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Abstract. We present Lalaloc+4, a method for floor plan localisa-
tion in unvisited environments through latent representations of room
layout. We perform localisation by aligning room layout inferred from a
panorama image with the floor plan of a scene. To process a floor plan
prior, previous methods required that the plan first be used to construct
an explicit 3D representation of the scene. This process requires that as-
sumptions be made about the scene geometry and can result in expensive
steps becoming necessary, such as rendering. Lal.al.oc++ instead intro-
duces a global floor plan comprehension module that is able to efficiently
infer structure densely and directly from the 2D plan, removing any
need for explicit modelling or rendering. On the Structured3D dataset
this module alone improves localisation accuracy by more than 31%, all
while increasing throughput by an order of magnitude. Combined with
the further addition of a transformer-based panorama embedding mod-
ule, LalLaLLoc++ improves accuracy over earlier methods by more than
37% with dramatically faster inference.

1 Introduction

Floor plans are ubiquitous in the built, indoor environment. For almost any mod-
ern building, these structural plans are stored by local government, builders, real
estate agents and even as fire-safety maps and other guides to indoor environ-
ments. The prevalence of these documents across domains is not an historical
fluke, but instead because they have a number of very useful characteristics.
Permanence, while furniture and objects present within an environment may
move or change, the structure represented in a floor plan remains the same, and
therefore these documents are able to provide a description of the environment
over a period of years and decades. Fxpressiveness, the structure depicted in a
floor plan gives the reader a good basis for understanding that particular in-
door environment: in a fire safety map, one is able to bridge the gap between
their egocentric view and the plan to determine an exit route; when viewing
a property online, one is able to imagine living in the space illustrated by the
top-down plan. Convenience, these blueprints are extremely lightweight format
for expressing this structure, allowing them to be easily stored and interpreted
across physical and digital formats.
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Fig. 1. An overview of our proposed method for floor plan localisation. LaL.aLoc++
takes a 2D floor plan and infers 3D structure across the free space of the plan. To
localise, an image branch infers layout structure from the query image. Position is
predicted by aligning the image’s latent structure to the globally inferred structure.

It is for these reasons that, in this paper, we turn our attention to direct
interpretation of structural blueprints, specifically in the context of floor plan
localisation. Visual relocalisation estimates the pose of a camera given some prior
of an environment. Commonly in localisation methods, the prior takes the form
of a built 3D structural point-map, e.g. [24], a series of stored images, e.g. [112],
or in the weights in a neural network, e.g. [4]. Floor plan localisation, however,
takes an architectural plan of the indoor environment as prior.

We present Lal.alLoc++ to perform floor plan localisation directly from 2D
plans. Previous methods for floor plan localisation relied on translation of the
architectural floor plan into an explicit 3D geometry, either relying on the as-
sumption of known [I5], or manually-estimated [J] ceiling and camera heights
to extrude the plan into 3D. Lal.al.oc++, however, learns a general prior over
2D floor plans which allows us to implicitly hallucinate 3D structure across the
entire plan in a single pass, and without the need for the intermediate conversion
into an explicit 3D representation. This is depicted in Fig.

The contributions of this paper can be summarised as follows: (i) We present
a floor plan comprehension module that learns to implicitly hallucinate 3D vis-
ible structure from 2D floor plans. This removes the need for explicit extrusion
with an assumed or known camera height. (i) We demonstrate that, when com-
bined with an improved RGB panorama embedding module, this method is a
significant advance over previous work, both in terms of accuracy (over 37%
and 29% improvement over LaLaLoc on Structured3D [34] and Zillow Indoor
Dataset [9], respectively) and speed (35x speed up).

