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Abstract. Visual understanding of geometric structures with complex
spatial relationships is a fundamental component of human intelligence.
As children, we learn how to reason about structure not only from ob-
servation, but also by interacting with the world around us – by taking
things apart and putting them back together again. The ability to rea-
son about structure and compositionality allows us to not only build
things, but also understand and reverse-engineer complex systems. In
order to advance research in interactive reasoning for part-based geo-
metric understanding, we propose a challenging new assembly problem
using LEGO bricks that we call Break and Make. In this problem an
agent is given a LEGO model and attempts to understand its structure
by interactively inspecting and disassembling it. After this inspection
period, the agent must then prove its understanding by rebuilding the
model from scratch using low-level action primitives. In order to facili-
tate research on this problem we have built LTRON, a fully interactive
3D simulator that allows learning agents to assemble, disassemble and
manipulate LEGO models. We pair this simulator with a new dataset
of fan-made LEGO creations that have been uploaded to the internet in
order to provide complex scenes containing over a thousand unique brick
shapes. We take a first step towards solving this problem using sequence-
to-sequence models that provide guidance for how to make progress
on this challenging problem. Our simulator and data are available at
github.com/aaronwalsman/ltron. Additional training code and PyTorch
examples are available at github.com/aaronwalsman/ltron-torch-eccv22.

1 Introduction

The physical world is made out of objects and parts. Buildings are made out of
roofs, rooms and walls, chairs are made out of seats, backs and legs, and cars have
doors, wheels and windshields. The ability to reason about these parts and the
structural relationships between them are a key component of our ability to build
tools and shelters, solve complex organizational problems and manipulate the
world around us. Building part-based reasoning capability into intelligent agents
has been a long-standing goal of the computer vision, robotics and broader AI
communities.

https://github.com/aaronwalsman/ltron
https://github.com/aaronwalsman/ltron-torch-eccv22
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Fig. 1. A training example of the Break and Make task on a four-brick model in
our dataset. During Break phase, the agent must learn to disassemble removable parts
based on RGB images to understand the underlying structure. During the secondMake
phase, the agent must learn to pick bricks and reassemble the scene based on all past
observations.

In this paper we propose Break and Make, a challenging new problem
designed to investigate interactive structural reasoning using LEGO bricks. This
problem is designed to simulate the process of reverse engineering: taking apart a
complex object to learn more about its structure, and then using this newfound
knowledge to put it back together again. This task is naturally divided into two
phases. In the first Break phase, a learning agent is presented with a previously
unseen LEGO model and has the opportunity to disassemble and inspect it in
order to observe its internal structural and hidden components. After this, in
the second Make phase, the agent is presented with an empty scene and must
use the information gathered during the Break phase to rebuild the model from
scratch. Both phases must be completed using visual action primitives designed
to simulate the LEGO construction process. These actions require an agent to
reason not only about individual bricks, but also the connection points between
them.

In order to facilitate research on this challenging problem, we provide a
dataset of 1727 ethically-sourced fan-made LEGO models with generous pub-
lic licensing. These models range in size from 5 to 7302 individual bricks and use
a library of 1790 distinct brick shapes. We also include a set of augmentations
and a random model generator in order to provide more examples for large-scale
training. Finally, we provide a 3D simulator and interactive learning environ-
ment with an OpenAI gym interface designed to train agents on this problem.
Our simulator is compatible with a file format commonly used in the LEGO
fan community, and is therefore capable of displaying and manipulating a wide
range of models found online.

The Break and Make problem presents a difficult challenge for a number of
reasons. First, the interchangeable nature of LEGO bricks and the large number
of distinct brick shapes results in a very large state and action space. Second,
this problem requires precise memory in order to bridge the long-term temporal
distance between observations in the Break phase and reconstruction actions
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that must be taken in the Make phase. Third, this problem also requires precise
spatial reasoning in order to carefully place bricks in the correct location using
a visual observation and action space. Finally, it is difficult to provide direct
supervision for this problem, even with accurate information from the simula-
tor. This stems from the fact that it is not possible to directly compute which
observations are necessary to capture the structural details of a model. We are
however able to provide noisy supervision using a custom planner that reasons
over visual observations. This planner generates a series of actions and observa-
tions that will feasibly disassemble and reassemble the model, but it comes with
no guarantee that an agent equipped with only the visual observations from the
sequence would have enough information to make the necessary decisions.

