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Abstract. Panoptic Part Segmentation (PPS) aims to unify panoptic
segmentation and part segmentation into one task. Previous work mainly
utilizes separated approaches to handle thing, stuff, and part predictions
individually without performing any shared computation and task asso-
ciation. In this work, we aim to unify these tasks at the architectural
level, designing the first end-to-end unified method named Panoptic-
PartFormer. In particular, motivated by the recent progress in Vision
Transformer, we model things, stuff, and part as object queries and di-
rectly learn to optimize the all three predictions as unified mask pre-
diction and classification problem. We design a decoupled decoder to
generate part feature and thing/stuff feature respectively. Then we pro-
pose to utilize all the queries and corresponding features to perform rea-
soning jointly and iteratively. The final mask can be obtained via inner
product between queries and the corresponding features. The extensive
ablation studies and analysis prove the effectiveness of our framework.
Our Panoptic-PartFormer achieves the new state-of-the-art results on
both Cityscapes PPS and Pascal Context PPS datasets with around
70% GFlops and 50% parameters decrease. Given its effectiveness and
conceptual simplicity, we hope the Panoptic-PartFormer can serve as a
strong baseline and aid future research in PPS. Our code and models
will be available at https://github.com/lxtGH/Panoptic-PartFormer.

Keywords: Panoptic Part Segmentation, Scene Understanding, Vision
Transformer

1 Introduction

One essential problem in computer vision is to understand a scene at multiple
levels of concept. In particular, when people perceive a scene, they can catch each
visual entities such as car, bus, or person, and they can also understand the parts
of entities, such as person-head and car-wheel, etc. The former is named as scene
parsing, while the latter is termed as part parsing. One representative direction
of unified scene parsing is Panoptic Segmentation (PS) [23,22]. It predicts a class
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Fig. 1: Illustration of Panoptic Part Segmentation (PPS) and different Approaches for
solving such PPS task. (a) An illustration of the Panoptic Part Segmentation task. It
combines the Panoptic Segmentation and Part Segmentation in a unified manner that
provides the multi-level concept understanding of the scene (b) The baseline method
proposed in [15] combines results of panoptic segmentation and part segmentation. (c)
Panoptic-FPN-like baseline [22,29,64] adds part segmentation into the current panoptic
segmentation frameworks. (d) Our proposed approach represents things, stuff, and part
via object queries and performs joint learning. Best view in color.

label and an instance ID for each pixel. The part parsing has a wide range of
definitions, such as human part or car part [33,14]. Both directions are inde-
pendent, while both are equally important for many vision systems, including
auto-driving and robot navigation [8].

Recently, the Panoptic Part Segmentation (PPS, or called Part-aware Panop-
tic Segmentation) [15] is proposed to unify these multiple levels of abstraction
into one single task. As shown in Fig. 1(a), it requires a model to output per-pixel
scene-level classification for background stuff, segment things into individual in-
stances and segment each instance into specific parts. Several baselines using
combined approaches [18,73,75] were proposed to tackle this task. As shown in
Fig. 1(a), they fuse different individual model predictions to obtain PPS results.
In particular, they fuse the panoptic segmentation and part segmentation re-
sults from the non-shared backbone networks. This makes the entire process
exceptionally complex with huge engineering efforts. Also, the shared computa-
tion and task association are ignored, which leads to inferior results. Another
solution for this task is to make the part segmentation as an extra head with
shared backbone as shown in Fig. 1(b). Such design is well explored in PS stud-
ies [64,22,31,4,25,47,68,63,5,58]. However, most of them treat PS as separated
tasks [64] or sequential tasks with several post processing components [5].

Since Detection Transformer (DETR) [1], there are several works [57,6,72]
unifying both thing and stuff learning via object queries in PS, which makes the
entire pipeline elegant and achieves strong results where the mask classification
and prediction can be performed directly. These results show that many complex
components including NMS and box detection can be removed. In particular,
such design considers the full scene understanding via performing interactions
among things, stuff, and part simultaneously. Joint training with things, stuff,
and part leads to better part segmentation results since the full scene infor-
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mation renders part representation a more discriminative information such as
global context. Motivated by these analysis, we take a further step on the more
challenging PPS task and propose the first unified model for this task.