2 Related Work

Camera relocalisation has seen a vast collection of research progress, inspiring a
diverse set of problem settings and methods to solve them. Generally, visual lo-
calisation seeks to make associations between query image and prior knowledge
of the environment in order to predict the capture location. However, the type
and construction requirements of this prior offers a variety of design choices.
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A large portion of methods offer prior construction that is generalisable across
scenes. Structure-based methods [20/T9I24] establish correspondences by match-
ing points between the query image and an explicit 3D representation built using
a method such as SIM [I3126]. Retrieval-based methods [25)2/TITT] primarily es-
timate pose by matching the query image to its most similar counterpart in a
database. On the other hand, other methods require that a new prior be learned
for each environment in which localisation is performed, usually learning an im-
plicit representation of the scene within neural network weights. Absolute pose
regression methods [I7UT68] train a deep neural network to directly regress the
camera pose. Scene-coordinate regression methods [27U30/4I5/6] densely regress
global 3D coordinates across image locations. These generalisable and scene-
specific methods share a common attribute, which is that, although the form
their prior takes differs, they require a training sequence of images in order to
construct or learn it. In this paper, however, we approach the task of floor plan
localisation, which takes only a floor plan as its prior. Therefore, the need for a
training set of images to enable localisation in a new environment is alleviated.

Like other forms of visual localisation, floor plan-based methods can take
many forms. The task has seen particular interest in the context of robotics,
where methods operate by forming a room layout observation model between
a location in the floor plan and query by extracting layout edges [3I3229], lay-
out corners [14] or aggregating depth [33] from which an observation likelihood
can be estimated. Further, if depth information is available, scan-matching tech-
niques [22] estimate an alignment between the observed depth and the floor
plan. These methods are generally not standalone, instead relying on multi-
ple sequential measurements used as hypothesis weightings for a Monte Carlo
Localisation [I0] frameworks. In this paper, however, we approach the task as
defined by LaLaLoc [I5]. This localisation formulation, unlike previous works,
aims to localise a panorama image within a floor plan without depth informa-
tion, motion or time-coherency cues, and without assuming a good initialisation.
Concurrent to this work, Min et al. [21] also perform floor plan localisation in
the same vein. Cruz et al. [9] construct a similar layout-based localisation task
for panorama registration, however, they aim to localise with respect to other
panoramas, rather than in an unvisited location.

LaLaLoc [I5] learns a latent space to capture room layout [I8]. Localisation
is performed as retrieval between a database of embedded layouts from sparsely
sampled poses within the floor plan and the embedding of the panorama im-
age. This is followed by a gradient-based optimisation of pose to minimise the
distance between layout and query embeddings, enabled through differentiable
rendering. However, the model of the scene used by LalLaloc had to be created
by extruding the floor plan in the z-dimension, assuming a known camera and
ceiling height. In addition, LaLaLoc’s formulation requiring rendering across the
plan for retrieval, and multiple (differentiable) rendering steps for pose refine-
ment is slow. LASER [2I] addressed these limitations by rendering embeddings
individually using a codebook scheme. In this work, we instead propose dense
and global structural comprehension of the 2D plan. In doing so, LaLalLoc++
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is able to dramatically improve accuracy and inference speed over Lal.al.oc, all
while removing the need for height assumptions at inference time.

3 Method

LaLaLoc++ consists of two parallel branches which operate across data modal-
ities. An overview of its architecture is depicted in Fig. [I} The floor plan com-
prehension module, @4y, , infers the layout structure that is visible across a 2D
floor plan, computing a latent vector at every location in the x — y plane that
covers the scene. The image embedding module, ®P;q4e, on the other hand,
aims to capture the layout that is visible within a cluttered, RGB panorama
image. They map to a shared latent space such that a panorama captured at
a location and embedded by ®;;,qge should have the same latent vector as that
location sampled from @4y, ’s output. Therefore, LaLaLoc++ performs locali-
sation of a query panorama by finding the location in the floor plan that most
accurately matches the visible room layout, with matching cost being computed
in the shared layout latent space. In the following, we detail the task, the form
that our architecture takes, how it is used to localise, and how it is trained.

3.1 Floor Plan Localisation

We follow the floor plan localisation task as used in LaLaLoc [I5]. This is the
task of performing localisation of a panorama within a scene which has not been
visited previously, given only a floor plan as prior. Specifically, we predict the 2
DoF camera pose to an & — y location in the 2D floor plan assuming a known
orientation, an assumption we explore in Sec. 5.6l We also detail some tacit
assumptions arising from dataset characteristics in the supplementary material.
The floor plan consists of a 2D image which denotes an empty scene consisting
of only walls, floors and ceilings.

