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1 Introduction

This document provides further implementation details for LaLaLoc++ (Sec. ,
as well as some additional experiments and visualisations (Sec. .

2 Implementation

2.1 Floor Plan Localisation: Tacit Assumptions

Due to the characteristics of the datasets used, namely Structured3D [5] and the
Zillow Indoor Dataset [I], there are some additional tacit assumptions about the
structure of the indoor scenes within which localisation is performed.

Firstly, 3D room geometry is generated through extrusion of 2D polygons.
Therefore, this results in all walls being vertical. In addition, it means that all
floors and ceilings consist of a single horizontal plane each. Secondly, camera
heights fall within a range of 1.4-1.8m in Structured3D, and within a range of
0.7-2.1m in the Zillow Indoor Dataset.

2.2 Training Schedule

On the Structured3D dataset, @4y, is trained for a total of 100 epochs through
SGD. The batch size is set to 16. The initial learning rate is set to 0.05, with
momentum at 0.9 and weight decay of 10~*. The learning rate is scaled by a
factor of 0.1 after 50 and 75 epochs.

Dimage is trained for 200 epochs, again through SGD and with a batch size of
64. 0.1 is taken as the initial learning rate, and again with a momentum of 0.9
and weight decay of 10~%. After 100 and 150 epochs the learning rate is scaled
by a factor of 0.1.

When training on the Zillow Indoor Dataset, the total number of epochs
and the learning rate decay milestones are each increased by a factor of 1.5x to
account for there being fewer training scenes.

2.3 Position Refinement

We perform bilinear position refinement using an Adam [2] optimiser. The initial
learning rate is set to 0.01 and is scaled by a factor of 0.5 when the loss plateaus
below a threshold of 0.05 and a patience of 10 iterations. The refinement is
considered to have converged after 20 steps with a threshold on the reduction in
cost set to 0.001, or after 150 steps have elapsed.
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Table 1. Computational complexity for floor plan comprehension in each scene. We
note the complexity of a single forward pass (“FLOPs/Item”), and the average number
of passes required during training and testing for each of the methods (“#Items”), all
per scene. The size of the floor plan and the number of testing layout inputs are each
computed as the median over Structured3D val split

Training Testing
Method FLOPs/Item|# Items Total FLOPs|# Items Total FLOPs

LaLaLoc (0.5m) 11G 21 23.9G 332 378.5G
LaLaLoc++ 40.0G 1 40.0G 1 40.0G

Table 2. Generalisation of ®piq, moving from synthetic (Structured3D) to real (Zillow
Indoor Dataset). Both are evaluated on the Zillow Indoor Dataset

DPpian Localisation Accuracy
Train Dataset Med. <lem <5cm <10cm <1m

Structured3D 9.9 2.0% 29.1% 50.2% 79.1%
Zillow Indoor 9.3 2.5% 32.1% 51.7% 80.7%

3 Additional Experiments and Visualisation

3.1 Computational Complexity

In Sec.5.1 of the main paper, we noted that Lal.al.oc required many forward
passes of its Pjgyout to form the reference grid of layout embeddings. Here,
we quantify this by computing the complexity of LaLaLoc++'s @4, against
Playout from LaLaLoc, with results listed in Tab. (I Although a single pass of
Dpian is much more complex than a single pass of Pjayout ; Prayout Fequires many
forward passes to compute descriptors during testing, whereas @4, only requires
a single pass for each scene. This results in a very significant computational sav-
ing.

3.2 Generalisation Between Datasets

We explore the generalisation of @4, across the synthetic-to-real domain gap
in Tab. [2l We take &4y, trained on Structured3D and apply it to the Zillow
Indoor Dataset, Pimage is retrained from scratch on the new dataset. The re-
sulting model is able to achieve near parity in its accuracy. This demonstrates
that the @4y is able to generalise well to the more complex scene geometry
present in the Zillow Indoor Dataset. However, we found poor performance in
experiments where both modules are kept frozen across the datasets. In addi-
tion to the challenges of synthetic-to-real, the scene data representation is not
completely similar in each dataset, resulting in a difference in the rasterisation
of input 2D floor plans. We hypothesise that this is a significant contributor to
the performance drop.
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Table 3. Comparison of the image embedding architecture that is used. R50 + Trans-
former is the proposed formulation where the image feature map is refined with a
transformer encoder For further comparison, we also include some panorama-specific
backbones, HoHoNet and SliceNet