In this paper, we present a simple yet effective baseline named Panopic-
PartFormer, a unified model for PPS task. As shown in Fig. 1(c), we introduce
three different types of queries for modeling thing, stuff, and part prediction,
respectively. Then a decoupled decoder is proposed to generate fine-grained fea-
tures. These features are used to decode thing, stuff, and part mask prediction.
The decoupled decoder contains a part decoder and a scene decoder. For part
decoder, we design a feature aligned decoder to keep more fine details in part.
Rather than directly using the pixel-level self-attention in Transformer, we con-
sider the recent works [52,72] that perform self-attention on query level. To be
more specific, we focus on refining queries via their corresponding query features.
We define the query feature as grouped features that are generated from the cor-
responding mask of each query and decoder features. The masks are generated
via dot product between queries and decoder features. In particular, the initial
query features are grouped via the initial mask prediction from the decoupled
decoder. Then we perform updating object queries with the query features. This
operation is implemented with one dynamic convolution [72,52] and multi-head
self-attention layers [56] between query and query features iteratively. The for-
mer poses instance-wise information from feature to enhance the query learning
where the parameters are generated by the features itself while the latter per-
forms inner reasoning among different types of queries to model the relationship
among thing, stuff, and part. Moreover, the entire procedure avoids pixel-level
computation in other vision Transformer decoder [1,6]. In this way, since all
thing, stuff, and part information is encoded into query, the relation between
these queries can be well explored and optimized jointly via pure mask based
supervison. Extensive experiments (Sec.4) show that our approach achieves much
better results than the previous design in Fig. 1(b).

Moreover, our Panopic-PartFormer can support both CNN backbones [19]
and Transformer backbones [39] for feature extraction. Panopic-PartFormer is
also memory and computation efficient, which is mainly benefited by avoiding
pixel-level computation of self-attention layers. Panopic-PartFormer can directly
output thing, stuff, and part segmentation predictions in box-free and NMS-free
manner. It can also be evaluated by sub-task of PPS such as Panoptic Segmen-
tation. In the experiment part, we verify our panoptic segmentation predictions
on Cityscaeps datasets [8] and it also achieves better results than the recent
works [31]. To sum up, our main contributions are as follows:

– We present a novel, simple and effective baseline named Panopic-PartFormer
for the PPS task. To the best of our knowledge, it is the first unified end-to-
end model for this task.

– We propose a decoupled decoder and a joint query updating and reasoning
framework for the joint feature learning of thing, stuff, and part. Besides, a
joint loss function is proposed to supervise the whole model.
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– Extensive experiments and analyses indicate the effectiveness and general-
ization of our model. In particular, with our framework, we find the part
segmentation can be improved significantly via joint training. We achieve
the new state-of-the-art results on two challenging PPS benchmarks includ-
ing Pascal Context PPS dataset (about 6-7% PartPQ gain on ResNet101,
10% PartPQ gain using swin Transformer [39]) and Cityscapes PPS dataset
(about 1-2% PartPQ gain).

2 Related Work

Part Segmentation. Most previous approaches for both instance and semantic
part segmentation mainly focus on human analysis [48,51]. Several works [11,38,60]
design specific methods for semantic part segmentation which are in category-
level settings. There are two paradigms for human part segmentation: top-down
pipelines [26,66,50,21,65] and bottom-up pipelines [17,24,74,76]. Meanwhile, there
are also several works focusing on task-specific part segmentation [75,34,42].
Compared with these methods, the focus of this paper is to solve the PPS task
which naturally contains the part segmentation as a sub-task.
Panoptic Segmentation. Earlier work [23] mainly performs segmentation for
things and stuff via separated networks where the original benchmark directly
combines predictions of things and stuff from different models. To alleviate the
computation cost, recent works [22,29,4,25,47,68,63] are proposed to model both
stuff segmentation and thing segmentation in one model with different task
heads. Detection based methods [64,22,49,20] usually represent things with the
box prediction while several bottom-up models [5,67,13,58] perform grouping
instance via pixel-level affinity or center heat maps from semantic segmentation
results. The former introduces complex process while the latter suffers from the
performance drops in complex scenarios. Recently, several works [57,6,72] pro-
pose to directly obtain segmentation masks without box supervision. However,
these works do not cover the knowledge of part-level semantics of images which
can provide more comprehensive information for scene understanding.
Panoptic Part Segmentation. To better understand the full scene, the PPS
task [15] is proposed. This work annotates two datasets (Cityscape PPS [8]
and Pascal Context PPS [10]) and proposes a new metric named PartPQ [15]
for evaluation. This work also presents several baseline methods to obtain the
final results. However, these methods are all separated networks for instance
and semantic segmentation to obtain the panoptic segmentation or use existing
panoptic segmentation algorithms with part semantic segmentation as an iso-
lated sub-network (shown in Fig .1(a) and (b)). For the comparison, our goal is
to design a unified and effective network for all the tasks.
Vision Transformer. There are mainly two different usages for Transformer
in vision: feature extractor and query modeling. Compared with CNN, vision
Transformers [9,39,55] have more advantages in modeling global-range relation
among the image patch features. The second design is to use the object query
representation. DETR [1] models the object detection task as a set prediction
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Fig. 2: Our proposed Panoptic-PartFormer. It contains three parts: (1) a backbone
to extract features (Red area) (b) a decoupled decoder to generate scene features and
part features along with the initial prediction heads to generate initial mask predictions.
(Yellow area) (c) a cascaded Transformer decoder to jointly do reasoning between the
query and query features. (Green area) Green arrows mean input (come from previous
stage) while Red arrows represent current stage output (used for next stage). i = 3 is
the final mask outputs.