3.2 Pyan: Global Latent Floor Plan

Given a 2D floor plan of an environment, we wish to infer the architectural
structure of the scene at any given location within it. In order to achieve a
similar objective, LaLaLoc [15] formed an explicit representation of the scene
in the form of a mesh using a known ceiling height. This explicit geometry was
then rendered as a depth image at a given location from which the implicit
layout representation could be computed by LaLaLoc’s @jqy0u: - While shown to
be effective, this method proves to be slow, requiring multiple rendering steps
and forward passes in order to form only a sparse map of layout across the floor
plan, and also requires that camera and ceiling heights are known.

Instead, with LalLaloc++ we propose that the implicit representation of
layout can be inferred directly from the floor plan itself. This formulation allows
us to walk well-trodden ground in architecture design for fast, efficient, and dense
inference of layout across the floor plan.
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Fig. 2. &4y , the floor plan comprehension network
and its training routine. The network takes as input
a 2D plan of the scene and outputs a dense grid
of features which capture the 3D structure visible at
their respective locations. Feature maps are depicted
with spatial dimensions unrolled for simplicity, and
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Fig.3. Pimage, the transformer-
based image embedding module. A
ResNet backbone is used and its
output is fed into a transformer en-
coder architecture. The resulting
features are pooled and projected

channel dimensions are listed. to get the final embedding.

Specifically, @pjqn takes the form of a UNet [23] inspired encoder-decoder
structure. It takes as input a 2D structural floor plan and outputs a dense feature
map. The vector at each location is a latent representation of the layout visible
there. Therefore, in just a single forward pass we are able to build a dense
expression of layout within a plan. This structure is depicted at the top of Fig.

3.3  Pimage : Image Embedding with Long-range Attention

While forming an expressive latent space for layout inferred from a floor plan was
shown to be readily achievable to a high degree of effectiveness in LaLaLoc [I5],
the difficulty of (implicitly) predicting layout from RGB panoramas proved to be
a significant source of error. We therefore propose an improved image embedding
module based on a transformer encoder [31]. This module allows @;,,q4e to better
capture long-range structural patterns present in the query panorama image.
We implement a transformer encoder to refine the feature-map computed
by the image branch backbone, which is a ResNet50 network [I2]. The features
outputted by the backbone are linearly projected from 2048d to 128d. These
projected features are then fed into the transformer encoder, with 2 encoder
blocks before finally being pooled and projected to form the image embedding
for a panorama. The multi-headed self-attention present in the encoder blocks
encourages long-range attention. This architecture is visualised in Fig.

3.4 Localisation

At inference time, a dense reference grid of latent layout vectors are computed
by passing the 2D floor plan. An initial estimate of position is computed as the
location corresponding to the nearest latent layout in this grid. However, since
this is still a spatially discretised grid across the scene, we introduce further
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alignment in the form of pose optimisation allowing for a continuous estimate of
position. We describe this more concretely in the following.

We denote the floor plan encoded by ®@pian as G, and the query latent layout
computed by @image as f. The initial position estimate, po, is taken as whole
pixel location, i.e.pg = (ig, jo) € Z?, with the lowest matching cost |f — G[po]|a2,
where [] is a look-up function. This location is used to initialise the refinement.

We then perform the continuous refinement of pose through interpolation
of the local neighbourhood of latent layout representations in the encoded floor
plan. Position is initialised at the nearest location in the feature grid. During
refinement, the position estimate is relaxed to allow sub-pixel locations, p, € R2,
and [-] is extended to use sub-pixel interpolation. The refined pose is iteratively
updated to minimise the matching cost in a gradient-based optimisation scheme,

min |f — Glpr]l2. (1)

3.5 Training

LaLaLoc++ follows an analogous training philosophy to that proposed in LaLaLoc [15]
where the network is trained in two separate stages. In the first stage, we train
Dpian alone. Since P,y takes a form of explicit structure as input, its training is

used to establish an expressive latent space for capturing the room layout at any
given location in the scene. This latent space is then frozen and, in the second
stage, Pimage is trained to map images to this fixed representation space.

