. ArXiv
abs/1912.01703 (2019) 11

36. Pighin, F., Hecker, J., Lischinski, D., Szeliski, R., Salesin, D.H.: Synthesizing real-
istic facial expressions from photographs. CGIT (1998) 3

37. Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo, W.Y., Johnson, J., Gkioxari,
G.: Accelerating 3D Deep Learning with PyTorch3D. arXiv:2007.08501 (2020) 7

38. Rocchini, C., Cignoni, P., Montani, C., Scopigno, R.: Multiple textures stitching
and blending on 3D objects. Eurographics Workshop on Rendering (1999) 4

39. Rocchini, C., Cignoni, P., Montani, C., Scopigno, R.: Aquiring, stitching and blend-
ing diffuse appearance attributes on 3d models. The Visual Computer (2002) 4

40. Saito, S., Wei, L., Hu, L., Nagano, K., Li, H.: Photorealistic Facial Texture Infer-
ence Using Deep Neural Networks. CVPR (2017) 3

41. Sawhney, R., Crane, K.: Boundary first flattening. ACM TOG (2018) 2, 5
42. Shu, J., Liu, Y., Li, J., Xu, Z., Du, S.: Rich and seamless texture mapping to 3D

mesh models. Advances in Image and Graphics Technologies (2016) 4
43. Sinha, S.N., Steedly, D., Szeliski, R., Agrawala, M., Pollefeys, M.: Interactive 3D ar-

chitectural modeling from unordered photo collections. In: SIGGRAPH 2008 (2008)
1

Initialization and Alignment for AdvTex 17

44. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhöfer, M.: Deep-
Voxels: Learning Persistent 3D Feature Embeddings. CVPR (2019) 3

45. Thierry, M., David, F., Gorria, P., Salvi, J.: Automatic texture mapping on real
3D model. CVPR (2007) 1

46. Thies, J., Zollhöfer, M., Nießner, M.: Deferred Neural Rendering. ACM TOG
(2019) 3

47. Vu, C.T., Phan, T.D., Chandler, D.M.: S3: A spectral and spatial measure of local
perceived sharpness in natural images. IEEE Transactions on Image Processing
(2012) 3, 11

48. Waechter, M., Moehrle, N., Goesele, M.: Let There Be Color! Large-Scale Texturing
of 3D Reconstructions. In: ECCV (2014) 4, 11, 13

49. Wang, Z., Bovik, A., Sheikh, H.R., Simoncelli, E.P.: Image Quality Assessment:
from Error Visibility to Structural Similarity. IEEE Transactions on Image Process-
ing (2004) 11

50. Wexler, Y., Shechtman, E., Irani, M.: Space-time video completion. In: CVPR
(2004) 3

51. Wuhrer, S., Atanassov, R., Shu, C.: Fully Automatic Texture Mapping for Image-
Based Modeling. Tech. rep., Institute for Information Technology (2006) 4

52. Xiang, F., Xu, Z., Havsan, M., Hold-Geoffroy, Y., Sunkavalli, K., Su, H.: NeuTex:
Neural Texture Mapping for Volumetric Neural Rendering. In: CVPR (2021) 3

53. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The Unreasonable
Effectiveness of Deep Features as a Perceptual Metric. CVPR (2018) 3, 11, 12

54. Zhou, Q.Y., Koltun, V.: Color Map Optimization for 3D Reconstruction with Con-
sumer Depth Cameras. ACM TOG (2014) 2, 3, 11, 13

	Initialization and Alignment for Adversarial Texture Optimization