problem with learnable queries. The following works [52,78] explore the locality of
the learning process to improve the performance of DETR. Query based learning
can also be applied to other fields [12,41]. Our methods are inspired by these
works with the goal of unifying and simplifying the PPS task based on query
learning.

3 Method

3.1 Basic Architecture

Fig. 2 presents an overall illustration of the proposed method. Our method con-
tains three parts: (1) an encoder backbone to extract features; (2) a decoupled
decoder to obtain the scene features and part features individually. We denote
the scene features are used to generate things, stuff masks while the part features
are used to generate part masks; (3) a Transformer decoder which takes three
different types of queries and backbone features as inputs and provides thing,
stuff, and part mask predictions.
Encoder network: We first extract image features for each input image. It con-
tains a backbone network (Convolution Network [19] or Vision Transformer [39])
with Feature Pyramid Network [35] as neck. This results in a set of multiscale
features which are the inputs of the decoupled decoder.
Decoupled decoder: The decoupled decoder has two separate decoder net-
works to obtain features for scene feature and part feature, respectively. The
former is used to decode both thing and stuff predictions, while the latter is
applied to decode the part prediction. Our motivation is that part segmentation
has different properties from panoptic segmentation. First, part features need a
more precise location and fine details. Second, scene features focus on mask pro-
posal level prediction while part features pay more attention to the inner parts
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of mask proposal, which conflicts with each other. We show that the decoupled
design leads to better results in the experimental section. (see Sec. 4.2).

For implementation, we adopt semantic FPN design [22] to fuse features
in a top-down manner. Thus, we obtain the two features named Fs and Fp.
In particular, for part segmentation, we design a light-weight aligned feature
decoder for part segmentation. Rather than the naive bilinear upsampling, we
propose to learn feature flow [28,76] to warp the low resolution feature to high
resolution feature. Then we sum all the predictions into the highest resolution as
semantic FPN. Moreover, to preserve more locational information, we add the
positional embedding to each stage of the semantic FPN following the previous
works [61,62]. In summary, decoupled decoder outputs two separate features:
scene features Fs and part features Fp. The former is used to generate thing and
stuff masks while the latter is used to generate part masks and both have the
same resolution.

3.2 Thing, Stuff, and Part as Queries with Initial Head Prediction

Previous works [6,72,57] show that single mask classification and prediction can
achieve the state-of-the-art results on COCO [37]. Motivated by this, our model
treats thing, stuff, and part as the input queries to directly obtain the final
panoptic part segmentation. Following previous works [72,52], the initial weights
of these queries are directly obtained from the first stage weights of the initial
decoupled decoder prediction. For mask predictions of thing, stuff, and part, we
use three 1 × 1 convolution layers to obtain the initial outputs of thing, stuff,
and part masks. These layers are appended at the end of the decoupled decoder.

All these predictions are directly supervised with corresponding ground truth
masks. As shown in [52,72], using such initial heads can avoid heavier Trans-
former encoder layers for pixel-level computation, since the corresponding query
features can be obtained via mask grouping from the initial mask prediction.

In this way, we obtain the three different queries for thing, stuff, and part
along with their initial mask prediction. We term them as Qth, Qst, Qpt and
Mth, Mst, Mpt with shapes Nth × d, Nst × d, Npt × d and shapes Nth ×H ×W ,
Nst ×H ×W , Npt ×H ×W . d, W , H are the channel number, width, height of
feature Fp and Fs. Nth, Nst, Npt are numbers of categories for thing, stuff, and
part classification.