Despite these challenges, we show that progress can be made on LEGO as-
semblies containing up to 8 bricks using sequence-to-sequence models based on
Transformers and LSTMs. We detail a suite of experiments that show the cur-
rent capability of these models and demonstrate how performance deteriorates
as the problem becomes more complex in terms of both model size and variety
of brick shapes.

Our primary contributions are:

1. We introduce a challenging new interactive problem Break and Make re-
quiring complex scene understanding and construction. Section 3 describes
this problem in detail.

2. We present LTRON, a new simulator and dataset that allow interactive
learning agents to build and manipulate LEGO models. Sections 3.2 and 3.4
provide details.

3. We also present a transformer-based network architecture StudNet, de-
signed to make progress on this challenging problem. We compare this with
with other sequence-to-sequence models and demonstrate the difficulty of
attacking this problem using current techniques. Section 4 provides details
on these approaches and Section 5.1 discusses their results.

2 Related Work

2.1 Understanding Compositional Structures

Interactive scene understanding and reasoning about compositional structure
has origins in the early days of AI. An early example is Winograd’s SHRDLU
system [55] that used language instructions to interactively stack virtual blocks
and answer questions posed by a human operator.

More recently researchers have introduced a number of interactive environ-
ments such as RoboThor[5], iGibson[43], Habitat[48] and MultiON[53] designed
to simulate indoor environments for embodied learning agents. Many tasks have
been proposed for these environments, such as goal-directed navigation [60], in-
teractive question answering [11,4] and instruction following [44]. While many
of these tasks and environments offer some degree of object manipulation, most
of these interactions involve only a small number of object classes, and do not
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require the agent to reason about complex compositional structures. In contrast
the Break and Make task requires an agent to reason in detail about these
structures and how to build them from a library of 1790 unique parts.

In the non-interactive domain, researchers have released a number of sim-
ulated tasks and datasets [2,34,29] designed to provide access to a diverse set
of objects with increasing detail, part structure and complexity. Others such as
CLEVR [20], CLEVERER [59], and CATER [10] are designed around answering
questions about object relationships in images and videos. In these settings, it
is easy to procedurally generate a large dataset using randomization, but it has
been difficult to generate datasets with large object and relationship vocabu-
laries. Researchers have also taken great effort to annotate natural images and
videos with detailed attributes [7], parts [52] and relationships [25].

Scene understanding via active or interactive perception is a classic way for
robots and embodied agents to explore and model their environment. Researchers
have investigated varying levels of detail and semantics in this
space [51,32,41,39,47,46]. Previously it has been difficult to explore objects with
fine-grained part structure in these settings due to the difficulty in collecting
and annotating this data. LTRON provides complex models in an interactive
environment, allowing agents to collect large amounts of data for researching
complex cluttered environments with compositional structures. Another recent
line of work explores learning physical properties of the world either from ob-
servations of rigid body interactions [58,56,57] or unsupervised physical interac-
tion with a robot [8]. While we do not provide explicit rigid body dynamics in
LTRON, we allow agents to explore extremely detailed physical structures with
complex part-interactions at a scope that has not been practical in the past.

2.2 Building 3D Structures

In robotics, there has been a long-standing interest in enabling robots to build
or assemble structured objects. Several authors have explored assembling IKEA
furniture [30,45,27]. Others [16,42] have used Deep Reinforcement Learning and
Learning from Demonstration methods to teach robots high precision assembly
tasks using a real robot. While LTRON does not offer the realistic dynamics
necessary to support traditional robotic manipulation, it does offer a high degree
of scene complexity and compositionality which allows researchers to explore
fine-grained spatial reasoning.

