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Abstract. While it is desirable to train segmentation models on an
aggregation of multiple datasets, a major challenge is that the label
space of each dataset may be in conflict with one another. To tackle this
challenge, we propose UniSeg, an effective and model-agnostic approach
to automatically train segmentation models across multiple datasets
with heterogeneous label spaces, without requiring any manual relabeling
efforts. Specifically, we introduce two new ideas that account for conflicting
and co-occurring labels to achieve better generalization performance in
unseen domains. First, we identify a gradient conflict in training incurred
by mismatched label spaces and propose a class-independent binary cross-
entropy loss to alleviate such label conflicts. Second, we propose a loss
function that considers class-relationships across datasets for a better
multi-dataset training scheme. Extensive quantitative and qualitative
analyses on road-scene datasets show that UniSeg improves over multi-
dataset baselines, especially on unseen datasets, e.g., achieving more than
8%p gain in IoU on KITTI. Furthermore, UniSeg achieves 39.4% IoU
on the WildDash2 public benchmark, making it one of the strongest
submissions in the zero-shot setting. Our project page is available at
https://www.nec-labs.com/~mas/UniSeg.
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1 Introduction

Many segmentation datasets, such as Cityscapes [8], BDD [54], IDD [47] and
Mapillary [35], have been leveraged by semantic segmentation models to produce
high-quality results [29,28,43,5,55,58,57,60]. However, most approaches only ex-
ploit labels within a single dataset for training. Given the expense of labeling
segmentation data, it is important to consider whether labels from multiple
datasets can be combined to train more robust models.

One benefit of a model trained on multiple datasets would be the increase
in data volume and diversity, which allows a joint model to better reason about
challenging objects or scenes. Moreover, if a segmentation model could be trained
on a label space that is unified across datasets, we may obtain richer training
constraints and inference outputs compared to a model trained from a single

https://www.nec-labs.com/~mas/UniSeg
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Fig. 1. We tackle the problem of multi-dataset semantic segmentation, where each
dataset has a different label space. Directly combining all the datasets and training a
model would result in label conflicts within the unified label space. For example, the
rider in the right image can be considered as both the “rider” or the “motorcyclist”
categories in the unified label space. Therefore, it is important to handle such label
conflicts during the training process.

dataset. However, combining multiple datasets is non-trivial since their label
spaces are heterogeneous and may possibly be in conflict with one another.
For example, Cityscapes has 19 categories while Mapillary has 65 more fine-
grained categories. A recent work, MSeg [21], deals with this issue by manually
defining a taxonomy for the unified label space, which requires re-annotating
many images for consistency across datasets. Such a time-consuming solution
limits the scalability to more datasets to be collected in the future.

This paper presents a model-agnostic framework called UniSeg, which allows
us to employ multiple datasets with heterogeneous label spaces for training
semantic segmentation models. First, we observe that the widely-used cross-
entropy (CE) loss often leads to conflicting gradients when two datasets contain
categories that are in direct conflict with each other (see Fig. 1), e.g., Cityscapes
only has the “rider” class, but Mapillary contains both the “motorcyclist” and
“bicyclist” categories. To this end, we consider the binary cross-entropy (BCE)
loss for semantic segmentation, which allows us to compute separate gradients
for each class and resolve the gradient conflict issue during optimization by
selectively ignoring certain classes during loss computation. Surprisingly, this
simple modification in the loss term, which we call the Null BCE, leads to several
significant benefits for multi-dataset training, especially on unseen datasets.
Second, to utilize class relations across label spaces, we propose class-relational
BCE, which allows each pixel to be supervised with multiple labels. For example,
if we are able to link “bicyclist” from Mapillary to the Cityscapes “rider” class,
the training process can be improved by leveraging such a relationship. Without
external knowledge, we infer class relationships and generate multi-class labels
that properly link categories across datasets, which are then integrated into the
training process with our class-relational BCE loss.
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We train segmentation models on the combination of four road-scene datasets
for semantic segmentation (Cityscapes [8], BDD [54], IDD [47], and Mapillary
[35]), which contains many label conflicts in the unified label space. We then
test on three datasets, KITTI [15], CamVid [4] and WildDash [56], which are
not used for training and serve as unseen datasets to verify that our model
can perform well in other challenging conditions. Our extensive experiments
demonstrate the effectiveness of our UniSeg framework with the proposed loss
terms: Null BCE loss and class-relational BCE loss. We compare against baselines
using the traditional multi-dataset training. For instance, on the KITTI dataset,
our HRNet-W48 [44] model achieves more than 8%p gain in IoU on average
across all the settings, and outperforms other methods on the WildDash2 public
benchmark. We also conduct qualitative analyses on the output of our UniSeg
model and observe that it makes accurate multi-label predictions, especially for
classes with label conflict. In summary, the main contributions of this paper are:

• We design a principled model-agnostic framework for multi-dataset semantic
segmentation with label shifts, which is free from additional manual annotation
costs and prior knowledge.