3.3 Joint Thing, Stuff, and Part Query Reasoning

The cascaded Transformer decoder takes previous mask predictions, previous
object queries and decoupled features as inputs and outputs the current refined
mask predictions and object queries. The refined mask predictions and object
queries along with decoupled features will be the inputs of the next stage. The
relationship between queries and query features is jointly learned and reasoned.

Our key insights are: Firstly, joint learning can learn the full correlation
between scene features and part features. For example, car parts must be on the
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road rather than in the sky. Secondly, joint reasoning can avoid several scene
noisy cases, such as car parts on the human body or human parts on the car.
We find joint learning leads to better results (see Sec. 4.2).

We combine the three queries and the three mask predictions into a unified
queryQi−1

u andM i−1
u whereQi−1

u = concat(Qth, Qst, Qpt),Q
i−1
u ∈ R(Nth+Nst+Npt)×d

and M i−1
u = concat(M i−1

th ,M i−1
st ,M i−1

pt ), M i−1
u ∈ R(Nth+Nst+Npt)×H×W . i is the

stage index of our Transformer decoder. i = 1 means the predictions come from
the initial heads. Otherwise, it means predictions from the outputs of previous
stage. concat is preformed along the first dimension.

In particular, following the previous work [72], we first obtained query fea-
tures Xi via grouping from previous mask predictions M i−1

u and input features
(Fp, Fs) shown in Equ. 1 (dot product in Fig. 2). We present this process in one
formulation for simplicity.

Xi =

W∑
u

H∑
v

M i−1(u, v) · F (u, v), (1)

where Xi ∈ R(Nth+Nst+Npt)×d is the per-instance extracted feature with the
same shape as Qu, M

i−1 is the per-instance mask extracted from the previous
stage i − 1, and F is the input feature extracted for the decoupled decoder
head. u, v are the indices of spatial location. i is layer number and starts from
1. As shown in center part of Fig 2, the part mask prediction and scene mask
prediction are applied on corresponding features (Fp, Fs) individually where we
obtain part query features Xi

pt and scene query features Xi
th and Xi

st. Then we

combine these query features through Xi
u = concat(Xi

th, X
i
st, X

i
pt). These inputs

are shown in the green arrows in Fig. 2.
Then we perform a dynamic convolution [54,72,52] to refine input queries

Qi−1
u with the query features Xi

u which are grouped from their masks.

Q̂i−1
u = DynamicConv(Xi

u, Q
i−1
u ), (2)

where the dynamic convolution uses the query features Xi
u to generate param-

eters to weight input queries Qi−1
u . To be more specific, DynamicConv uses

input query features Xi
u to generate gating parameters via MLP and multiply

back to the original query input Qi−1
u . Our motivation has two folds: Com-

pared with pixel-wise MHSA [6,1], dynamic convolution introduces less compu-
tation and faster convergence for limited computation. Secondly, it poses the
instance-wised information to each query dynamically during training and in-
ference, which shows better generalization and has complementary effects with
MHSA. More details can be found in Sec. 4.2.

This operation absorbs more fine-grained information to help query look for
more precise location.

In particular, we adopt the same design [72] by learning gating functions to
update the refined queries. The DynamicConv operation is shown as follows:

Q̂i−1
u = Gatex(X

i
u)X

i
u +Gateq(X

i
u)Q

i−1
u , (3)
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where Gate is implemented with a fully connected (FC) layers followed by Layer-
Norm (LN), and a sigmoid layer. We adopt two different gate functions including
Gatex and Gateq. The former is to weight the query features, while the latter is
to weight corresponding queries.

After that, we adopt one self-attention layer with feed forward layers [56,57]
to learn the correspondence among each query and update them accordingly.
This operation leads to the full correlation among queries, shown as follows:

Qi
u = FFN(MHSA(Q̂i−1

u ) + Q̂i−1
u ), (4)

where MHSA means Multi Head Self Attention, FFN is the Feed Forward
Network that is commonly used in current vision Transformers [1,9]. The output

refined query has the same shape as the input, i.e. Qi
u ∈ R(Nth+Nst+Npt)×d.