Recently construction and object-centric reasoning have become important
topics in the reinforcement learning and AI community. Multiple datasets [54,21]
have been developed to train agents to build and reason about geometric forms
using CAD software. While they support a small number of primitive-based mod-
elling tools, our building environment supports constructing models from over
one thousand discrete brick types. Other recent works [1,9] have used reinforce-
ment learning for block-stacking problems, and to create structures designed to
achieve goals such as connecting or covering other blocks.
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Researchers have also investigated the task of generating programs to de-
scribe and/or assemble shapes out of low level primitives [35,22] and reason
about the relationships between them [15].

LEGO bricks are popular construction toys that are often an early entry
point for children to learn about building. They are also an excellent abstrac-
tion for real-world construction problems, which has led other researchers to
explore using LEGO for various construction problems. Several approaches have
been proposed to automatically construct LEGO assemblies from a reference
3D body [23]. For example, multiple authors [36,26] have suggested methods for
automated reconstruction based on genetic and evolutionary algorithms. Duplo
bricks have also been used for tracking human demonstrations and assembly [12].

In contrast to these approaches, recent works have suggested data-driven deep
learning approaches for LEGO problems based on generative models of graphs
[49], and image to voxel reconstruction [28]. Similar toBreak and Make, Chung
et al. [3] propose a method for assembling LEGO structures from a reference
image using interactive learning. Unlike LTRON these approaches use a use
only a limited number of bricks, and do not support the large variety of bricks
in the LEGO universe.

3 Task and Data

The Break and Make task requires an agent to learn how to inspect a LEGO
assembly using rendered images, and then use the information gathered in this
way to rebuild the assembly from scratch. Both the inspection phase and the
construction phase are inherently interactive problems that require multi-step
reasoning due to the ambiguities resulting from occlusions and the iterative na-
ture of the building process. Many LEGO bricks have groups of similar neighbors
which may appear identical under partial occlusion. Furthermore, complex struc-
tures often contain interior bricks that are not visible at all unless outer bricks
are removed. These two factors mean that for many assemblies, there is no sin-
gle viewpoint that completely captures an entire structure. Therefore in order
to solve this problem an agent must often consider multiple viewpoints and take
apart the assembly in order to fully understand it.

3.1 LEGO Bricks

A LEGO brick describes the shape and connection-point structure of a single
LEGO part. While most LEGO bricks are a single rigid shape, some such as
ropes and connector hoses are flexible. LTRON currently does not support
these flexible components, so they are removed from all models before training.
Some other bricks have moving parts, but in this case we break each of these
into a separate brick shape for each moving component. We use polygon meshes
extracted from the LDraw [19] package to represent all bricks. The color of a
brick is represented as a single integer that refers to a specific RGB color value
in a lookup table, which is consistent with LDraw conventions.
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Each brick also contains a number of connection points. These describe
how bricks may be connected to each other. The prototypical connection point
is the short cylindrical stud that covers the top of many bricks in a rectangular
grid, and the corresponding holes that cover the bottom. However, there are
a large number of additional connection point types that exist in the LEGO
universe, including technic pins, axles, clips, poles and ball/socket joints. In
developing LTRON we have tried to faithfully represent as many of these as
possible in order to provide a rich action space for interactive learning. Each
of these connection points has a number of attributes related to its physical
dimensions and compatibility with other bricks. One important attribute of all
connection points is polarity, which describes whether the connection point is an
extrusion (positive polarity) or cavity (negative polarity). We use part metadata
from the LDCAD[33] software package in order to detect these connection points
on bricks and provide manipulation actions for them.

