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1 Stereo Setting

In this section, we provide the details for objective and the overall training
pipeline in the stereo-pair setting as introduced in Section 3.3 of the main paper.

1.1 Objectives

When stereo pairs are available, we utilize the geometry constraints to have self-
supervised stereo supervisions as GASDA [16] using the geometry consistency
loss. The stereo pairs contain the left image xr, which is also used in the single-
image setting, and the corresponding right image. Here we denote the left and
right real images as xleft, xright (we ignore the notation r in the real image
like xleft

r for simplicity) and their depth prediction ỹleft = F (xleft), ỹright =
F (xright). The geometry consistency loss in GASDA [16] is a reconstruction
penalty between the real left image xleft and the warped left image x̃left.

Lleft
tgc (F ) = η

1− SSIM(xleft, x̃left)

2
+ µ||xleft − x̃left||, (1)

where η and µ are set as 0.85 and 0.15 respectively following [16]. The warped
left image x̃left is obtained from the disparity a and the right image xright with
bilinear sampling [5] following [4]:

x̃left = xright − a, (2)

Since we know the camera parameters when collecting the stereo images, we can
convert the depth prediction ỹleft of left image to the disparity a through:

a =
b · f
ỹleft

, (3)

where b is the baseline distance between the two cameras and f is the focal
length, both parameters are known in the stereo-pair setting. In addition to
reconstructing x̃left from the right image xright, we also warp ỹright and xleft

to get x̃right in our experiments using a similar process and loss Lright
tgc . Finally,

our geometry consistency loss is Ltgc = Lleft
tgc + Lright

tgc .
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1.2 Overall Training Pipeline

In our stereo-pair setting, there are also two training stages for training a pre-
liminary depth model F and applying the proposed pseudo-labeling techniques
through this preliminary model.
Training a preliminary depth model F . In the stereo-pair setting, we follow
the single-image setting to use Eq.(6) in the main paper and train a preliminary
depth model F for 20 epochs and further train another 10 epochs with adding
Ltgc:

Lstereo
base = λtaskLs

task + λsmLsm + λtgcLtgc, (4)

where λtask, λsm, and λtgc are set as 100, 0.1, and 50 respectively. Here we do
not include the Ls→r

task loss to make the model training more focused on the real-
domain data. In the second stage, the overall loss is defined as Eq.(10) in the
main paper.

2 Sensitivity Analysis

In this section, we analyze the impact of different parameters, such as threshold
or the weights in the loss. All experiments are performed in the single-image
setting.

2.1 Threshold τ

Table 1 shows our results under different threshold τ as defined in Eq.(4) of
the main paper, which controls the range of pseudo-label. The higher threshold
means more pseudo-labels are chosen but may not be accurate, while the lower
one can obtain more precise pseudo-labels but the amount is less. As shown in
Table 1, our method performs robustly under a reasonable range of τ (e.g., 0.3
to 1 meter).

Threshold
Error Metrics (lower, better)

Abs Rel Sq Rel RMSE RMSE log

τ = 0.1 0.161 1.048 4.497 0.239

τ = 0.3 0.162 1.045 4.476 0.239

τ = 0.5 0.162 1.049 4.463 0.239

τ = 1 0.161 1.053 4.463 0.239

τ = 2 0.161 1.060 4.468 0.239

τ = 3 0.162 1.066 4.473 0.239

Table 1: Our results of different thresholds τ . The unit of τ is meter. Underline denotes
our final setting.
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2.2 Proportion of Pseudo-label Loss α

Table 2 shows the experiments of using different weight proportion between the
pseudo-label loss on real data and the task loss on synthetic data, where α is
defined in Eq.(9) of the main paper. With increasing the weight of pseudo-label
loss, e.g., α = 0.3 to 0.7, the performance is gradually improved, which shows
the benefits of our proposed pseudo-labeling strategy. However, the performance
drops when α becomes too large, which indicates the importance of having the
accurate supervisions from the synthetic data to stabilize model training.

α 1− α
Error Metrics (lower, better)

Abs Rel Sq Rel RMSE RMSE log

0.3 0.7 0.161 1.051 4.520 0.241

0.5 0.5 0.161 1.053 4.490 0.240

0.7 0.3 0.162 1.049 4.463 0.239

0.9 0.1 0.164 1.043 4.508 0.240

1 0 0.191 1.175 4.472 0.253

Table 2: Our results of using different proportions α between the pseudo-label loss (α)
and the task loss (1− α). Underline denotes our final setting.