®pian + Learning the Latent Space. We train &p,, with a single loss, where
the layout embedding at a given location is passed through a simple layout depth
prediction decoder and compared with a rendered layout at the same location:

gdecode - |L/ - L|17 (2)

where L' is the predicted layout, and L is the ground-truth rendering at a given
location. During training, we use known camera and ceiling heights for the ren-
dering of the target layout, however, the floor plan comprehension module is
forced to infer the structure without these parameters. Therefore, it must learn
a generalised prior for the hallucination of 3D structure from the top-down 2D
input. Ilustration of how this loss is computed can be found in Fig.

Pimage : Mapping to the Latent Space. The training of ®;p,qg. takes the
form of a simple strategy, which reflects its role in the localisation method. Given
a training batch of panorama images, their respective poses, and a floor plan, the
global latent floor plan is computed by @4, and sampled at the panorama poses.
The panorama images are then embedded by ®;,,q4¢ , and a loss is applied to the
difference between the embeddings produced by ®;pqage, f, and those sampled
from @pian s output, g, which is defined as follows:

lra = |f — gl (3)
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4 Implementation Detalils

Here, we describe the specific nature of the task evaluated in the experiments
section of the paper. We start with the datasets, followed by the configuration
of our method. Additional details can be found in the supplementary material.

4.1 Datasets

The bulk of evaluation experiments are performed on the Structured3D dataset [34],
which consists of 3,500 photorealisticly-rendered synthetic indoor scenes. We
follow the split of data used in LaLaLoc [15], which itself follows the dataset’s
predefined split with some scenes excluded due to corrupted data. This leaves
2979/246/249 scenes for training/validation/testing, respectively. Every scene
comprises of multiple rooms, each containing a single panorama image which is
used as a query. Since there are no reference images captured from within the
same scene, we label each scene as unuvisited, as there is no RGB data that can be
leveraged for training or database building and therefore the method must rely
on floor plan data alone. There are three furniture configurations, empty, simple
and full, as well as three lighting configurations for each scene, cold, warm and
raw. During training, we randomly sample a furniture and lighting configura-
tion at each iteration. At test time, we perform evaluation in the full and warm
setting. This is the most difficult furniture configuration as there are the most
possible distractors from layout present in the image.

We also explore how this method extends to real data by performing evalua-
tion on the recently released Zillow Indoor Dataset [9]. We processes the dataset
to match the problem setting on the Structured3D dataset, namely considering
localisation across a single floor and alignment of panorama images. This re-
sults in 1957/244/252 scenes for training/validation/testing, respectively. How-
ever, the dataset only provides a single lighting and furniture configuration for
each panorama. The remaining implementation details apply across both Struc-
tured3D and the Zillow Indoor Dataset.

Floor plans. We represent the 2D floor plans as image. Each pixel location can
take three possible values: 1 represents a wall, 0.5 is used to denote free-space
within the floor plan, and 0 is assigned to free space outside of the floor plan.
To ensure that absolute scale is preserved in the creation of these plans, we use
a consistent scale across all scenes in the dataset. It is set such that one image
pixel covers 40mm of space in reality. This value was set heuristically as a balance
between keeping the overall size of the floor plan manageable, and ensuring that
all walls are still discernible. At the most compact representation in @4, , the
spatial resolution of the feature map is 1/32th of the original height and width,
we zero-pad the floor plans so that both height and width are divisible by 32.

4.2 Network Architecture

As depicted in Fig. [2| @pjqn consists of 5 down-sample and 5 up-sample layers.
These layers each consist of a convolutional block which contains a 3x3 convolu-
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tion, a batch-norm and a ReLU activation repeated twice. In the down-sample
block, the convolutional block is followed by a 2x2 max-pooling layer. In the
up-sample block it is preceded by a 2x2 bilinear up-sampling of the feature map.
This up-sampled feature map is then concatenated with the feature map from
the corresponding down-block (taken before pooling), to form skip connections.
The output of the final up-sampling layer is passed through a final 3x3 linear
convolution to form the final latent floor plan. This latent floor plan keeps the
same spatial resolution as the original input floor plan with a 128d descriptor for
each location which are normalised. The layout decoder used in training takes
an identical structure to that used in [I5].

