
Supplementary material:
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for Point Convolutional Neural Networks

A Additional experiments

A.1 ModelNet40

We validate our algorithm on the task of shape classification on the MODELNET40 data
set [7], composed of only synthetic 3D models.
Data set: This synthetic data set is composed of 12 k shapes from 40 different human-
made objects, whereby the shapes are aligned into a canonical orientation. We use the
official training/test split which uses 9.8 k shapes for training and 2.4 k shape for testing.
We sample points using Poisson disk sampling with a radius of 0.05 from 2 k initial
random points on the surface of the objects, which results in roughly 1 k points per
model. As features, we use the surface normals, while we use random anisotropic scaling
(random scaling in each axis independently between 0.9 and 1.1) for data augmentation.
Performance is measured as overall accuracy accumulating the predicted probabilities
for each model with different anisotropic scalings.
Network architecture: We used the same architecture as the one used on the SCANOB-
JECTNN data set, increasing the number of features by a factor of 2 and decreasing the
sampling radius and convolution receptive fields by a factor of 2.
Training: We trained the models using SGD with momentum for 500 epochs, batch size
equal to 16, and an initial learning rate of 0.005. We scaled the learning rate by 0.1 after
350 and again by 0.1 after 450, allowing all methods to converge. In order to prevent
overfitting, we used a dropout value of 0.2 before each convolution and 0.5 on the final
MLP, and we used weight decay loss scaled by 0.0001.
Results: The resulting accuracy is shown in Table 1. Our initialization scheme enables
us to eliminate batch normalization while still achieving accuracy values comparable to
the standard initialization with batch normalization. In contrast, when using standard
initialization without batch normalization, three tested approaches do not learn. This is
true for both variants of ours, the “direct” and the “transfer” one, as shown in the last two
columns. For the “transfer” one, we computed the initialization on the SCANNET data
set [2] for every method on a network with six consecutive layers without any pooling
operation. Then, we used this init on the network for the classification task. We see that
the performance remains the same as the “direct” setup.

Lastly, we compare our initialization with batch norm when the batch size is reduced.
In this experiment, we trained our classification network with and without batch nor-
malization for batch sizes 2, and 4. The results, shown in Table 2, indicate that for a
small batch size of 2 our method is able to train the model while methods using batch
normalization are not able to converge.
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Table 1. Comparison of accuracy obtained
with our initialization on different convolution
operations, for MODELNET40 Classification.

BN NoBN

Ours

Std Std Dir. Tran.

PCCNN [1] 91.0 4.1 90.0 89.7
KPConv [5] 91.1 90.8 91.0 91.2
MCConv [3] 91.0 4.1 90.4 90.6

PointConv [6] 90.7 90.8 90.6 90.1
SPHConv [4] 90.3 4.1 90.0 90.0

Table 2. Comparison of accuracy obtained
with our initialization against batch normal-
ization for different batch sizes on the MOD-
ELNET40 data set.

2 4

Ours BN Ours BN

PCCNN [1] 90.3 28.3 90.3 90.4
KPConv [5] 90.3 14.6 90.6 90.6
MCConv [3] 90.0 14.8 90.0 90.1

PointConv [6] 90.5 13.2 90.6 90.4
SPHConv [4] 90.0 19.7 90.1 88.6

A.2 Gradient accumulation

We trained the two best performing convolutions on the SCANNET data set, MCConv
and KPConv, with a virtual batch size of 4. We sample each scene as described in
paper’s Sect. 5.4, i.e., making each scene fill the GPU memory, and we accumulate the
gradients over 4 scenes. In this setup, batch normalization still fails, obtaining an IoU of
32.1 for KPConv and 54.5 for MCConv.

B Implementation details

We implemented the different convolution operations in a unified framework using
custom ops to reduce memory consumption. Each method was implemented as a single
custom op following the official repositories of the tested operations. However, for some
operations, we performed slight modifications. In the following subsections, we will
describe the individual changes.