Finally, the refined masks are obtained via dot product between the refined
queries Qi

u and the input features Fp, Fs. For mask classification, we adopt
several feed forward layers on Qi

u and directly output the class scores (thing,
stuff, and part). For mask prediction, we also adopt several feed forward layers
on Qi

u and then we perform the inner product between learned queries and
features (Fs Fp) to generate scene masks (thing and stuff) and part masks of
stage i. These masks will be used for the next stage input as shown in the red
arrows in Fig 2. The process of Equ. 1, Equ. 2 and Equ. 4 will be repeated
for several times. We set the iteration number to 3 by default. The inter mask
predictions are also optimized by mask supervision.
Discussion. We admit that we use the dynamic convolution and self-attention
among queries that are proposed by [52,72]. However, we do not claim this is
our contribution for Panoptic-PartFormer. Our main contribution is a system
level unified model for this challenging task(PPS) and we are the first work to
prove that joint learning of the thing, stuff and part learning benefits PPS tasks
than many other designs. More details can be found in supplementary.

3.4 Training and inference

Training: To train the Panoptic-PartFormer, we need to assign ground truth
according to the pre-defined cost since all the outputs are encoded via queries. In
particular, we mainly follow the design of [6] to use bipartite matching as a cost
by considering both mask and classification results. After the bipartite matching,
we apply a loss jointly considering mask prediction and classification for each
thing, stuff, and part. In particular, we apply focal loss [36] on both classification
and mask prediction. We also adopt dice loss [43] on mask predictions (Lpart,
Lthing, Lstuff ). Such settings are the same as previous works [1,6]. The loss for
each stage i can be formulated as follows:

Li = λpart · Lpart + λthing · Lthing + λstuff · Lstuff + λcls · Lcls (5)

Note that the losses are applied to each stage Lfinal =
∑N

i Li, where N is the
total stages applied to the framework. We adopt N = 3 and all λs are set to 1
by default.
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PQ PartPQ
Panoptic seg. method Part seg. method All P NP All P NP

Cityscapes Panoptic Parts validation set
UPSNet [64](ResNet50) DeepLabv3+ [3](ResNet50) 59.1 57.3 59.7 55.1 42.3 59.7
DeepLabv3+(ResNet50) & Mask R-CNN(ResNet50) [18] DeepLabv3+ [3] (Xception- 65) 61.0 58.7 61.9 56.9 43.0 61.9

Panoptic-PartFormer (ResNet50) 61.6 60.0 62.2 57.4 43.9 62.2

EfficientPS [45](EfficientNet) [53] BSANet [75](ResNet101) 65.0 64.2 65.2 60.2 46.1 65.2
HRNet-OCR (HRNetv2-W48) [70,59] & PolyTransform [32] BSANet [75](ResNet101) 66.2 64.2 67.0 61.4 45.8 67.0

Panoptic-PartFormer (Swin-base) 66.6 65.1 67.2 61.9 45.6 68.0

Table 1: Experiment Results on CPP. Previous works combine results from com-
monly used (top), and state-of-the-art methods (bottom) for semantic segmentation,
instance segmentation, panoptic segmentation and part segmentation. Metrics split into
P and NP are evaluated on scene-level classes with and without parts, respectively.

Inference: We directly get the output masks from the corresponding queries
according to their sorted scores. To obtain the final panoptic part segmentation,
we first obtain the panoptic segmetnation results and then merge part masks into
panoptic segmentation results. For panoptic segmentation results, we adopt the
method used in Panoptic-FPN [22] to merge panoptic mask. For part merging
process, we follow the original PPS task to obtain the final panoptic part segmen-
tation results. For scene-level semantic classes that do not have part classes, we
simply copy the predictions from panoptic segmentation. For predicted instances
with the part, we extract the part predictions for the pixels corresponding to
this segment. Otherwise, if a part prediction contains a part class that does not
correspond to the scene-level class, we set it to void label. This setting mainly
follows the previous work [15].