We refer to a collection of multiple bricks and their 3D locations as an as-
sembly. Mathematically, this can be modelled as a set tuples a = {b1, b2, . . . bn}
where each tuple bi = (si, ci, Ri, ti) represents an instance of a single brick.
Each of these instances bi contains a brick shape index si ∈ Nshapes, a color
index ci ∈ Ncolors, a 3D rotation Ri ∈ SO(3) and a 3D translation ti ∈ R3.
The relative placement of the instances, combined with their shapes and the
connection points associated with those shapes allow us to construct a set of
connections describing a pair of connection points that are in very close prox-
imity to each other and are mutually compatible.

3.2 Environment

In order to manipulate an assembly, our environment provides two virtual work
spaces. The first, which we refer to as the table work space contains the agent’s
work in progress towards inspecting or assembling a model. The second work
space, which we refer to as the hand contains only a single brick that the agent
is about to place, or has just removed from the table workspace. Each workspace
provides a 2D image rendered from a camera viewpoint that can be controlled
by the agent. The table is rendered at 256× 256 pixels and the hand is rendered
at 96 × 96 pixels. Many of the actions below require the agent to select one or
more connection points on bricks in the hand or table workspace. To do this
the agent must specify a 2D location in screen space, and the polarity of the
connection point it wishes to select. This is similar to the Alfred dataset[44]
and AI2 THOR 2.0[24] which allow interaction with objects using pixel-based
selection. To reduce the size of this action space, the resolution of this selection
space is downsampled by 4 to 64 × 64 for the table and 24 × 24 for the hand.
LTRON uses these workspaces to provide the following manipulation actions
as shown in Fig.2.

Disassemble: The agent must select a valid connection point in the table
workspace. If the brick can be removed without causing collision, the associated
brick instance is removed from the table work space and replaces any brick
instance currently in the hand workspace.
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Fig. 2. We define in total six different actions. Disassemble removes a brick from
the table workspace by selecting a connection point to detach. Assemble moves a
brick from the hand workspace to the scene by attaching a pair of specified connection
points. Pick selects a new brick shape and color and adds it to the hand workspace.
Rotate Brick rotates the assembled brick at the selected connection point. Rotate
Camera rotates the camera to reduce the ambiguity caused by occlusions. Switch
Phase switches between break phase and make phase.

Assemble: The agent must specify valid and compatible connection points
on one brick in the hand workspace and another in the table workspace. If the
brick may be placed without collision, the brick in the hand is removed and
placed into the table workspace attached to the specified connection point. If
the table workspace is empty and there is no destination connection point to
select, the agent may select a valid connection point in the hand workspace
alone. This will remove the brick from the hand workspace and add it to the
table workspace by placing the specified connection point at the origin.

Pick: The agent specifies a shape id and color id. A new brick with the
specified shape and color replaces any brick instance currently in the hand work
space.

Rotate 90/180/270: The agent must select a valid connection point on a
brick in the table workspace. If rotating the brick will not cause collision, the
brick is rotated by the specified angle about the primary axis of the connection
point.

Rotate Camera Left/Right/Up/Down/Frame: In some cases it may be
necessary to view an assembly from different viewpoints in order to effectively
manipulate it, so we provide five actions for each workspace that the agent can
use to manipulate the camera. The first four rotate the camera up, down, left
or right about a fixed center point. Rotating left and right rotates by 45 degrees
about the scene’s up-axis, while rotating up and down alternate between a down-
ward viewing angle 30 degrees above the center point and an upward viewing
angle 30 degrees below the center point. The fifth Frame camera action moves
the camera’s fixed center point to the centroid of the current brick assembly.
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Switch Phase: Finally there are two additional actions that switch from
the Break phase to the Make phase, and that end the episode when the agent
is finished building. Switching from the Break phase to the Make phase clears
both workspaces.

3.3 Evaluation

The Break and Make task requires a learning agent to visually inspect a
LEGO assembly in order to gather enough information to then build it again
from scratch. In order to assess the capability of a learned model, it is necessary
to compare the generated assembly that it builds with the target assembly it
is trying to copy. We provide four different metrics that attempt to estimate
various aspects of the agent’s success.

