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Overview

In the supplementary material, additional details that are not included in the
main paper due to space limits are provided as follows:

– Details of our experimental datasets (see Section 1).
– Details of our data augmentation approach (see Section 2).
– Training details of the boundary prediction network (see Section 3).
– Some other experimental setting details (see Section 4).

1 Experimental Datasets Details

To demonstrate the effectiveness of our proposed WS3D, we tested it on both
indoor and outdoor 3D scene segmentation benchmarks, including S3DIS [1],
SemanticKITTI [2], and ScanNet [3] for semantic segmentation, and ScanNet [3]
for instance segmentation. Many prior works have used these datasets for bench-
mark comparisons [6–13]. Therefore, we continue to use these datasets in our
work. The detailed information of each dataset is listed as follows:

ScanNet-V2 is a standard large-scale and widely-acknowledged 3D indoor
scene understanding benchmark consisting of more than 1,600 3D scene scans.
It contains densely reconstructed point clouds from RGB-D images captured by
the depth camera. For the dataset partition in fully-supervised learning, we fol-
low the official partition of ScanNet-V2 [3] using 1,201 scans as the training set,
312 scans as the validation set, and 100 scans as the test set.

SemanticKITTI [2] is a large-scale point cloud understanding benchmark
for self-driving applications. The point cloud of individual scene is obtained
densely by Velodyne VLP-64 LiDAR. The dataset covers long-range road scenes,
thanks to the vehicle driving in the complex road scenarios with mounted LiDAR
to capture the point clouds. More than 43,550 labeled LiDAR scans in total are
split into 21 sequences. Each LiDAR scan contains approximately 105 points.
We follow the official setting [2] that uses the sequences 00 to 07, and 09 to 10
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for training, the sequence 08 for validation, and the sequence 11 to 21 for testing.

S3DIS is a commonly used indoor 3D scene understanding benchmark that
contains various indoor scenes. It includes six indoor areas which are made up of
271 rooms. Each room contains the magnitude of 106 points. The typical room
size is 20 ˆ 15 ˆ 5 meters. In our experiments, we follow GPC [5] using area 5
as the validation set and the other areas as the training set.

2 Data Augmentation Details

2.1 Data Augmentation Approaches Details

We perform three kinds of data augmentations to enhance the unlabeled data and
to perform region-level contrastive learning, including: 1. Geometric rotations
and mirroring of the point cloud scene. 2. Adding minor disturbance to
the point cloud scene. 3. Random scaling of the point cloud scene.

Geometric rotations and mirroring. The original point cloud scene P P

RNpˆp3`faq can be partitioned into the coordinate channels of point clouds 3D
positions Px P RNpˆ3 and the feature channels Pf P RNpˆfa with diverse at-
tributes such as the color and normal. We perform rotation of the point clouds
around the X axis. Denote the rotated point clouds as P r

x , and the rotation ma-
trix as Rx, we can obtain the transformed point clouds as: P r

x “ PxRx, where

Rx “

»

–

1 0 0
0 cospϕq ´sinpϕq

0 sinpϕq cospϕq

fi

fl . Rx is the rotation matrix of ϕ around x axis. The

rotated degrees for all input point clouds scenes samples obey the uniform dis-
tribution of U r0, 2πs. We perform point clouds mirroring with respect to the
Z axis. Denote the mirroring transformation as Rm “ diagp1, 1,´1q, the final
augmented point clouds scene Pm

x is denoted as Pm
x “ P r

xRm.
Adding minor disturbance. We add the noise for the normalized point

clouds coordinates, which can be represented as P d
x “ Pm

x ` Td. Td is the Gaus-
sian noise with the mean of 0 and variance of 0.01. We set Td in the range of
r´0.1, 0.1s.

Random scaling. We do random scaling to the point cloud scene. Random
scaling of (0.9´ 1.1) is done to the point clouds coordinates. Denote the scaling
parameter as η, the final augmented point clouds scene P

1

x is given as P
1

x “ ηP d
x .

3 Training Details of the Boundary Prediction Network

As mentioned in our main paper, we have utilized the JSE-Net [4] as our bound-
ary prediction network to obtain the boundary labels. In this Section, we provide
the training details of the boundary prediction network, which follows the set-
tings in the JSE-Net [4]. The input point clouds are down-sampled with the
grid size of 4cm. The gradient descent with a momentum of 0.98 is used for
optimization and the initial learning rate is 0.01. We reduce the learning rate
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exponentially and the learning rate is multiplied by 0.1 every 100 epochs. The
network is trained on a single GTX 1080Ti GPU. we follow JSENet in other set-
tings except substituting the binary cross-entropy loss Lbce with the focal loss
Lfoc, as mentioned in our main paper.

4 Experimental Setting Details

The supervised branch of our WS3D is the same as the GPC [5]. Therefore,
the ’Sup-only’ and ’Sup-only-GPC’ both represent the supervised-only model in
GPC that is merely trained with labeled data. To the best of our knowledge,
the weakly-supervised/semi-supervised 3D scene semantic segmentation problem
under the limited reconstruction setting has only been explored in GPC [5].
Therefore, we useGPC as a counterpart for fair comparisons in our experiments.
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