• We propose a simple yet effective loss terms to handle the label shift problem,
while also introducing a new training scheme via class-relational BCE.

• We validate the benefit of using our method in various multi-dataset train-
ing settings, showing significant performance improvements over baselines,
especially on unseen datasets during training.

2 Related Work

Multi-dataset Semantic Segmentation. Several recent works have consid-
ered to use multiple datasets to jointly train a semantic segmentation model
[21,18,27,32,3,50]. However, the adopted setting/goal and the perspective of their
approaches vary significantly. For instance, [3] uses both the Mapillary [35] and
Cityscapes [8] datasets to train a segmentation model on the Cityscapes label
space, while detecting outlier regions in an unseen dataset, WildDash [56]. More-
over, [50] considers multi-dataset training using dataset-specific classifiers on the
original label space of each dataset. In contrast to our setting, these methods do
not consider using a unified label space with a single classifier.

To exploit different label spaces across datasets, two approaches [27,32] adopt
the idea of label hierarchy to jointly train on multiple datasets. However, such a
strategy requires a manually pre-defined structure of label space, where categories
need to be merged, added, or split in the hierarchy tree. Thus it may not be
easily scalable to newly introduced datasets. More recently, MSeg [21] proposes
to unify multiple datasets via defining a label taxonomy, which maps all the
datasets into the same label space. However, this pre-processing scheme requires
human re-annotation on a large number of images to ensure label consistency,
which is time-consuming and not scalable to more datasets. In contrast, we aim
to tackle the multi-dataset setting with label shifts purely from a model-training
perspective without requiring any human intervention.
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Multi-label Learning. A few works [12,20,7,59,22] proposed methods for ef-
fectively training on multi-label settings, where each data sample is accompanied
with one or more labels. As an example, Durand et al. [12] propose a partial-BCE
loss, which computes the loss only on the known classes while ignoring unknown
classes. While there exists a technical similarity to the partial-BCE loss, our idea
is derived from a different problem setting than partial labels, i.e., the gradient-
conflict in multi-dataset training.To alleviate gradient conflict, our Null-BCE
reformulates the problem into a partial label problem, and thus, enables better
training without sacrificing label granularity of certain datasets.

Domain Adaptation and Generalization. Unsupervised domain adaptation
(DA) techniques have been developed to learn domain-invariant features that
reduce the gap across the source and target domains in several tasks, such as
image classification [31,14,46,39,23], object detection [6,40,19,17], and semantic
segmentation [16,45,48,26,36]. Extending from a traditional dual-domains setting,
other DA settings have been proposed to consider multi-source [37] and multi-
target [30,9] domains. A more challenging setting, universal DA [38,53], deals
with various cases across datasets that may have different label spaces. In our
multi-dataset setting with supervisions, although there are also domain gaps
across datasets similar to the domain adaptation setting, we focus on solving the
label shift and conflict issues, which is orthogonal to the adaptation scenario.

Domain generalization assumes multiple training datasets available, and the
goal is to learn a model that can generalize well to unseen datasets. Several
methods have been developed via learning a share embedding space [34,11,33,13],
domain-specific information [41,24], or meta-learning based approaches [1,25].
However, these approaches mainly focus on the image classification task, and
more importantly, assume a shared label space across the training datasets and
any unseen ones, which is different from the setting of this paper, where each
dataset may have its own distinct label space.

3 Proposed Method

3.1 Multi-dataset Semantic Segmentation

The typical way to optimize a single-dataset semantic segmentation model is to
use a pixel-wise cross-entropy loss. When it comes to multiple datasets, since
each dataset has its own label space, there could be two straightforward options
to train the model. One method is to construct individually separate classifiers
for each dataset. However, this could result in problems during testing, where
it may not be clear which classifier should be selected. The second option is to
unify all the label spaces and train a single classifier, which is more suitable for
our problem context and will be the strategy on which this paper focuses.