F1b score: The first metric is an F1 score over bricks in the two assemblies
which we refer to as F1b. This metric ignores pose and simply measures whether
the agent was able to add the correct bricks to its estimated assembly regardless
of how they are connected together. For this metric, we first remove pose infor-
mation from the generated assembly â and the target assembly a∗ to produce
a multi-set of brick shape and colors m∗ = {(s∗0, c∗0) . . . (s∗n, c∗n)} for the target
assembly and another m̂ = {(ŝ0, ĉ0) . . . (ŝn, ĉn)} for the assembly the agent gen-
erated. We can the compute true positives, false positives and false negatives
as:

TPb = m∗ ∩ m̂, FPb = m̂−m∗, FNb = m∗ − m̂

We then use these three quantities to compute an F1 score. Getting a score of
1.0 on this problem is necessary to rebuilding the assembly correctly, but it is
not sufficient. This metric is still useful though because it allows us to categorize
errors. If the agent was not able to rebuild the structure, but was able to identify
the necessary bricks for that structure, then it may give us guidance for which
aspect of the system needs the most improvement.

F1a score: Unlike F1b, F1a includes pose and is designed to measure the
accuracy if the entire assembly. In this metric, we first define a rotation threshold
θϵ and a distance threshold dϵ and say that two bricks i and j are aligned iff
they have the same shape si = sj and color ci = cj and their centers are close
||ti − tj || < dϵ and the geodesic distance between their orientations is close
G(Ri, Rj) < θϵ.

Given that we care more about the relative position of bricks to each other,
than their absolute position in the scene, we first compute a single rotation R0

and translation t0 that bring as many bricks in a∗ into alignment with â as
possible. We then consider each brick in â to be a true positive if it is aligned
with another brick in a∗ and consider it to be a false negative otherwise. Any
brick in a∗ that is not aligned to a brick in â is a false negative. We then use
these quantities to compute F1a.

Assembly Edit Distance (AED): While this F1a metric gives us a useful
measure of similarity between two assemblies, it is possible that it may over-
penalize some small mistakes. Consider the case where a long chain of bricks has
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been reconstructed correctly except for a single mistake in the middle. Because of
the single rigid transform R0 and t0, we can only align either the top half or the
bottom half of the reconstruction â with the target assembly a∗, and will incur a
massive penalty for this single mistake. To mitigate this, we introduce Assembly
Edit Distance (AED): we compute R0 and t0 as before, but once this is done,
we mark all bricks that are aligned under this transformation and remove them
from their respective assemblies. We then repeat this process with the remaining
bricks and count how many rigid alignments must be computed until either the
scene is empty, or the remaining bricks cannot be aligned because their shapes or
colors do not match. We then add an additional edit penalty of 1, representing a
single edit to remove the brick, for each brick in â left at the end of this process,
and a penalty of 2, representing an edit to add the brick to the assembly and an
edit to move it into place, for each brick in a∗ left at the end of the sequence.

F1e score: An added bonus of the AED metric is that it can be used to
compute a matching between each brick in the generated assembly â and the
target assembly a∗. This matching allows us to compute one final metric: an F1
score over edges (F1e), or connections between two bricks. We consider every
pair of bricks that are connected to each other in the generated assembly â to
be a true positive edge if both of those bricks have been matched to a brick in
the target assembly a∗ and the matching bricks in the target assembly are also
connected to each other. Otherwise the connected pair is a false positive. Any
connected pair in the target assembly a∗ that is not matched in this way is a false
negative. Like F1b this metric can be considered necessary but insufficient, but
again it is useful because it lets us characterize the errors made during the build
process. If the agent was not able to determine the correct spatial alignment of
the bricks, but is able to connect the right bricks together, then it may tell us the
agent is struggling with the precise placement necessary to align bricks correctly.
This is similar to a metric used in Visual Genome [25], but uses our iterative
matching edit distance to compute assignment and has no action/attribute labels
on individual edges.