4 Experiment

Datasets.Wemainly carry out experiments on two datasets including Cityscapes
Panoptic Parts (CPP) and PASCAL Panoptic Parts (PPP), which are based
on the established scene understanding datasets Cityscapes [8] and PASCAL
VOC [10], respectively. The CPP extends with part-level semantics the Cityscapes
dataset [8] and is annotated with 23 part-level semantic classes. In particular,
5 scene-level semantic classes from the human and vehicle high-level categories
are annotated with parts. The CPP contains 2975 training and 500 validation
images. PPP extends the PASCAL VOC 2010 benchmark [10] with part-level
and scene-level semantics. PPP has 4998 training and 5105 validation images. To
perform fair comparison, following previous settings [15,10], we perform experi-
ments 59 scene-level classes (20 things, 39 stuff), and 57 part classes. We further
report Cityscapes Panoptic Segmentation validation set [8] results as sub-task
comparison.
Experiment Settings. ResNet [19] and Swin Transformer [39] are adopted
as the backbone networks and other layers use Xavier initialization [16]. The
optimizer is AdamW [40] with weight decay 0.0001. The training batch size is
set to 16 and all models are trained with 8 GPUs. For PPP datasets, we first
pretrain our model on COCO dataset [37] since most previous baselines [15] are
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pretrained on COCO. For PPP dataset, we adopt the multiscale training [1] by
resizing the input images from the scale 0.5 to scale 2.0. We also apply random
crop augmentations during training, where the train images are cropped with
probability 0.5. For CPP dataset, we follow the similar setting in Panoptic-
Deeplab [5] where we resize the images with scale rang from 0.5 to 2.0 and
randomly crop the whole image during training with batch size 16. All the results
are obtained via single scale inference.
Metric.We report PartPQ [15] and PQ [23] as the main metrics, since PartPQ is
a unified metric that contain both scene-level output and part-level output. Part
segmentation results such as mIoU can be found in the appendix file. The PartPQ

per scene-level class l is formalized as PartPQ =
∑

(p,g)∈TP IOUp(p,g)

|TP|+ 1
2 |FP|+ 1

2 |FN| . TP is true

positive, FP is false positive, and FN is false negative segments, receptively.
The definition of these is based on the Intersection Over Union (IOU) between
a predicted segment p and a ground-truth segment g for a class l (where l ∈ L,
L is the label set). A prediction is a TP if it has an overlap with a ground-truth
segment with an IOU > 0.5. An FP is a predicted segment that is not matched
with the ground-truth, and an FN is a ground-truth segment not matched with
a prediction. IOU contains two cases (part and non-part):

IOUp(p, g) =

{
mean IOUpart(p, g), l ∈ Lparts

IOUinst(p, g), l ∈ Lno-parts

4.1 Main Results

Results on Cityscape Panoptic Part Dataset. In Tab. 1, we compare our
Panoptic-PartFormer with previous baselines. All the models use the single scale
inference without test time augmentation. Our method with ResNe50 backbone
achieves 57.4% PartPQ which outperforms the previous work using complex
pipelines [3,18] with even stronger backbone [7]. For the same backbone, our
method results in 2.3% PartPQ gain over the previous baseline. For large model
comparison, our method with Swin-Transformer achieves 61.9 %PartPQ. It out-
performs previous works that use state-of-the-art individual models [70,59,75,32]
by 0.5%. Note that the best model from HRNet [70] is pretrained using Mapil-
lary dataset [46]. We follow the same pipeline for fair comparison. Both settings
prove the effectiveness of our approaches.
GFlops and Parameter Comparison. Since our method is one single unified
model, our Panoptic-PartFormer has advantages on both GFlops and Parame-
ters. Since the work [32] is not public available, we estimate the lower bound
by its baseline model [18]. As shown in Tab. 2, our model obtain around 60%
GFlops drop and 70% parameter drop.
Results on Pascal Panoptic Part Dataset. We further compare our method
with previous work on the Pascal Panoptic Part dataset in Tab. 3. For different
settings, our methods achieve state-of-the-art results on both PQ and PartPQ
with a very significant gain. For ResNet backbone, our methods achieve 6-7%
gains on PartPQ. Moreover, our resnet101 model can achieve better results than



Panoptic-PartFormer 11

Method PQ PartPQ Param(M) GFlops

UPSNet + DeepLabv3+ (ResNet50) 59.1 55.1 >87 >890
Panoptic-PartFormer (ResNet50) 61.6 57.4 37.35 185.84

HRNet(OCR) +PolyTransform + BSANet 66.2 61.4 >181 >1154
Panoptic-PartFormer (Swin-base) 66.6 61.9 100.32 408.52

Table 2: More detailed comparison on Cityscapes PPS dataset. GFlops are measured
with 1200 × 800 input.