Cross-Entropy Formulation. Given an image Xi ∈ RH×W×3 in dataset Di

and its Ki-categorical one-hot label Yi ∈ {0, 1}H×W×Ki in the label space Yi,
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we unify the label space as Yu = Y1 ∪ Y2... ∪ YN , where N is the number of
datasets. Therefore, the original label Yi is extended to Ku categories, where
Ku ≤

∑
i Ki is the number of unified categories. Without any prior knowledge, a

natural way to extend Yi to a Ku-categorical label is to assign all categories in
Y = Yu \ Yi with label 0. As a result, the cross-entropy loss that optimizes the
segmentation network G on multiple datasets can be written as:

Lce
seg = −

N∑
i=1

Ku∑
k=1

∑
h,w

Y
(h,w,k)
i log(P

(h,w,k)
i ) , (1)

where Pi ∈ [0, 1]H×W×Ku is the softmax of the segmentation output Oi =
G(Xi) ∈ RH×W×Ku , from the unified classifier. In (1), we omit summation over
all samples in each dataset to prevent notations from being over-complicated.

Gradient Conflict in (1). Although unifying the label spaces across datasets
enables the standard cross-entropy optimization in (1), it can cause training
difficulty when there is a label conflict across datasets. Here, we assume that
we do not have prior knowledge regarding the label space and its semantics in
the individual datasets. Therefore, such label conflict is likely to occur, as each
dataset may define label spaces differently. For instance, Cityscapes only has the
“rider” class, while Mapillary does not and has the “motorcyclist” and “bicyclist”
categories instead. In this case, the unified label space of Yu contains all three
categories, “rider”, “motorcyclist”, and “bicyclist”, but during training, images
from Mapillary would always treat “rider” with a label of 0.

Based on the example above, such label conflict may cause optimization
difficulty with the cross-entropy (CE) loss. To further analyze the negative effect
caused by label conflict, we consider the update step of a single parameter θ
that contributes to the output O of an arbitrary class k in the last layer of the
network. Given an image X1 from one dataset labeled as k at a position (h,w),
the gradient of the loss at a position (h,w) to a parameter θ is calculated as:

∂Lce
seg

∂θ
=

∂O
(h,w,k)
1

∂θ
(P

(h,w,k)
1 − Y

(h,w,k)
1 ). (2)

Now, consider an identical image X2 that originates from another dataset with a
different label space. Combining the two cases, the gradient for θ becomes:

∂Lce
seg

∂θ
=

∂O
(h,w,k)
1

∂θ
(P

(h,w,k)
1 − Y

(h,w,k)
1 ) +

∂O
(h,w,k)
2

∂θ
(P

(h,w,k)
2 − Y

(h,w,k)
2 ). (3)

Note that, since X1 and X2 are identical images,
∂O

(h,w,k)
1

∂θ =
∂O

(h,w,k)
2

∂θ . However,

since the two images originate from different datasets, we have Y
(h,w,k)
1 ̸= Y

(h,w,k)
2

(i.e., if Y
(h,w,k)
1 = 1, Y

(h,w,k)
2 = 0). Thus, the parameter θ receives one gradient

that is smaller than 0, and another that is larger than 0, despite coming from
identical samples. This is not optimal for training the model, yet can easily occur
when training a model on multiple datasets with conflicting label spaces.
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Fig. 2. Overview of the proposed framework using the Null BCE loss (Section 3.2) and
Class-relational BCE loss (Section 3.3): 1) For Null BCE, we replace the original CE
loss function to reduce the gradient conflict issue as mentioned in Section 3.1. In the loss
calculation, we only take the categories in the label space Yi of Di into consideration
via (4); 2) For class-relational BCE, through the pre-computed class relationships for
each dataset via (8), we incorporate the generated multi-class labels Ỹi,c via (6) to
form (9). Note that only some pixels within the image may have multi-class labels, as
illustrated (highlighted in orange).