Localisation Accuracy
Pimage Backbone # Params. Med. <lecm <5cm <10cm <Im

R50 + Transformer 24.1M 5.2 5.4% 48.8% 72.3% 92.3%
SliceNet Encoder 69.2M 4.7 5.4% 52.0% 73.7% 92.6%
HoHoNet Encoder  31.4M 4.6 5.4% 54.1% 75.5% 93.2%

3.3 Image Module and Alternative Backbones.

In this section, we explore how the panorama-specific network designs can be
used to further improve localisation accuracy with LaLaLoc++. To do so, we
compare Pjmqqe formulations with backbones inspired by recent work on lay-
out and monocular depth estimation from panorama images, specifically Ho-
HoNet [4] and SliceNet [3]. These networks both work similarly to exploit the
structure of gravity-aligned panoramas by operating mostly in the vertical di-
mension alone. This produces features that have been flattened vertically, but
maintain the input horizontal resolution.

For the HoHoNet-based ®;p,q4¢ , we extract the panorama’s Latent Horizon-
tal Features with dimension (128 x 512), i.e. with a 128d descriptor for each
horizontal column in the original input panorama. We then compute a single
128d embedding with a 2-layer MLP operating across the horizontal axis. We
use the ResNet34 variant of the network as this was reported to outperform other
variations for the task of layout estimation. For the SliceNet-based ®@image , We
use the ResNet50 variant. Image features are taken as the output of the LSTM
module and have dimension (1024 x 512), representing 512 vertical slices each
1024d. We again employ a 2-layer MLP across the horizontal axis to produce a
single 1024d descriptor, which is linearly projected to 128d.

Results are listed in Tab. |3, where it can be seen that LaL.al.oc++4 can achieve
some further gain in accuracy by leveraging these backbones that more explicitly
exploit the characteristics of gravity-aligned panoramas.

3.4 Failure Modes

We provide qualitative visualisation of localisation failures with LaLaloc++
in Fig. [Il These instances of failed localisation seem to generally fall into two
main modes. In the first mode, the pose is predicted to be in an incorrect room,
this is an example of layout ambiguity across the floor plan. However, in these
scenarios the alignment does frequently still appear plausible. In the second
mode of failure, the pose is predicted to be in the correct room, but the layout is
then misaligned. By visualising these cases, we see that room edges and corners
are often mistakenly aligned to the edges of room clutter, such as tables and
counter-tops.
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Fig. 1. Qualitative visualisation of failure modes on the Structured3D dataset. Left:
failures where the wrong room is retrieved entirely. Right: misalignment of the layout
to the image.

3.5 Layout Decoder Output

In this section, we provide additional visualisation of the layout decoder output.
Figure [2] illustrates the 2D to 3D hallucination that is learned by LaLaLoc++
during the floor plan embedding training stage. It can be seen that the lay-
outs captured by the floor plan encoder generally reflect the structure well. The
wall/floor or ceiling boundary seems to be the largest source of error in many
cases, as is seen in the top three rows. This is to be expected as LalLalL.oc++ has
to learn a general prior for heights from 2D plans.

It is also apparent that some finer layout detail is lost, but the prediction is
still very representative of the overall structure, as depicted in the bottom three
rows. Interestingly, when considered with the saliency plots in Fig. 5 from the
main paper, the type of structure that is missed in decoding still contributes to
the descriptor as evidenced by its saliency. This would suggest that this type
of error is due to the limited decoder design. However, we emphasise that this
paper is not targeting room layout estimation. This layout decoder offers a simple
inductive bias and its output is only computed during training of the embedding
space. These results only serve to improve intuition about how LalLalLoc++
infers 3D structure.
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Fig. 2. Qualitative layout predictions from the decoder, helping to illustrate the 2D
to 3D hallucination of layout. Left to right: floor plan with query location marked in
pink; query image; ground truth layout; decoded layout; L1 error. Performed on the
Structured3D dataset.
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