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Appendix A More Examples of Multi-Label Predictions

In Figures A-1, A-2, and A-3, we present additional qualitative results from BDD,
IDD, and Mapillary datasets, respectively. These figures extend Figure 4 from
the main paper, and aim to show that similar behavior can be observed in BDD
and IDD.
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Fig.A-1. Multi-class predictions of the BDD dataset. The first row corresponds to an
HRNet-W48 model trained with the CE loss, while the second row corresponds to our
C-R BCE model. While both models make strong predictions on the BDD label space
(column 2), only the C-R BCE model has high (normalized) activations for non-BDD
classes in regions with label conflict (column 3). For example, Lane markings (color:
white), while not labeled in BDD, are predicted via multi-class prediction, as well as
the “utility pole” class (color: green) from the Mapillary dataset.

Interestingly, on Mapillary we notice that even the CE model can output
strong activations for “lane marking”, which was not the case when evaluating
on datasets that do not label this class (Cityscapes: Figure 4, BDD: Figure A-1,
and IDD: Figure A-2). Based on this observation, we argue that the CE model
insidiously learns a connection between the domain and the label space. This
could be seen as a form of overfitting. On the contrary, the C-R BCE model
evidently does a much better job at generalizing the label space across domains.
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Fig.A-2. Multi-class predictions of the IDD dataset. Most “riders” are predicted as
“motorcyclists” (color: light purple) in the multi-class prediction.
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Fig.A-3. Multi-class predictions of the Mapillary dataset. There is almost no notice-
able difference between the predictions of the CE and C-R BCE model. This figure
shows that the CE model is capable of predicting fine-grained labels. However, it will
not do so for domains that did not have these fine-grained labels in the first place.

Appendix B Predicted Multi-Labels

Table A-1 presents the list of multi-labels that are predicted by our model and
used by the Class-Relational BCE loss. The “Primary Label” column lists the
names of the original categories, while the “Secondary Label” column lists the
corresponding multi-label, i.e.a pixel labeled as “bike lane” will also receive
supervision for the “road” class. As mentioned in the paper, these relationships
are not symmetric, i.e.a pixel of “road” will not necessarily lead to supervision
of “bike lane”.

The list of primary and secondary labels in Table A-1 supports our hypothesis
from the main paper. As expected, the “bicyclist” and “motorcyclist” classes
are both mapped to “rider” as well, which means that any supervision on those
classes will also help learn stronger representations for the “rider” class. In the
CE setting, the model would only receive negative supervision (label of 0) for the
“rider” class from Mapillary data, and in the Null BCE setting, the model would
receive no supervision for the “rider” class from Mapillary data. However, in our
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Table A-1. Predicted multiple labels for Class-Relational BCE

Primary Label Secondary Label

bike lane road
catch basin road
crosswalk - plain road
lane marking - general road
parking road
pothole road
service lane road
junction box obs-str-bar-fallback
mailbox obs-str-bar-fallback
phone booth obs-str-bar-fallback
traffic sign (back) obs-str-bar-fallback
trash can obs-str-bar-fallback
curb cut sidewalk
pedestrian area sidewalk
bicyclist rider
motorcyclist rider
ground animal person
other rider person
banner billboard
phone booth building
caravan car
on rails train
trailer truck

C-R BCE setting, Mapillary data of the “bicyclist” and “motorcyclist” classes
would also provide positive supervision for the “rider” class, so the model can
learn a more robust representations for “rider”.

Appendix C Importance of our BCE Loss

In the main paper, we outline the issues encountered when using the cross-entropy
(CE) loss function, and propose to use the binary cross-entropy (BCE) loss as a
replacement to alleviate these issues. Here we further discuss the importance of
the BCE loss in our method and how tightly this new loss function is coupled
with the second-stage training using class-relational BCE loss.

In Section 3.3 of the main paper, the class relationship is more meaningful
when the underlying model is trained with the BCE loss. The reason is that,
BCE loss operates on a per-class basis, and thus the output scores can be high for
multiple classes. This property is useful when using class relationships as some
categories may correlate to each other during model training. On the contrary,
using the CE loss based on Softmax only outputs the probability of a certain
class, describing how probable that class is the ground-truth, relative to all other
classes, and thus it cannot exploit the class relationships as the BCE loss does.
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Furthermore, the BCE loss enables us to train with multiple ground-truth
classes on a single pixel. This property is especially useful when training with
multiple datasets that have different label spaces, since classes may not be fully
disjoint to each other, i.e. they may actually refer to the same class or one class
may be a subset of another. Examples of such cases are described under the
“Discussions” paragraph in Section 3.3.

Appendix D Results on Seen Datasets

Table A-2. mIoU comparisons for the seen datasets in the C+I+B+M setting with
HRNet-W18 and HRNet-W48.