3.2 Revisited Binary Cross-Entropy Loss

To resolve the aforementioned issue, we find that the binary cross-entropy (BCE)
loss, while similar to the CE loss, exhibits some interesting properties that are
desirable for our task setting. First, it does not require a softmax operation,
whose value is dependent on the output logits of other classes. Instead, BCE loss
is accompanied by a point-wise sigmoid activation. Furthermore, with the BCE
loss, we are able to selectively assign labels to each class. Therefore, we design a
“Null” class strategy, where we only assign the valid labels for each dataset. That
is, for images from the Di dataset, we only assign labels for categories within Yi,
while for other categories Y = Yu \ Yi, we neither assign label 0 nor 1. We name
this loss as the “Null BCE loss”, which is written as:

Lbce
seg = −

N∑
i=1

Ki∑
k=1

∑
h,w

Y
(h,w,k)
i log(Q

(h,w,k)
i ) + (1− Y

(h,w,k)
i ) log(1−Q

(h,w,k)
i ) ,

(4)

where Qi ∈ [0, 1]H×W×Ku is the output from the sigmoid activation. It is im-
portant to note that, although there is only a slight difference from (1) in the
summation of the loss term, i.e., summed over Ki instead of Ku, this change
resolves the gradient conflict issue mentioned in (3) since no loss is calculated for
class k for the input image X2 (see the example in (3)):

∂Lbce
seg

∂θ
=

∂O
(h,w,k)
1

∂θ
(Q

(h,w,k)
1 − Y

(h,w,k)
1 ). (5)
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The procedure is illustrated in the top-right of Fig. 2. A more detailed derivation
for both (2) and (5) is provided in the supplementary material.

3.3 Class-relational Binary Cross-Entropy Loss

Another advantage of BCE over the CE loss is that it can be used to train
a model with multi-label supervision. While our Null BCE loss in Section 3.2
alleviates the gradient conflict issue caused by inconsistent label spaces across
multiple datasets, it simply chooses to ignore classes that are not within the label
space of a given sample. Thus, we propose another loss that better utilizes the
inter-class relationships by explicitly providing multi-label supervision at pixels
where co-occurring labels may exist (bottom-right of Fig. 2).

Multi-class Label Generation. For a class c from dataset Di, we generate
the new multi-class label Ỹi,c ∈ {0, 1}Ku . This aims at training the classifier
to predict not only the original class but also any co-existing class(es) from
the unified label space Yu. For example, multi-class labels can be generated for
subset/superset relationships, e.g., “bicyclist” with “rider” or “crosswalk” with
“road”, but not classes with similar appearance or high co-occurrence.

Assuming we know these class relationships, we assign additional label c′ ∈ Yu

only if its similarity to the class c ∈ Yi is sufficiently large,

Ỹ
(c′)
i,c =


1 if c′ = c or s

(c′)
i,c > max(τ, s

(c)
i,c )

Ø else if c′ ∈ Yu \ Yi

0 otherwise

, (6)

where s
(c′)
i,c is the similarity between class c and c′ measured in dataset Di (details

for calculation are introduced in the next section) and τ is a threshold. When
classes c and c′ have a conflict, e.g., when c is “bicyclist” and c′ is “rider”, we

expect the similarity s
(c′)
i,c to be large. In contrast, we expect it to be small for

classes without conflict.
For the choice of τ , we check if the class of the largest score in si,c comes

from another dataset, Dj , which indicates a high chance of label conflict, and
thus, requires multi-class labels. For such cases, we average the largest scores and
obtain a value of 0.48±0.01, which is used as the threshold τ . Note that, the max

condition in (6) implies that multi-labels are only activated, i.e., Ỹ
(c′)
i,c = 1, when

similarity for class c′ ∈ Yu \ Yi is higher than that of the original class c, i.e.,

s
(c′)
i,c ≥ s

(c)
i,c . This makes label generation more robust to variations in τ . Fig. 3

illustrates an example of this process.

Class Relationship Generation. To extract inter-class relationships, we lever-
age the cosine classifier [49], such that the cosine similarity between the feature
and any classifier weight vector can be calculated, even for classes across datasets.
Let ϕ̂c denote the ℓ2-normalized 1× 1 convolution weight vector for the cth class,
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Fig. 3. One example of generating the final multi-class label Ỹi,c through the mean

activation s
(c)
i,c for “motorcyclist”, where the final multi-class includes the “rider” class.

and x̂(h,w) denote the ℓ2-normalized input feature vector at location (h,w). Then,
the cosine similarity, S(h,w,c), for class c at location (h,w) is calculated as:

S(h,w,c) = t · ϕ̂c
⊤
x̂(h,w) = t · ||ϕc||||x(h,w)|| cos θc, (7)

where θc represents the angle between ϕc and x(h,w), and t is a scaling factor.
We then calculate the mean activation vector of the final output layer as the

similarity score, si,c ∈ [0, 1]Ku , which indicates the relationships between each
class c in dataset Di and all other classes in the unified label space Yu.