3.4 Dataset

We provide two sources of scene files to train and evaluate agents on these tasks.
The first is a set of fan-made reproductions of official LEGO sets that have
been uploaded to the Open Model Repository (OMR) [18], while the second is a
set of randomly constructed models that we have generated with the LTRON
simulator.

The OMR contains 1727 files that are incredibly diverse, ranging in size
from 5 to 7302 bricks. The sets come from over fifty distinct product categories
such as “City,” “Castle,” and “Star Wars” that have been released over a span
of several decades and use 1790 distinct brick shapes. These files have many
properties in common with other naturally occurring data sources such as a long
tail of increasingly rare bricks, and edge-cases that are difficult to model. This is
a blessing to researchers who are interested in building models that can handle
complex data distributions, and a curse to those looking for quick progress. In
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general these models are much larger than we are presently able to train on. Both
the mean and the median number of bricks in a scene is more than one hundred,
while our experiments below show that current methods struggle with scenes
containing only eight bricks. In order to generate a large amount of training
data with smaller scenes, we have sliced these models into compact connected
components using the connection points to find groups of connected bricks. In
all cases we have used a master train/test split on the original files to inform the
train/test on all slices of those files. Table 1 shows the train test splits for these
slices. See the supplementary material for more details on the statistics, slicing
procedure and cleaning process of this data.

In contrast to the OMR data above, our randomly generated models are
constructed by iteratively selecting brick shapes and colors at random and at-
tempting to connect them to other bricks using randomly selected compatible
connection points. This provides a much larger source of data that is in many
ways easier to use for training, but unfortunately has many qualitative differences
from the more natural OMR data. For example OMR scenes with a similar num-
ber of bricks tend to be much more compact than our randomly generated files as
a byproduct of the human designers’ preferences for tightly fitting configurations.
Similarly, the OMR scenes exhibit more symmetry, and more high-level structure
such as clearly identifiable walls and branching structures. Despite these issues,
this randomly constructed data is still very useful as a way to explore how the
problem becomes easier as we reduce the number of brick shapes.

Open Model Repository Train Scenes Test Scenes Total Scenes

Original Scenes 1360 367 1727

2 Brick Slices 136072 2000 138072
4 Brick Slices 61514 2000 63514
8 Brick Slices 28094 2000 30094

Random Construction Train Scenes Test Scenes Total Scenes

2 Bricks 50000 2000 52000
4 Bricks 50000 2000 52000
8 Bricks 50000 2000 52000

Table 1. Train/test split sizes for the Open Model Repository and our Randomly
Generated Data.

4 Methods

4.1 Model

Our StudNet models are based on the popular Transformer[50] architecture. In
this model, the input images are first broken into 16 × 16 pixel tiles similar to
the VIT architecture[6]. The model then extracts features from each tile using a
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learned linear layer and two positional embeddings, one that encodes the tile’s
XY coordinates in the image and another that encodes the tile’s frame id in
the temporal sequence. We unroll the XY coordinates of the image into a single
one-dimensional coordinate space and concatenate the coordinates of the table
image and the hand image so that a single index can be used to determine which
image the tile belongs to and its 2D location. These tile features are then fed
into a transformer that uses GPT-style[37] causal masking to prevent tokens
that occur early in the sequence from paying attention to later tokens.

Transformer models notoriously require very large memory due to the N2

attention mechanism that allows for long-range connectivity between tokens in
the sequence. In order to make this architecture tractable on the long sequences
of tokens produced by LTRON, we employ a simple but effective data com-
pression technique: at each step we only include image tiles which have changed
since the previous frame. In the first frame, we also remove all tiles that contain
only the solid background color. Given that manipulating a single brick usually
only changes a small portion of the image, this results in substantial savings. In
addition to the image tiles, we provide a token that specifies the current phase
(Break or Make).