Method Arch. Cityscapes IDD BDD Mapillary Mean

Multi-dataset (CE)
HRNet
W18

71.8 63.1 60.4 37.2 58.1
UniSeg (Null BCE) 71.7 63.2 60.2 36.1 57.8
UniSeg (C-R BCE) 71.5 63.0 60.0 35.4 57.5

Multi-dataset (CE)
HRNet
W48

80.4 70.4 67.1 46.4 66.1
UniSeg (Null BCE) 80.9 71.1 68.0 45.5 66.4
UniSeg (C-R BCE) 81.0 70.9 67.4 43.0 65.6

We present the results of the seen datasets for the “C-I-B-M (All)” setting in
Table A-2. As seen in this table, our Null BCE and C-R BCE models maintain
competitive performance to the CE baseline even when evaluating on the seen
datasets of their original label space in individual datasets, but not on the unified
label space from all the datasets. Note that, for datasets like Mapillary that
contain fine-grained categories, the performance drops more as the CE model
pays more attention to fine-grained information. However, the benefit of our
model is orthogonal to training a good fine-grained model, since our goal is to
train multiple datasets together and generalize to unseen datasets in the unified
label space.
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Appendix E Qualitative Results on Unseen Datasets

In Figure A-4, A-5, A-6, we show qualitative results for semantic segmentation on
the unseen datasets, i.e., WildDash, KITTI, and CamVid. Note that, although
these input images are not from the training datasets, our model is still able to
provide accurate segmentation predictions compared to the ground truths. All
predictions are made on the label space of the input image.

Fig.A-4. Additional WildDash visualizations. From top to bottom: Original image,
Ground Truth, UniSeg model prediction.

Fig.A-5. Additional KITTI visualizations. From top to bottom: Original image, Ground
Truth, UniSeg model prediction.
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Fig.A-6. Additional CamVid visualizations. From top to bottom: Original image,
Ground Truth, UniSeg model prediction.
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Appendix F Derivation of Gradients

We derive the gradients for the cross-entropy loss (Eq. (2) in the main paper) and
the binary cross entropy loss (Eq. (4) in the main paper). First, let us simplify our
formulation and refer to just a single output location, (h,w), of the segmentation
map from the ith dataset.

Lce
seg = −

Ku∑
k=1

Y (k) log(P (k)). (a-1)

Given an ground truth y, the one-hot label Y (k) = 1 when k = y and Y (k) = 0
when k ̸= y. Thus, this equation can be simplified as:

Lce
seg = − log(P (y)). (a-2)

With the cross-entropy loss, we use a softmax function over the channel dimension
on the output, O. Hence, substituting P (y) with the softmax over O obtains:

Lce
seg = − log

(
eO

(y)∑
k e

O(k)

)
= log

(∑
k

eO
(k)

)
−O(y). (a-3)

Now, taking the gradient of Lce
seg with respect to the output of an arbitrary

parameter θ:

∂Lce
seg

∂θ
=
∑
k

∂Lce
seg

∂O(k)

∂O(k)

∂θ
. (a-4)

In the paper, we leave ∂O(k)

∂θ as is, since it is irrelevant for this derivation. Instead,

we focus on the
∂Lce

seg

∂O(k) term.

∂Lce
seg

∂O(k)
=

∂

∂O(k)
log

(∑
k′

eO
(k′)

)
− ∂

∂O(k)
O(y)

=
O(k)∑
k′ eO

(k′) − ∂

∂O(k)
O(y)

=
O(k)∑
k′ eO

(k′) − Y (k)

= P (k) − Y (k), (a-5)

As seen in Eq. (a-5), when k points to a conflicting class in which two datasets
provide different labels, we end up with the gradient conflict depicted in Eq. (2) of
the main paper. Using a similar process with the aforementioned simplifications
for the binary cross-entropy loss:

Lbce
seg = −

Ki∑
k

Y (k) log(Q(k)) + (1− Y (k)) log(1−Q(k))), (a-6)
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where Q denotes the sigmoid-activated output, O. Since

∂Q(k)

∂O(k)
= Q(k)(1−Q(k)), (a-7)

we calculate the gradient of the BCE loss with respect to an output, O(c):

∂Lce
seg

∂O(c)
= −Y (c)

Q(c)
Q(c)(1−Q(c)) +

(1− Y (c))

1−Q(c)
Q(c)(1−Q(c))

= Y (c)(Q(c) − 1) +Q(c)(1− Y (c)). (a-8)

Again, depending on the ground truth class, the righthand term in Eq. (a-8)
simplifies to either Q(c) − Y (c) or Y (c) −Q(c).

In Eq. (2) of the main paper, we omitted the sum over k for the gradient of the
cross-entropy loss with respect to parameter θ. The fix is reflected in (a-4). Note
that this change does not affect the conclusion we make from these equations.
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Appendix G Union of Categories

Table A-3. Näıve Union of label space for Cityscapes, BDD, IDD, and Mapillary: there
are 70 categories and we list them for individual datasets.

Cityscapes BDD IDD Mapillary Cityscapes BDD IDD Mapillary

autorickshaw obs-str-bar-fallback

banner on rails

barrier other rider

bench other vehicle

bicycle bicycle bicycle bicycle parking parking

bicyclist pedestrian area

bike lane person person person person

bike rack phone booth

billboard billboard pole pole pole pole

bird pothole

boat rail track rail track

bridge bridge rider rider rider

building building building building road road road road

bus bus bus bus sand

car car car car service lane

car mount sidewalk sidewalk sidewalk sidewalk

caravan sky sky sky sky

catch basin snow

cctv camera street light

crosswalk - plain terrain terrain terrain

curb curb traffic light traffic light traffic light traffic light

curb cut traffic sign traffic sign traffic sign traffic sign

ego vehicle traffic sign (back)

fence fence fence fence traffic sign frame

fire hydrant trailer

ground animal train train

guard rail guard rail trash can

junction box truck truck truck truck

lane marking - crosswalk tunnel

lane marking - general utility pole

mailbox vegetation vegetation vegetation vegetation

manhole vehicle fallback

motorcycle motorcycle motorcycle motorcycle wall wall wall wall

motorcyclist water

mountain wheeled slow
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