2.3 Weighted Terms λcons and λcomp

Table 3 shows the results of different values of weighted terms (λcons, λcomp)
between 2D-based and 3D-aware pseudo-label loss(Lcons

pseudo, L
comp
pseudo), defined in

Eq.(9) of the main paper. As shown in Table 3, our method performs robustly
under a reasonable range of λcons and λcomp if they do not become too large. We
also note that, since the 2D position projected from 3D has a little scale shift to
the original 2D pixel on the image plane, there exists scale difference between
Lcons
pseudo(≈ 10−3) and Lcomp

pseudo(≈ 10−2). Thus, we use 10 times λcons than λcomp

as our final setting.

λcons λcomp
Error Metrics (lower, better)

Abs Rel Sq Rel RMSE RMSE log

0.1 0.01 0.162 1.062 4.711 0.247

0.1 0.1 0.163 1.045 4.483 0.240

1 0.1 0.162 1.049 4.463 0.239

1 1 0.169 1.097 4.463 0.243

10 1 0.168 1.102 4.485 0.243

10 10 0.171 1.138 4.504 0.244

Table 3: Our results of using different values of weighted term (λcons, λcomp) between
2D and 3D pseudo-label loss. Underline denotes our final setting.



4 Yen et al.

3 More Experiments

In this section, we provide experiments for showing the effectiveness of 3D com-
pletion model Gcom, the comparison with 2D depth completion model, the design
choices of the depth estimation loss Ltask, and the model complexity.

3.1 Effectiveness of Gcom

We verify whether the 3D completion model Gcom is well trained. To this end,
we simply take one sequence “0018” out of Virtual KITTI dataset as the testing
set while the remaining is the training set, and then use the same training pro-
cedure stated in the main paper to train our 3D completion model Gcom. During
evaluation, we first project the 2D ground truth depth ys in testing set to 3D
point clouds and uniformly sample them to have sparse point cloud p̂ssparse, and
then we take p̂ssparse as the input of Gcom to obtain the result of completion
p̃sdense. Finally, we project p̃sdense to the 2D depth map ỹsdense and measure the
depth accuracy with its original ground truth ys. Table 4 shows that Gcom has
the ability to produce precise and reasonable 3D completion results.

Method
Accuracy Metrics (higher, better)

δ < 1.25 δ < 1.252 δ < 1.253

3D completion model Gcom 0.976 0.991 0.995

Table 4: Performance of the completion model Gcom trained on the synthetic dataset.

We also provide details for network architecture and sampling strategy of our
completion model Gcom.

Network Architecture of Gcom. 3D completion model Gcom is modified from
PCN [15]. We follows [14] to adjust the PCN network, including the encoder
and the decoder. The encoder of our completion model Gcom is simplified to one
PointNet [11] layer. Our decoder only uses the second stage of point generation
in PCN, and we take our sparse point cloud as the “Coarse Output” in PCN.
The whole network architecture will be made available to the public.

Sampling Strategy. We “uniformly” sample 3D point cloud into 30720 (25%
of pixel number in an image) sparse points as the input to the 3D completion
model Gcom. The 3D point cloud before sampling is projected from 2D depth
map through the projection mechanism introduced in Section 4.1. During the
pre-training process of Gcom, we sample the point cloud projected from synthetic
ground truth depth ys to sparse point cloud p̂ssparse. In 3D-aware pseudo-labeling
generation, we project 2D pseudo-labels to 3D as point clouds p̂cons and sample
p̂cons to sparse point cloud p̂sparse.
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3.2 Comparison with 2D Depth Completion Model

Since there exists 2D depth completion methods which are also able to com-
plete depth values directly on 2D depth-maps/image [1, 7, 9], we compare our
3D point cloud completion model Gcom with a 2D depth completion model [1]
to validate the necessity of our 3D-aware approach. We apply a recent 2D depth
completion model [1] to the sparse depth map sampled from our confident area
with two types of training setting. One is pre-trained model provided by the
author, and the other one is the model trained from scratch on vKITTI [2] with
the same setting as our completion model Gcom.