The Break and Make task requires an agent to take both discrete high-
level actions as well as select low-level pixel locations to assemble and disassemble
bricks. We model this using five separate heads: a mode head that selects one
of the primary action types (see Figure 2) to take at each step, a shape selector
head and color selector head that are used when picking up a new brick, and a
table location and hand location heatmap that is used to select pixel locations
for brick interaction. The shape and color heads are linear layers that project
from the transformer hidden dimension to the number of shapes and colors used
in a particular experiment. Unfortunately we cannot decode a dense heatmap
for the pixel locations directly from the tokens coming out of the transformer
encoder because our compression strategy throws many of these tokens away.
We experiment with two different decoder styles to address this issue.

The first, which we refer to as StudNet-A uses a separate transformer decoder
layer. This layer receives a dense positional encoding as the query tokens, and
the output of the encoder as the key and value tokens resulting in a dense
output. Although some details differ, this is similar to the Perceiver IO[17] and
MAE[13] models that do primary computation at a lower resolution and use
cross-attention to expand to dense output when necessary. We decode at 16×16
resolution and upsample to 64× 64.

The second decoder, which we refer to as StudNet-B, feeds the input images
through a small convolutional network to produce a 64× 64 feature map for the
table and a 24 × 24 feature map for the hand. In our experiments we use the
first layer of a Resnet-18[14] for this. Two additional heads, one for the table
workspace and another for the hand workspace, compute a single feature from a
per-frame readout token, and use dot-product attention with the convolutional
feature map to produce a heatmap of click locations.
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Fig. 3. Network architectures used in our experiments.

We compare these models against a convolution and LSTM baseline. This
model takes guidance from the ALFRED Dataset [44] which similarly requires
an agent to reason about high level actions as well as pixel-based selection.
In this network, the images from both the table and hand workspaces are fed
through a Resnet-18 backbone [14], and are then concatenated and passed to
an LSTM. The output of this LSTM is then decoded using five heads. The first
three produce the mode, shape and color actions. The second and third heads
tile the LSTM feature to match the shape of the table and hand resnet features,
then upsample these with UNET-style [38]/FPN [31]-style lateral connections
from the image encoder to produce a dense feature that is used to select cursor
locations. In experiments we use two versions of this model, one trained from
scratch, and another where the Resnet-18 backbone has been pretrained on a
pixel-labeling task designed to densely predict brick shapes and colors.

4.2 Training

We train the models above using behavior cloning on offline sequences. In order
to generate these sequences, we have developed a visual planner that interfaces
directly with LTRON. This planner uses hidden state information combined
with rendered occlusion maps to reason about which bricks are currently visible
in the scene and plan assembly and disassembly sequences accordingly. While this
information allows the planner to determine which bricks can be manipulated,
it does not strictly guarantee that the visual information acquired during the
planning process is enough to unambiguously resolve the full 3D structure of
the scene, or correctly identify the shapes of every brick. This is due to the fact
that many brick shapes look identical to others when viewed from certain angles
or under partial occlusion, and so it may be important to change the camera
viewpoint or disassembly order to resolve these ambiguities. Due to the large
number of brick shapes, we have not attempted to exhaustively catalogue when
and how these ambiguities arise for every combination of brick shapes. Therefore
the planner currently has no way of knowing when these conditions occur.
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4.3 Limitations

The visual planner can be quite slow and uses a two-stage process that requires
reasoning over groups of individual actions. Both of these issues make it difficult
to use the planner as an expert for methods such as DAgger[40] that require the
expert to produce labels for sequences generated by the model. We therefore do
not attempt to solve Break and Make using these approaches at the present
time, and limit ourselves to methods that can train on a static dataset. Building
improved planners with the ability to quickly provide high-quality actions would
be beneficial for this problem.

5 Experiments

5.1 Break and Make

We evaluate the models above on the Random Construction and Sliced OMR
datasets at three fixed scene sizes: two bricks, four bricks and eight bricks. While
these scenes are quite small compared to the complete models in the Open Model
Repository, they often require dozens of interaction steps to complete and present
a challenging problem.