B.1 KPConv

The proposed KPConv convolution operation by Thomas et al. [5] use a sum as aggre-
gation method, ÂSum. However, for the results reported in our paper, we substituted
such method by a Monte Carlo estimation, ÂMC. This change was necessary since we
experienced instability during training for small batch sizes. We believe that the lack
of normalization on the operator produces a high variance in the features between 3D
models with dense neighborhoods, such as plants, and 3D models with neighborhoods
with low density, such as objects from the class Table. By using Monte Carlo estimation,
ÂMC, we were able to obtain a stable training for KPConv with low batch sizes. Table 3
presents the accuracy of the original KPConv and our modified operation, KPConv(N),
for the MODELNET40 data set with varying batch sizes. In these results, we can see that
our modification not only makes the training stable for small batches but also achieves
higher accuracy than the original operation for large batches. Moreover, we can see that
our initialization scheme is also able to train the original KPConv operation for large
batches.
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Table 3. Comparison of accuracy obtained with our initialization against batch normalization for
the two variants of KPConv on the MODELNET40 data set.

2 4 8

Ours BN Ours BN Ours BN

KPConv 4.1 21.4 4.1 90.4 90.9 91.0
KPConv(N) 90.3 14.6 90.6 90.6 90.6 91.5

B.2 PointConv

The PointConv convolution operator [6] processes the relative position of the neigh-
boring points with an MLP to produce the weights used to modulate the different features.
Unfortunately, when the receptive field of the convolutions is small the relative position
is also close to zero, and when the receptive field of the convolution is too large the
relative positions are also large. This results in vanishing or exploding gradients for
large-scale data sets such as SCANNET. We follow the original implementation and
use batch normalization between the layers of such MLP, which normalizes the input
based on data statistics and enables training on the aforementioned data sets. However,
when batch normalization is not used another approach has to be considered. Other
convolutions such as MCConv [3] normalize the input by the radius of the receptive field.
However, in order to remain as close as possible to the original method, we used instead
a custom initialization scheme for the first layer of this MLP:

V ar(w) =
1

dr2

where d is the number of dimensions and r is the radius of the receptive field. Please
note that this initialization is only used in our setup when batch normalization is not
considered.

C Other architectures

The number of variables on neural network architectures for point clouds is large:
convolution operation, pooling method, neighborhood selection, architecture, data aug-
mentation, etc. Each paper uses a different combination of those different variables
which not only makes them difficult to compare, but could even mislead the reader
on the improvements of novel contributions, such as our weight initialization scheme.
Therefore, to strive for reproducibility, we favored a fixed architecture and only modified
the convolution operation to see the improvement of our initialization on the different
convolutions. However, in this section, we further analyze the effects of our initialization
scheme on a different architecture. Moreover, we also compare our architecture with the
different architectures proposed for each convolution operator.

C.1 PointConv

In order to measure the improvement of our initialization scheme on other architectures,
we used it on the network proposed by Wu et al. [6]. This architecture differs from ours
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in several parameters. It uses farthest point sampling instead of Poisson disk sampling to
reduce the size of the point cloud, it selects the neighboring points using the K-nearest
neighbors algorithm, and uses several linear layers between each convolution. We used
the code from the official repository and trained a model in the SCANNET data set with
batch normalization, a batch size equal to 8, and a point cloud size of 6, 000. Then,
we trained the same model without batch normalization and our weight initialization
algorithm, but used instead a point cloud size of 16, 000 and a batch size of 1. In order
to virtually increase the batch size in our setup, we accumulated the gradients over 8
training steps before modifying the weights of the model. Note that both configurations
filled up the memory of our graphics card.

This experiment showed similar results to the ones presented in the main paper. The
model with batch normalization obtained a IoU of 57.7, whilst the model without it and
our initialization achieved a IoU of 59.3. Moreover, when our weight initialization is
not used, the same model is not able to train, achieving an IoU of 1.7. Lastly, the model
with batch normalization trained with the larger point clouds and small batch size was
able to achieve only an IoU of 30.5.

C.2 Architecture comparison

Lastly, we compare the results obtained on our architecture with batch normalization
and without our initialization, to the best results reported on the SCANNET validation
set of the different methods. As shown in Tbl. 4 our architecture presents state-of-the-art
results, obtaining better or similar results for most of the methods.

Table 4. ScanNet semantic segmentation comparison with our and original architectures, both
with standard initialization and batch normalization.

PCCNN [1]∗ KPConv [5] MCConv [3] PointConv [6] SPHConv [4]

Ours 65.7 66.0 66.1 64.2 59.5
Orig. – 69.2 63.3 61.0 61.0

∗ This method was only tested on scenes composed of single models, e.g. ShapeNet.
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