Note that our 3D completion model Gcom is only trained on vKITTI [2]
and the 2D depth completion model provided by the author is pre-trained on
KITTI [3], so the 2D depth completion model accesses more information from
the real domain. We replace our 3D completion model Gcom with the 2D depth
completion model [1] to generate pseudo-labels for training depth prediction
model F . As shown in Table 5, even “+ 2D depth completion [1](pre-trained
by authors)” is pre-trained on KITTI supervisedly (i.e., using the ground truth
depths for training), our proposed 3D-aware approach (i.e., “+ 3D-aware com-
pletion label ŷcons”) provides better performance in all metrics. In addition, we
re-train the 2D depth completion model [1] with the same training setting as
ours (i.e., trained on vKITTI), and our proposed 3D-aware approach reaches
29% lower error on the “Sq Rel” metric. This shows that our 3D completion
model Gcom, which explicitly considers the 3D structural information, is able to
produce more reliable pseudo-labels than the 2D depth completion models.

Method Abs Rel Sq Rel RMSE RMSE log

+ 2D depth completion [1] (pre-trained by authors) 0.164 1.068 4.746 0.247

+ 2D depth completion [1] (trained on vKITTI) 0.186 1.476 6.125 0.310

+ 3D-aware completion label ŷcons (Ours) 0.164 1.054 4.473 0.239

Table 5: Training depth prediction model F by using the pseudo-labels generated from
different completion models. Note that “+ 2D depth completion [1] (pre-trained by
authors)” is pre-trained on KITTI [3], in which the 2D depth completion model [1] has
the supervision on depth directly from the real domain, while our model is trained on
vKITTI.

3.3 Design Choices of Depth Estimation Loss Ltask

As stated in Section 2.2, when training with pseudo-labels, it is important to
have accurate supervisions on the depth estimation loss Ltask to stabilize model
training. In Eq.(9) of the main paper, we retain Ls

task as the depth estimation
to make the model training more focused on the real-domain data. While there
exists another option Ls→r

task for the depth estimation loss, as Ls→r
task considers
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real-stylized images, images produced by style transfer may not align with their
original depth ground truths well. Table 6 shows the experiments of adopting
different options for the depth estimation loss in Eq.(9) of the main paper, which
demonstrates that using Ls

task instead of Ls→r
task has lower errors.

Method Abs Rel Sq Rel RMSE RMSE log

using both Ls
task and Ls→r

task 0.160 1.074 4.611 0.246

using Ls→r
task only 0.161 1.090 4.635 0.247

using Ls
task only 0.162 1.049 4.463 0.239

Table 6: Different options for the depth estimation loss Ltask in Eq.(9) of the main
paper.

3.4 Model Complexity

We analyze the model complexity by computing the number of parameters and
the training/testing time for our models. We have depth prediction model F
and the completion model Gcom. The completion model Gcom only contains
1.324M parameters, which is much smaller than the depth model F (54.565M).
The training time for depth model F and completion model Gcom are 80 and
21 hours. During testing, only the depth model F is required, where it does
not introduce additional overheads compared to normal model inference (0.014
seconds for a 192×640 image as used in [16,17]).

3.5 Application on 3D Object Detection

To show the effectiveness of our depth result, we apply the final depth prediction
to the 3D object detection task. We adopt Pseudo-LiDAR [13] to convert our
generated depth map to pseudo LiDAR, and take the pseudo LiDAR as the input
to the 3D object detection model. We show example results in Figure 1 compared
to the ground truths. We also follow [13] to evaluate the result on the validation
set of KITTI object detection benchmark for the “car” category. With the IoU
threshold at 0.7, the average precision for the 3D object box detection (AP3D)
is 15.8%, 12.3%, and 11.2% for easy, moderate, and hard cases, respectively.

4 Details for 2D/3D Projection

We provide the implementation details for the projection procedure between 2D
and 3D, including the projection mechanism and some discussions.
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Input image Ground truth 3D-PL + Pseudo-LiDAR [13]

Fig. 1: 3D object detection results using 3D-PL.