s
(c′)
i,c =

1

Mi,c

∑
Xi∈Di

∑
h,w

S
(h,w,c′)
i · 1(h,w)

i,c , ∀i ∈ {1, ..., N};∀c′ ∈ Yu, (8)

where Mi,c denotes the number of pixels with ground-truth of c in Di, Xi

represents the samples in Di, and 1
(h,w)
i,c ∈ {0, 1} is an indicator whose value

is 1 if the ground-truth is c at location (h,w) of Xi. Note that, si,c can be
computed either for each dataset or over all the datasets. In practice, we adopt
the dataset-specific similarities to reflect the properties of each individual dataset.

Discussions. In (8), we define the similarity between classes to be asymmetric,
i.e., sc

′

i,c ≠ scj,c′ , where i ̸= j and c′ ∈ Yj , in order to address the asymmetric
relations such as subset/superset. For example, since “rider” is a superset of
“motorcyclist”, any “motorcyclist” is also a “rider”, yet the opposite is not always
true. Here, our method is able to implicitly capture such intricate relationships,
where the model can generate stronger “rider” activations given inputs of “mo-
torcyclist”. On the contrary, the model does not generate strong “motorcyclist”
activations on “rider”, since a “rider” is not always a “motorcyclist”.

Class-relational BCE Loss. With the the multi-class label Ỹi,c via (6) that
is aware of the class-relationships across datasets, we define our class-relational
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BCE Loss as:

Lcl−bce
seg = −

N∑
i=1

Kc
i∑

k=1

∑
h,w

Ỹ
(h,w,k)
i,c log(Q

(h,w,k)
i ) + (1− Ỹ

(h,w,k)
i,c ) log(1−Q

(h,w,k)
i ) ,

(9)

where the difference from (4) is the summation over the Kc
i -categorical multi-label

Ỹi,c that is calculated for each class c. As a result, some of the “Null” categories
from Section 3.2 can now be incorporated in the loss calculation based on the
inferred class relationships. The full list of generated multi-labels are provided in
the supplementary material.

3.4 Model Training and Implementation Details

Data Preparation. As noted in Section 3.1, given N number of datasets,
D = {D1, D2, ..., DN}, we unify the label space as the union of the N individual
label spaces, Yu = Y1 ∪ Y2... ∪ YN . We concatenate the N datasets to obtain a
single unified dataset. Before doing so, we preprocess each dataset such that the
segmentation labels can be re-mapped to the correct index of Yu. Note that, to
make the training batches consistent, we resize all the images with the shorter
side as 1080 pixels, and use 713 × 713 random cropping with standard data
augmentations such as random scaling and random horizontal flipping.

Implementation Details. We use the HRNet V2 [44] backbones initialized
with weights pre-trained on ImageNet [10]. The batch size is 32/16 with an initial
learning rate of 0.02/0.01 for HRNet-W18 and HRNet-W48, respectively. All
models are trained using SGD with 0.9 momentum and a polynomial learning rate
decay scheme for 150 epochs. To obtain the multi-class labels in our class-relational
BCE loss, we pre-train an HRNet-W18 model using the cosine classifier and fix
the generated class relationships si,c for each dataset in all the experiments.

4 Experimental Results

In this section, we first introduce our experimental setting on multi-dataset
semantic segmentation. Then, to verify the robustness of our UniSeg model, we
present the results trained using different combinations of four driving-scene
datasets (Cityscapes [8], BDD [54], IDD [47], and Mapillary [35]), and tested on
three unseen datasets (KITTI [15], CamVid [4] and WildDash [56]). Note that
we experiment on road-scenes datasets to better highlight the negative effects
of label conflict, and to demonstrate that UniSeg can effectively alleviate the
label conflict issue. In addition, we diversify our experiments by training models
on “Leave-One-Out” settings, where one of the four training datasets acts as a
held-out testing set (unseen), and the model is trained on the remaining three
datasets. Our quantitative results are accompanied by qualitative results, which
provide more insight of our model.
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Table 1. mIoU comparisons with baselines using the HRNet-W18 architecture. KITTI,
WildDash, and CamVid are fixed as unseen test datasets. “N/A” indicates the setting
where there are no multi-labels generated for our final model and thus we only show
our Null BCE setting. “C-R BCE” indicates class-relational BCE.