Dimage takes the form of a ResNet50 backbone. In its simplest formulation,
the feature map outputted by this backbone is pooled to a single vector, then
linearly projected to 128d and normalised. However, in our transformer for-
mulation, a transformer encoder forms an intermediate refinement of the image
feature map before pooling and projecting. More specifically, a 2D sinusoidal po-
sitional encoding [31] is generated for each spatial location in the feature map.
The feature map is then flattened, linearly projected to 128d, and fed into a
vanilla transformer encoder [31] with two repeated blocks. There are 8 attention
heads, and the feed-forward hidden dimension is set to 256 dimensions. We apply
the positional encoding at the attention layers, rather than input, following [7].
The encoded features are then pooled and projected once more before being
normalised to form the image embedding.

5 Experiments

In this section, we perform experimental evaluation of Lalaloc++. Initially,
we explore the performance of the method as a whole before exploring the con-
stituent components and their impact on the final accuracy. Finally, we perform
ablation experiments to validate the design of these components. Unless other-
wise stated, experiments are performed on the Structured3D [34] dataset.

5.1 Floor Plan Localisation

We first perform localisation on the test split of the Structured3D [34] dataset.
We compare the performance of LaLalLoc++ to three other methods, LalLalLoc

Table 1. Localisation performance of LaLal.oc++ compared against three other floor
plan localisation methods on Structured3D

Localisation Accuracy

Method Median (cm) <lem <5cm <10cm <1m

ICP 21.8 9.5% 26.4% 35.6% 68.5%
HorizonNet [28] + Loc 9.1 3.3% 29.3% 53.4% 77.4%
LaLaLoc [I5] 8.3 3.6% 32.0% 58.0% 87.5%

LaLaLoc++ 5.2 5.4% 48.8% 72.3% 92.3%
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Fig. 4. Qualitative comparison of the floor plan comprehension differences between
LaLalLoc++ and LalalLoc. Visualised as a plot of the latent distance between the
query image and embeddings across the floor plan in each of the two methods. While
LaLaLoc++’s @pian is able to infer layout densely within the scene, LaLaLoc instead
just has a sparse sampling (0.5m in each direction). The difference in the resulting
understanding of the environment is stark.

Inference Time (s)
Embedding Refinement

Method & Retrieval (Rendering) Total

Localisation Accuracy oD-ICP _ _ 201

Method Med. <lecm <6cm <10cm <1lm LaLaLoc w/o VDR 0.05 2.33 (0.85) 2.38
LaLaLoc 13.1 1.3% 19.9% 40.9% 77.6% LaLaLoc 0.05  4.60(3.34) 465
LaLaLoc++ 9.3 2.5% 32.1% 51.7% 80.7% LaLaLoc++ 0.01 0.12  0.13

Table 2. Localisation performance of Table 3. Inference time comparison on a
LaLaLoc+4 compared to LalLaloc with single Nvidia Titan RTX GPU. Times are
real data on the Zillow Indoor Dataset. displayed as: Total time (Render time).

itself, as well as the 2D-ICP and HorizonNet [28]-based baseline presented in
LaLaLoc [I5]. Results are listed in Tab.

As can be seen in Tab. [I] LaLaLoc++ is able to localise in these unseen
environments significantly more accurately than the original LalLLalL.oc. The me-
dian localisation accuracy represents a 37% improvement over LaLaLoc. When
considering the accuracy thresholds, it is notable that Lal.aLoc++ not only is
able to localise more images to the fine-grained accuracy thresholds, but is also
able to localise more images to within 1m (87.5% wv.s. 92.3%). This suggests
that LaLalLoc++ reduces the frequency of catastrophic failure to localise. We
visualise some failure modes in the supplementary material.

We further investigate how this performance extends beyond synthetic data
into the real world captures on the Zillow Indoor Dataset [9]. We report these
results in Tab. 2] Inline with results on Structured3D, LaLaLoc++ offers signif-
icantly improved accuracy over LaLaLoc (29% increase). The real world layout
distributions appear to pose a harder challenge, with more complex floor plan
geometry. However, it does show that the method can extend to real data.