Panoptic seg. method Part seg. method PQ PartPQ

Pascal Panoptic Parts validation set
DeepLabv3+ & Mask R-CNN [18](ResNet50) DeepLabv3+ [3](ResNet50) 35.0 31.4
DLv3-ResNeSt269 [71] & DetectoRS [49] BSANet [75] 42.0 38.3

Our Unified Approach
Panoptic PartFormer (ResNet50) 47.6 37.8
Panoptic PartFormer (ResNet101) 49.2 39.3

Table 3: Experiment Results on PPP dataset. All the methods use single
scale inference.

DD DC SA I=1 I=3 PQ PartPQ

✓ ✓ ✓ - ✓ 61.6 57.4
- ✓ ✓ - ✓ 61.2 55.9
✓ - ✓ - ✓ 57.0 52.2
✓ ✓ - - ✓ 57.3 53.4
✓ ✓ ✓ ✓ - 58.3 54.2

(a) Effect of each component. DD:
Decoupled Decoder. DC: Dynamic
Convolution. SA: Self Attention. I:
Interaction number.

Setting PQ PartPQ

Joint Reasoning 61.6 57.4
Separate Reasoning 61.1 56.8
Sequential Reasoning 60.8 56.3

(b) Ablation on Query Reasoning De-
sign

Method PQ PartPQ

Joint Query 61.6 57.4
DP-Based 59.8 55.9

DP-Based w ASPP [2] 59.9 56.1

(c) Dense Prediction or Query Prediction
on Part. DP: Dense Prediction. w: with.
ASPP: Atrous Spatial Pyramid Pool-
ing [2].

Settings PQ PartPQ P NP

w Aligned Part Decoder 61.6 57.4 43.9 62.2
w/o Aligned Part Decoder 61.4 56.3 41.2 62.1

Aligned Part Decoder on Both Features 61.4 57.2 43.7 62.0

(d) Effect of Aligned Decoder Design.

Setting Panoptic-GT Part-GT PartPQ P

baseline - - 57.4 43.9
- ✓ 61.6 56.1
✓ - 88.4 56.4

(e) Upper bound Analysis. GT: Ground Truth

Table 4: Ablation studies and analysis on Cityscapes Panoptic Part validation
set with ResNet50 as backbone. Best view it in color.

previous work using larger backbone [49]. Using Swin Transformer base as back-
bone [39], our method achieves 47.4% PartPQ which shows the generalization
ability on large model.
Results on Cityscapes Panoptic Segmentation.We also compare our method
with several previous works on cityscapes panoptic validation set. As shown in
Tab. 5, our Panoptic-PartFormer also achieves state-of-the-art results compared
with previous works [31,5]. This proves the generalization ability of our frame-
work.

4.2 Ablation Study and Model Design

In this section, we present ablation study and several model designs of our
Panoptic-PartFormer.
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Method Backbone PQ PQth PQst

Panoptic FPN [22] ResNet101 58.1 52.0 62.5
UPSNet [64] ResNet50 59.3 54.6 62.7
SOGNet [68] ResNet50 60.0 56.7 62.5
Seamless [47] ResNet50 60.2 55.6 63.6
Unifying [27] ResNet50 61.4 54.7 66.3

Panoptic-DeepLab [5] ResNet50 59.7 - -
Panoptic FCN∗ [31] ResNet50 61.4 54.8 66.6

Panoptic FCN++ [30] Swin-large 64.1 55.6 70.2

Panoptic-PartFormer ResNet50 61.6 54.9 66.8
Panoptic-PartFormer Swin-base 66.6 61.7 70.3

Table 5: Experiment Results on Cityscapes Panoptic validation set.∗ indicates
using DCN [77].

Method PQ PartPQ

baseline 61.6 57.4
w/o positional encoding 59.0 55.1

(a) Effect on Position Encoding.

Method PQ PartPQ

baseline 61.6 57.4
+ boundary loss 61.5 57.2

(b) Effect of adding boundary super-
vision

Method PQ PartPQ

things and stuff only 61.2 -
+ part annotation (ours) 61.6 57.4

(c) Effect on adding part annotations.

Table 6: More analysis using our Panoptic-PartFormer.

Effectiveness of each component. As shown in Tab. 4a, we start with the ef-
fectiveness of each component of our framework by removing it from the original
design. Removing Decoupled Decoder (DD) results in a 1.4 % drop on PartPQ.
Removing Dynamic Convolution (DC) or Self Attention (SA) results in a large
drop on PQ which means both are important for the interaction between queries
and corresponding query features. Decreasing stage number to 1 also leads to
a significant drop. Performing more interaction results in more accurate feature
location for each query, which is the same as previous works [72,52].