Train Datasets Method KITTI WildDash CamVid Mean

Single-dataset Single-best (CE) 41.9 41.2 60.8 48.0

C + I + B
Multi-dataset (CE) 46.2 44.3 70.3 51.6

UniSeg: Null | C-R BCE 54.9 | N/A 44.6 | N/A 71.8 | N/A 54.9 | N/A

I + B + M
Multi-dataset (CE) 48.0 47.5 71.2 55.4

UniSeg: Null | C-R BCE 52.7 | 54.6 47.7 | 48.3 73.2 | 72.7 57.9 | 58.5

C + I + M
Multi-dataset (CE) 50.2 41.3 72.8 54.8

UniSeg: Null | C-R BCE 55.9 | 56.5 44.1 | 44.8 73.3 | 73.8 57.8 | 58.4

C + B + M
Multi-dataset (CE) 55.0 46.2 73.4 58.2

UniSeg: Null | C-R BCE 59.0 | 59.2 47.5 | 48.7 73.8 | 74.0 60.1 | 60.6

C + I + B + M
(All)

Multi-dataset (CE) 48.8 46.0 72.7 55.8

UniSeg: Null | C-R BCE 57.6 | 58.9 47.5 | 48.2 73.3 | 73.9 59.5 | 60.3

4.1 Datasets and Experimental Setting

Here, we describe individual datasets and their dataset-specific characteristics that
could affect multi-dataset training on semantic segmentation. In the experiments,
we use the official splits for training and evaluation.

The Cityscapes and BDD datasets are collected from different environments
(central Europe and USA, respectively), but both contain the same 19 classes
in their label spaces. The IDD dataset is collected in India, and provides a
hierarchical label space with four levels. We follow a conventional level-3 setting
which contains 26 classes. Finally, the Mapillary dataset is one of the largest
driving scenes dataset, with data collected from around the world, and has a
total of 65 fine-grained categories. Overall, the unified label space when training
on all four datasets has a total of 70 categories.

KITTI, WildDash, and CamVid are all small-scale datasets that we use
as unseen test datasets. The label spaces of KITTI and WildDash are identical
to Cityscapes, while for CamVid, we follow the reduced label space used in [21].

Evaluation. For quantitative evaluation, we follow the standard evaluation
protocol for the single class prediction, for simplicity. Specifically, we evaluate
on the classes that exist both on the label set where the model is trained from
and the label set defined in the test dataset. We select appropriate channels
from the model output followed by the argmax operation. Note that our method
can also predict the co-occurring categories for each pixel, as demonstrated
qualitatively in Section 4.4. During testing, following [21], all images are resized
so that the height of the image is 1080p (while maintaining the aspect ratio).
Intersection-over-union (IoU) score is used to evaluate the segmentation output.
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Table 2. mIoU comparisons with baselines using the HRNet-W48 architecture.

Train Datasets Method KITTI WildDash CamVid Mean

Single-dataset Single-best (CE) 48.1 48.8 73.6 56.8

C + I + B
Multi-dataset (CE) 54.5 51.5 76.7 60.9

UniSeg: Null | C-R BCE 62.9 | N/A 54.2 | N/A 76.8 | N/A 64.6 | N/A

I + B + M
Multi-dataset (CE) 54.4 53.5 77.7 61.9

UniSeg: Null | C-R BCE 58.4 | 59.3 55.9 | 55.7 77.8 | 78.3 64.0 | 64.4

C + I + M
Multi-dataset (CE) 56.8 52.9 78.0 62.6

UniSeg: Null | C-R BCE 63.9 | 65.8 53.5 | 53.6 78.4 | 78.7 65.3 | 66.0

C + B + M
Multi-dataset (CE) 57.2 54.2 78.2 63.2

UniSeg: Null | C-R BCE 64.7 | 68.0 55.3 | 57.8 78.1 | 78.3 66.0 | 68.0

C + I + B + M
(All)

Multi-dataset (CE) 57.0 56.0 78.1 63.7

UniSeg: Null | C-R BCE 64.4 | 65.2 56.5 | 58.4 78.2 | 78.6 66.4 | 67.4

Table 3. mIoU comparisons with baselines using SegFormer-B1 and B4 architectures.