Figure[]illustrates the contrast in prior-forming between LaLaLoc and LaLaLoc++.
The dense prediction of @4y, is able to far more expressively capture the layout
across the floor plan, whereas the sparse strategy to form reference embeddings
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Table 4. Contribution of latent floor plan training to the final localisation accuracy.
Identical image branch architecture is used in each scenario. Mimic is used to refer to
a training scheme where @4y, is trained to copy LaLaloc’s layout branch output

Localisation Accuracy
Method Med. <lcm <5cm <10cm <1m

LaLaLoc 8.3 3.6% 32.0% 58.0% 87.5%

Mimic 8.4 1.8% 27.3% 56.8% 88.5%
Decoder Loss 5.7 4.9% 45.0% 69.4% 92.0%

in LaLaLoc is comparatively low in fidelity. Although LaLalLoc could sample ref-
erence poses more densely, inferring at the same level of density with LalLalLoc
quickly become intractable.

In Tab.[3] we compare the time complexities of LaLal.oc++ against LalLaLoc.
LaLalLoc++ offers more than a 35x speed up over LaLalLoc. This is predomi-
nantly for two reasons. Firstly, Lal.alLoc++’s direct inference from 2D plans
means that expensive rendering steps can be removed. Notably, this also in-
cludes the expensive backwards passes in the differentiable rendering optimisa-
tion scheme. Secondly, LaLaLoc required a forward pass through a ResNet18 [12]
for each rendered layout. Although this could be performed in batches, depend-
ing on the density of sampling the total number of items could reach hundreds.
On the other hand, LaLal.oc++ allows dense inference of structure in a single
forward pass, which proves to be significantly faster.

5.2 Global Floor Plan Comprehension

To evaluate the contribution of our proposed global floor plan processing, we
perform localisation using various configurations of @, all with equivalent im-
age branch architectures. The image branch architecture is chosen to be identical
to the one proposed in Lalal.oc. The first comparison is to Lalal.oc’s layout
branch and its scheme of sparse floor plan rendering and embedding. We then
train our proposed global floor plan module as a direct substitution for the layout
embedder in Lal.aLoc. Therefore, the floor plan network is trained to mimic the
output of LaLalLoc’s layout branch, and the original image branch is used with-
out any modification or fine-tuning. We call this “Mimic”. Finally, we compare
to our proposed method, where the @,,,y, is trained with the layout decoding loss,
is frozen, and then P;pqg¢ is trained to map panoramas to the learned space.
Results for these experiments can be found in Tab.[dl Worth considering first
is the results for the “Mimic” configuration. This experimental setup can be
considered a test of whether 3D structure can be directly inferred from the 2D
layout to a similar degree of expressiveness as the original Lal.aLoc’s render and
embed methodology. The results show that the module is in fact able to nearly
match the original performance of the network for which it is substituting. This
is particularly notable as the 2D comprehension module is not given height
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Fig. 5. Investigation into floor plan saliency for inferring layout at a given location
from a global floor plan. The query location is marked with a pink cross, and com-
puted saliency is overlaid onto the floor plan. The floor plan comprehension module
demonstrably learns to differentiate between visible and invisible structure for the
query locations when computing their descriptor.

information (neither ceiling nor camera) and instead must learn a generalised
2D to 3D room structure prior which holds for these unseen environments. As
such, there is an inherent degree of inaccuracy expected from this formulation
as it must replicate a method while dealing with significantly more ambiguity.

When trained to form its own layout latent space in the “Decoder Loss”
setting, the performance improvement over LalLaloc is dramatic. This is likely
because the latent space for layouts can be constructed in a way compatible with
the structure that can be determined from a 2D floor plan. In the supplemen-
tary material, to aid in the intuition of the learned space, we visualise the output
of the decoder. In addition, the dense estimation of layout may provide a bet-
ter setting for pose refinement than the Latent Pose Optimisation proposed in
LaLaloc, which relies on differentiable rendering. We investigate this in Sec.

Floor Plan Saliency. In the explicit rendering formulation used in LalLalLoc,
the structure rendered at any given point in the scene has the same level of
context as the query image with which you wish to compare it to, i.e. only the
visible structure from that location. However, when processing the entire floor
plan, the receptive field of the network for structural inference at any given
location quickly moves beyond what is strictly visible from that location. If
global information is leveraged to form the layout descriptor from the plan, it is
likely that the image branch will not be able to map to the same latent space.