Whether the part query depends more on thing query? With our frame-
work, we can easily analyze the relationship among stuff query, thing query, and
part query. We present several ways of reasoning and fusing different queries.
From intuitive thought, part information is more related to thing query. We
design two different query interaction methods, shown in Tab 4b. For separate
reasoning, we adopt DD and SA on two query pairs, including stuff-thing query
and thing-part query. For sequential reasoning, we perform DD and SA with
thing-part query first and stuff-thing query second. However, we find the best
model is the joint reasoning, which is the default setting described in method
part. We argue that better part segmentation needs the whole scene context
rather than thing features only.

Choose joint query modeling or separate modeling on part? Following
PanopticFPN settings [22], we also adopt semantic-FPN like model for part seg-
mentation. Dense Prediction (DP) is the baseline method shown in Fig. 1(b).
We adopt the same merging process for panoptic segmentation and part segmen-
tation. As shown in Tab. 4c, our joint query based method achieves the better
results and outperforms previous dense prediction based approach and its im-
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Image Prediction Ground Truth

Results on BDD Results on Mapillary

Fig. 3: Visualization of our Panoptic-PartFormer. Top: results on Cityscapes PPS val-
idation set. Bottom left: prediction on BDD dataset [69]. Bottom right: prediction on
Mapillary dataset [46]. Best view it on screen.

proved version [2]. This indicates that joint learning benefits part segmentation
a lot, which proves the effectiveness of our framework.
Aligned decoder is more important for part segmentation. As shown in
Tab. 4d, using aligned part decoder results in better PartPQ especially for the
things with Part (P). Adding both paths with aligned decoder does not bring
extra gain. This verifies our motivation: part segmentation needs more detailed
information, while thing and stuff predictions do not need it.
Necessity of Positional Encoding on Xp and Xu. In Tab. 6a, removing
positional encoding leads to inferior results on both PQ and PartPQ which
indicates the importance of position information [62,72,1].
Will boundary supervision help for part segmentation? In Tab. 6b, we
also add boundary supervision for part segmentation where we use the dice
loss [44] and binary cross entropy loss. However, we find no gains on this since
our mask is generated from aligned decoder since it already contains detailed
information.
Will joint training help for panoptic segmentation? As shown in Tab. 6c,
joint learning benefits the panoptic segmentation baseline. However, the benefit
is limited since both thing and stuff prediction does not need much detailed
information.

4.3 Analysis and Visualization

Visualization and Generalization. We give several visualization examples
using our model on Cityscapes PPS validation set. Moreover, we also visualize
several examples on the Mapillary dataset [46] and BDD dataset [69] to show
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Image Prediction Ground Truth Image Prediction Ground Truth

Fig. 4: More visualization results on Pascal Context Panoptic Part validation set. Best
viewed in color and by zooming in. Note that stuff classes have the same color, while
thing classes are not.

the generalization ability of our method. As shown in the first row of Fig. 3, our
method achieves considerable results. Moreover, on the Mapillary [46] and BDD
datasets [69] which do not have part annotations, our method can still work well
as shown in the last row of the Fig. 3. Moreover, we also visualize the results on
PPP datasets. The first two rows show the crowded human scene and outdoor
scene. Both cases show that our model can obtain the convincing results. The
last row shows the small objects cases. The failure cases are due to tiny objects
including their parts.
Upper bound analysis of Our Model. In Tab. 4e, we give the upper bound
analysis to our model by replacing the panoptic segmentation Ground Truth or
part segmentation Ground Truth into our prediction. Replacing panoptic seg-
mentation GT leads to a huge gain on PartPQ while replacing part segmentation
only results in a limited gain. That indicates PartPQ is more sensitive to panop-
tic segmentationt than part segmentation on CPP dataset. We conclude that a
stronger panoptic segmentation model maybe the key for better PPS results.

5 Conclusion

In this work, we present Panoptic-PartFormer, the first unified end-to-end model
for Panoptic Part Segmentation. We present a decoupled decoder with three
different queries to generate thing, stuff and part masks at the same time. We
propose to jointly learn the three queries with corresponding query features.
With this framework, we present detailed analysis of the relationship among
things, stuff, and part. As a result, our method achieves the new state-of-the-art
results on Cityscapes Panoptic PPS dataset and Pascal Contexct PPS dataset.
Panoptic-PartFormer would serve as a unified baseline and benefit multiple level
concepts scene understanding by easing the idea development.
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