4.1 Projection Mechanism

Projection from 2D to 3D. We aim to reconstruct each point (xi, yi, zi) in
the 3D space from the 2D image pixel (ui, vi) with its depth value di based on
the standard pinhole camera model. We assume the size of image is H ×W and
the pixel positions on the original image plane are {(ui, vi)}H×W

i=1 , where each
pixel (ui, vi) has the corresponding depth value di. Then, we project the point
from 2D to 3D through project2D→3D to obtain 3D point (xi, yi, zi) in the 3D
point cloud ŷcons:

xi =
d∗i (ui − ox)

f
, yi =

d∗i (vi − oy)

f
, zi = d∗i , (5)

where f is the focal length, ox and oy are the 2D position of camera center,
d∗i = di + ε, ε is a shift to convert relative depth value di to the absolute depth
value from the camera center. Please note that, a single image has infinite pos-
sible 3D reconstruction depending on different camera parameters. Since our
objective of the 3D completion model is to learn the structure and the depth
relationship in the 3D space, we do not need to restore exactly the same set-
ting as the image being captured in the real world. On the other hand, as we
cannot know the camera parameters of the real data, we hence set up reason-
able projection parameters on our own and use the same setting in training the
3D completion model and finding 3D-aware pseudo-labels. In experiments, we
adopt the same focal length f as virtual KITTI [2] and set ε as 40. Normally,
ε is set equal to the focal length f , but such setting would lead to large values
for xi and yi coordinates as indicated in Eq. (5). We therefore in experiments
adopt the normalized depth values and fix the focal length to seek for a suitable
shift ε, which gives a reasonable scale of 3D coordinates and still maintains the
relationship between depth values.

Projection from 3D to 2D. After the 3D completion process, we obtain
p̃dense = (x̃i, ỹi, z̃i), and then we project each point back to the original 2D
plane as (ũi, ṽi) with the updated depth value d̃i = z̃i − ε (we ignore the ε for
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simplicity in the main paper) by the inverse operation of Eq. (5):

ũi =
x̃i · f
z̃i

+ ox, ṽi =
ỹi · f
z̃i

+ oy, d̃i = z̃i − ε, (6)

where (ũi, ṽi) are rounded to integers. Since all the 3D points are generated
through the completion model, the position (ũi, ṽi) projected from point cloud
may be duplicated (i.e., two projected points happen to overlap in the 2D plane)
or out of the original image plane (i.e., (ũi, ṽi) < 0 or (ũi, ṽi) > (H,W )). For
duplicated points, we choose the minimum depth value among all duplicated
points as the final depth. For those positions out of the original image plane, we
view them as failing projection and do not take them as the pseudo-label ŷcomp.

4.2 Discussions of 2D/3D Pseudo-label

We discuss whether ŷcomp is complementary to the original pseudo label ŷcons.
We observe that in Figure 3 of the main paper, for some regions that look similar,
the values of the same pixel between ŷcons and ŷcomp are very close but have a
little scale shift (< 10−1). For the areas that appear different (e.g., bottom-left
area), ŷcomp has nearer depth values than original ŷcons, in which nearer depth
values are more reasonable for the object and grass in the bottom-left corner
of the image. It shows that the completion model refers to the 3D structural
information to produce better results.

Input image xr Ground truth yr 3D-PL + Stereo

Fig. 2: 3D-PL produces better results in overall structure and shape of objects,
but may lose some details for the objects with complicated textures such as grass
and plants.

5 Limitations

Figure 2 shows one example of the limitation in our 3D-PL with the stereo-pair
setting. Since 3D-PL focuses on the structural information, it can perform well
on the overall structure, e.g., the shape of cars and the hard objects such as road
signs or traffic lights. However, for the object that has complicated textures like
grass, 3D-PL produces smoother results but loses the details of the plant.
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Input image xr Ground truth yr T2Net [17] 3D-PL

Fig. 3: More qualitative results on KITTI [3] in the single-image setting.

6 More qualitative results

We provide more qualitative results for different settings. Figure 3 and Figure 4
are results for KITTI [3] in the single-image and stereo-pair settings, respectively.
Figure 5 and Figure 6 are results for KITTI stereo 2015 [8] in single-image and
stereo-pair settings, respectively. Figure 7 presents results for make3D [12] in
the single-image setting.
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Input image xr Ground truth yr DESC [6] SharinGAN [10] 3D-PL+Stereo

Fig. 4: More qualitative results on KITTI [3] with having stereo pairs during
training.

Input image xr Ground truth yr T2Net [17] 3D-PL

Fig. 5: More qualitative results on KITTI stereo 2015 [8] in the single-image
setting.
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Input image xr Ground truth yr DESC [6] SharinGAN [10] 3D-PL+Stereo

Fig. 6: More qualitative results on KITTI stereo 2015 [8] with having stereo pairs
during training.

Input image xr Ground truth yr T2Net [17] 3D-PL

Fig. 7: More qualitative results on Make3D [12] in the single-image setting.
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