To investigate this, we plot saliency of floor plan structure in computation
of the descriptor at any given location. The saliency is computed by masking
a sliding window across the floor plan such that any walls in this window are
instead assigned as free-space. We compare how a descriptor at a chosen location
in the plan changes against the original from an unmasked plan via L2 distance.
This distance is assigned to the centre point of the mask to form a saliency map.
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Table 5. Exploration of the Latent Floor plan resolution on localisation. Init. refers
to the median accuracy of the initialisation for refinement, reported in cm

Floor plan Localisation Accuracy
Subsampling Init. Med. <lcm <5cm <10cm <1m

LaLaLoc LPO 22.5 10.5 2.0% 27.4% 48.4% 87.5%
LaLaLoc  11.0 8.3 3.6% 32.0% 58.0% 87.5%

8x 284 6.5 4.7% 41.3% 64.3% 87.2%
4x 15.1 5.3 5.7% 47.7% 71.4% 92.1%
2x 8.8 5.3 5.3% 48.0% 69.9% 92.1%

Full-size 6.1 5.2 54% 48.8% 72.3% 92.3%

Some examples of these saliency maps are plotted in Fig. [5| It is apparent
that the floor plan module does not unduly exploit global structure, but instead
the structure local to the test point is the most salient regions of the plan.

5.3 Sub-pixel Refinement

In this section, we wish to investigate the performance properties of the proposed
sub-pixel floor plan optimisation process. We perform refinement initialised with
retrieval results from increasingly sparse representations of the floor plan. In each
of these experiments the floor plan is embedded at full-resolution, but the result-
ing feature maps are sub-sampled by factors of 2. This has the effect of testing
the refinement performance with wider baseline initialisation. For each level of
sub-sampling, we re-train the image branch. We also include results for Lal.aL.oc
in its operation mode where the latent pose optimisation is the only pose refine-
ment after retrieval, thus skipping the local retrieval normally performed, and
in the configuration with local re-sampling and continuous refinement.

The results for this are listed in Tab. [5l The median error of the refinement
initialisation is included for each method and formulation. It can be seen that
LaLaLoc++, and specifically its continuous pose refinement through interpola-
tion, is able to recover extremely well from increasingly poor initialisation. Even
subsampling the latent floor plan by 8x, LalLaLoc++ still outperforms Lal.alL.oc
by 1.8cm, despite the initialisation being nearly 3x worse.

5.4 Image Transformer

We show a localisation performance comparison between the image embedding
structure consisting of a simple feature backbone, pooling and projection and our
proposed transformer formulation. Results are listed in Tab. [6} As can be seen,
the transformer leads to a nearly 9% improvement in localisation accuracy over
the baseline. This result suggests that the long-range attentional mechanisms
introduced by the transformer encoder allow the embedding module to better
capture layout from the panorama image.
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Table 6. Comparison of the image embedding architecture that is used. ResNet50
denotes a simple backbone followed by average pooling and a linear projection. R50 +
Transformer is the proposed formulation where the image feature map is refined with
a transformer encoder

Localisation Accuracy
Med. <lem <5cm <10cm <1m

5.7 4.9% 45.0% 69.4% 92.0%
5.4% 48.8% 72.3% 92.3%

Method

ResNet50
R50 + Transformer 5.2

Dimage Localisation Accuracy
# Blocks Med. <lem <5cm <10cm <1m

DPplan Localisation Accuracy
# Layers Med. <lem <5cm <10cm <lm

3 12.9 2.5% 27.4% 44.8% 70.0% 1 5.9 3.7% 43.5% 69.2% 92.3%
4 6.0 4.0% 44.0% 65.4% 90.5% 2% 5.2 5.4% 48.8% 72.3% 92.3%
5* 5.2 5.4% 48.8% 72.3% 92.3% 3 56 5.7% 45.2% 68.7% 92.0%
[§ 5.3 5.1% 48.0% 70.4% 92.1% 4 5.7 4.8% 45.1% 69.3% 92.2%

Table 7. Localisation with differing num-
bers of down and up-sampling layers in
Dpian - * denotes the chosen configuration.