Method Arch. KITTI WildDash CamVid Mean

Multi-dataset (CE) SegFormer
B1

55.1 51.4 75.0 60.5

UniSeg: Null | C-R BCE 59.7 | 60.3 53.4 | 54.3 75.5 | 75.7 62.9 | 63.4

Multi-dataset (CE) SegFormer
B4

58.4 57.0 78.4 64.6

UniSeg: Null | C-R BCE 69.1 | 69.0 60.1 | 61.9 79.2 | 79.6 69.5 | 70.2

4.2 Overall Performance

We present our quantitative results for the unseen datasets in Tables 1, 2, and 3,
and the leave-one-out setting in Table 4. For more insightful comparisons, we
focus on the evaluation of unseen datasets as it is a more interesting setting for
validating the generalizability of models, and leave the results for seen datasets
in the supplementary material.

Full Setting. In Tables 1 and 2, we show the performance on unseen datasets
(KITTI, WildDash, CamVid) for various combinations of the training datasets
(i.e., combinations of three or four datasets). In addition to the three methods,
we present the “single-best” baseline, where the results are obtained by the
best model after training on each of the datasets using the CE loss. That is, we
evaluate all single-dataset models and report the strongest result for each unseen
dataset. In Table 3, we present the performance of SegFormer [51] models (B1 and
B4) trained on all four datasets to demonstrate that UniSeg is model-agnostic.

Leave-One-Out. We employ Leave-One-Out settings with the training datasets
to diversify our evaluation. In these settings, one of the four training datasets
(i.e., Cityscapes, IDD, BDD, Mapillary) is left out of training and treated as an
unseen test dataset. For example, in Table 4, each column presents results of
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Table 4. mIoU comparisons for the Leave-One-Out settings with HRNet-W18 and
HRNet-W48. Each column indicates the unseen testing dataset, while the model is
trained on the remaining three datasets.

Method Arch. Cityscapes IDD BDD Mapillary Mean

Multi-dataset (CE) HRNet
W18

55.0 44.8 52.2 45.7 49.4

UniSeg: Null | C-R BCE 56.1 | 56.8 46.2 | 47.6 52.3 | 52.1 48.1 | 48.1 50.7 | 51.2

Multi-dataset (CE) HRNet
W48

62.1 49.2 56.8 51.8 55.0

UniSeg: Null | C-R BCE 64.6 | 65.8 53.3 | 52.9 58.1 | 57.9 53.4 | 53.4 57.4 | 57.5

the unseen test dataset, while the other three serve as train datasets. Note that,
when training on “Cityscapes, IDD, BDD”, the unified label space is small and
no new labels are generated by (6) (i.e., column “Mapillary” of Table 4).

Results. First, we observe that jointly training on multiple datasets generally
outperforms the single-best setting, even when the CE loss is used. This shows
the advantage of using multi-dataset training, where data diversity and volume
are increased. We observe that the two variants of our UniSeg models — Null
BCE and class-relational BCE — consistently perform favorably against the
multi-dataset baseline with the typical CE loss. For example, using either the
HRNet-W18/W-48 model, averaged over all the settings, there is a 7.2%/8.2%
gain on KITTI and a 3.3%/3.6% gain on “Mean” in Table 1 and 2, which is
considered as a significant improvement in semantic segmentation. Furthermore,
the results in Tables 3 (different model architecture) and 4 (diverse dataset
combinations) follow a similar trend to Tables 1 and 2, where the UniSeg models
consistently outperform the CE baseline. This validates our original intuition
that the gradient conflict in the CE loss affects model’s robustness, regardless of
the model architecture (CNNs in Tables 1 and 2 and Transformers in Table 3)
and dataset combination. Finally, comparing between our two model variants,
class-relational BCE further improves the overall performance. This shows that
providing our generated multi-class labels helps multi-dataset training with
conflicting label spaces.

4.3 Results on WildDash2 Benchmark

We further highlight the effectiveness of UniSeg by evaluating on the WildDash2
(WD2) benchmark. The WD2 benchmark is a newer version of the original
WildDash dataset, with a few additional classes and negative samples. To evaluate
on the WD2 benchmark, we employ the HRNet-W48 “Multi-dataset” and UniSeg
models trained on all four datasets (C + I + B + M setting of Table 2). Only the
test images are provided to users, while evaluation is done on the WD2 server.

Our UniSeg model currently sits at the fourth place on the public leaderboard1,
only surpassed by three submissions from a single method that uses a more

1 https://wilddash.cc/benchmark/summary_tbl?hc=semantic_rob_2020

https://wilddash.cc/benchmark/summary_tbl?hc=semantic_rob_2020
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Table 5. Class mIoU and negative class mIoU on the WildDash2 benchmark.