Table 8. Localisation as the number of
transformer encoder blocks in Pimage is
varied. * denotes the chosen configuration.

5.5 Ablation Experiments

We validate Lal.aLoc++’s architecture through the ablation experiments dis-
cussed here. First, we see how the localisation accuracy is impacted by the num-
ber of down and up-sample layers in @, . We then vary the number number of
encoder blocks used in @;,44e - Results for each of these experiments are listed in
Tabs. [7]and [8] respectively. In Tab. [§]it is notable that, although the chosen con-
figuration performs almost identically to the configuration with 6 down-sample
and up-sample layers, the chosen configuration has significantly fewer trainable
parameters (24.1M wvs. 63.3M). Therefore, the configuration with 5 down-sample
and up-sample layers is the most appropriate.

5.6 Rotational Ambiguity

In this section, we conduct experiments extending Lal.aLoc++ to also predict
orientation of the query panorama.

To estimate the unknown orientation of the query panorama, we rectify the
image using the prepossessing step as described in [35]. Through vanishing point
detection, this estimates a semi-canonical alignment of the panorama. We con-
sider this orientation, as well as 3 other candidates formed by successive 90°
rotations. LalLal.oc++’s retrieval stage is performed on each of these candidate
rotations. The predicted position and orientation being given by the lowest com-
puted embedding distance across the rotations. These are then used to initialise
the sub-pixel refinement stage to further optimise position.

We list results from the Zillow Indoor Dataset in Tab. [9] Rotation prediction
significantly increases the difficulty of the task. However, analysis of the rota-
tional errors (Fig. @ suggests that the vanishing point alignment is generally
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Localisation Success
Method <5em/2° <10ecm/5° <20c¢m/10°
LaLaLoc 199%  40.9%  61.6% } e
LaLaLoc++ 32.1% 51.7% 67.5% 00
LaLaLoc++ (Top 1) 16.4% 28.0% 36.0% 2°" I

LaLaLoc++ (Top 2) 27.9%  45.6% 58.5%

Rotaton £1r 4]

Table 9. Localisation with and without an Fig. 6. Histogram of rotation error fre-
orientation prior. Methods which assume a quency on the Zillow Indoor Dataset.
known rotation are italicised.

accurate, but that there is ambiguity when multiple orientations can be consid-
ered, with multiple plausible poses. Therefore, we also consider a strategy where
the Top 1 orientation is computed as before, but the orientation with the second
lowest predicted distance is also kept, labelled Top 2 in Tab. [0] Localisation is
considered successful if either hypothesis is within the tolerated error.

The results show that this generation of multiple pose hypotheses allows
LaLaLoc++ to largely recover accuracy. And this setup actually outperforms
LalaLoc [I5] for the strict thresholds, despite LaLalLoc using a known orien-
tation. However, disambiguation of these hypotheses would require additional
architectural information, such as windows and doors.

6 Discussion

Through experimental evaluation, Lal.aLoc++ has been shown to outperform
the previous floor plan localisation methods tested. However, floor plan locali-
sation itself has some inherent limitations. For example, it is trivial to imagine
buildings with many near structurally identical rooms. Even within the correct
room, rotation can cause symmetries which leave two poses plausible, as explored
in the previous section. In these scenarios, localisation through layout structure
alone will fail due to the level of ambiguity. Despite this, and for the reasons
stated in Sec. |1} we believe floor plan localisation is a promising and worthwhile
avenue for research. In practical application, localisation methods are seldom
used in isolation, and floor plan localisation is particularly useful as a strong
prior from which more accurate methods can be initialised or verified, especially
as it is designed for indoors where GPS is significantly less reliable.

7 Conclusion

In this paper, we have presented LaL.aLLoc++, a method for localisation in unseen
environments with leveraging a floor plan as its only prior. We have demonstrated
that a representative space of 3D layout structure can be inferred directly from
2D floor plans, and that doing so yields significant accuracy and performance
improvements over previous methods for this task. We therefore show that local-
isation can be performed effectively in unseen environments by leveraging data
that is near universal in the built world.
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