Method Architecture Class mIoU Negative mIoU Meta Avg.

MSeg [21] HRNet-W48 38.7 24.7 35.2

Yin et al. [52] HRNet-W48 - - 35.7

Yin et al. [52] Segformer-B5 - - 37.9

Multi-Dataset (CE) HRNet-W48 39.0 27.9 36.0

UniSeg (C-R BCE) HRNet-W48 41.7 34.8 39.4

Input image &

ground truth

Prediction on

Cityscapes label space

Normalized top1 activation

for non-Cityscapes classes

Multi-label prediction:

entire label space

Fig. 4. Multi-label predictions on two samples of Cityscapes. For each set of outputs,
the first row corresponds to an HRNet-W48 model trained with the CE loss, while
the second row corresponds to our C-R BCE model. While both models make strong
predictions on the Cityscapes label space (column 2), only the C-R BCE model has high
(normalized) activations for non-Cityscapes classes in regions with label conflict (column
3). For example, the C-R BCE model correctly predicts “traffic sign - back” (light
brown) and “traffic light” (beige), even though it is not included in the ground-truth for
Cityscapes. Furthermore, the C-R BCE model can make more fine-grained predictions,
such as “rider” → “motorcyclist” (light purple), “rider” → “bicyclist” (brown), and
“road” → “lane marking” (white).

powerful architecture and includes WD2 in the training set. In contrast, we do
not use any WD2 data during training. A summary of the results in shown in
Table 5. Note that, while MSeg [21] merges some important fine-grained classes
such as “road markings”, our UniSeg model is able to make predictions for such
classes. This highlights the benefits of retaining the original fine-grained labels.
Here, we also compare with Yin et al. [52] which facilitates multi-dataset training
by replacing class labels with text descriptions, while also using open datasets
[2,42] for training.
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4.4 Qualitative Analysis

To better understand the full capacity of our UniSeg model, we visualize the
output predictions of the UniSeg (C-R BCE) and CE models on two samples
of the Cityscapes validation set in Fig. 4. We first normalize the logits for each
model’s output, which is done by computing the softmax across all 70 classes for
the CE model, and an element-wise sigmoid operation for the UniSeg model. The
classes of Cityscapes with the top-1 scores are plotted to obtain the predictions
in column 2. Next, we identify the top-1 classes among the non-Cityscapes classes
and plot the scores in column 3. Finally, we obtain multi-label predictions by
thresholding the scores of the non-Cityscapes classes: if the score is above a set
threshold, the original class is replaced with the non-Cityscapes class. Here, we
use 0.5 as the threshold for the UniSeg model, and 0.1 for the CE model.

Through this visualization, we observe that our model exhibits interesting
properties beyond quantitative results. First, we find that our model can make
accurate predictions even for regions where Cityscapes does not pro-
vide a ground truth: in the first sample, although the backside of the traffic
signs are not labeled (black in ground truth) in Cityscapes, our model outputs
high scores for these pixels (column 3) and overrides the original prediction to the
“traffic sign - back” class from the Mapillary dataset (column 4). Furthermore, in
the second sample, we observe similar behavior for “street lights” (beige).

Our model also effectively handles cases with direct label conflict.
In the first sample we see men on a motorcycle, which is given the “rider”
label in Cityscapes (column 2). However, since our model is also trained on
the “motorcyclist” class, and is able to alleviate the gradient conflict between
“rider” and “motorcyclist”, our model generates large activations for “motorcyclist”
(light purple in column 4) as well. Similar results can be seen for the second
sample, where the “lane marking” class (white) replaces parts of the “road” class,
and the “bicyclist” class (brown) overrides the “rider” class. Note that, unlike
the UniSeg model, the model trained on CE cannot produce large activations for
these conflicting labels.

5 Conclusion

In this paper, we proposed UniSeg, which is an effective method to train multi-
dataset segmentation models with different label spaces. To alleviate the gradient
conflict issue caused by conflicting labels across datasets, we designed a “Null”
class strategy using the class-independent BCE loss. To further reap the benefits
of multi-dataset training, we incorporated learned class-relationships into the
class-relational BCE loss. Our experiments demonstrate that UniSeg improves per-
formance over ordinary multi-dataset training, especially for the unseen datasets.
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