On the random construction data with six brick types and six colors, all
models make substantial progress on small scenes. Table 2 shows the models’
performance on each of these tasks under the four metrics described in Sec-
tion 3.3. Note that performance drops substantially as the scenes get larger.

Random Construction
2 Bricks 4 Bricks 8 Bricks

Metric F1b F1e F1a AED F1b F1e F1a AED F1b F1e F1a AED

LSTM 0.61 0.38 0.43 2.16 0.41 0.09 0.13 7.25 0.02 0.00 0.02 16.05
Pretr. LSTM 0.70 0.51 0.45 1.89 0.25 0.01 0.08 8.46 0.03 0.00 0.02 16.09
StudNet-A 0.90 0.86 0.58 1.11 0.56 0.29 0.24 5.80 0.02 0.01 0.01 15.87
StudNet-B 0.87 0.77 0.57 1.30 0.64 0.34 0.25 5.48 0.38 0.14 0.12 13.90

Table 2. Test results of our four models on randomly constructed assemblies across
three scene sizes. See Section 3.3 for details on metrics.

The Sliced OMR dataset contains 1790 brick shapes and 98 colors mak-
ing it structurally and visually significantly more challenging than the random
construction dataset. Table 3 illustrates that all of the models we tested score
significantly lower on this dataset. In particular our StudNet-A transformer ar-
chitecture fails to correctly learn to switch from disassembling to rebuilding the
LEGOmodels and thus scores very poorly across all of our metrics. Our StudNet-
B architecture shows the best overall performance, demonstrating that progress
can be made even on the most challenging 8 brick dataset. This illustrates not
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only that Break and Make is a fundamentally hard problem, but also that its
difficulty can be regulated by the dataset selection while maintaining the same
action space and problem structure. This allows future work to make meaningful
progress on simple datasets like Random Construction and then progress to ever
more difficult datasets.

Open Model Repository
2 Bricks 4 Bricks 8 Bricks

Metric F1b F1e F1a AED F1b F1e F1a AED F1b F1e F1a AED

LSTM 0.43 0.33 0.31 2.76 0.10 0.03 0.07 7.67 0.01 0.00 0.01 16.01
Pretr. LSTM 0.45 0.34 0.33 2.86 0.04 0.01 0.03 8.16 0.00 0.00 0.00 15.97
StudNet-A 0.00 0.00 0.00 3.99 0.00 0.00 0.00 8.08 0.00 0.00 0.00 16.01
StudNet-B 0.36 0.18 0.29 3.74 0.14 0.02 0.12 8.30 0.05 0.00 0.04 16.05

Table 3. Test results of our four models on OMR assemblies across three scene sizes.
See Section 3.3 for details on metrics.

5.2 Ablations and Failure Analysis

Given the relatively low performance of the models presented here on the break
and make task, we also conducted several experiments designed to discover which
part of this problem is most difficult for future research. Appendix D.1 contains
the details of these experiments. We also attempt to pretrain a model on the
randomly generated assemblies and fine-tune on the OMR data. Appendix D.2
contains details. Finally we also provide a human baseline to verify the tractabil-
ity of this problem in Appendix D.3.

6 Conclusion

LTRON and the Break and Make challenge offer an ideal environment to
study a number of important technical problems in Machine Learning and Arti-
ficial Intelligence. First, the LTRON simulator offers an environment to explore
interactive building and construction problems at a level of detail and granular-
ity that has not previously been possible. Second, while we have only been able
to make progress on very small LEGO models in this paper, LTRON has the
ability to represent very large assemblies with hundreds and even thousands of
bricks. Our hope is that the existence of these very difficult large-scale tasks
that are currently beyond the scope of modern temporal-spatial visual mod-
elling techniques will inspire researchers to explore new ways to scale algorithms
and hardware to accomplish the goals. Finally Break and Make provides an
ideal setting to explore interactive learning algorithms designed for long-term
credit assignment, as agents must connect low-level actions taken during disas-
sembly and inspection with reward signals collected in the distant future during
reassembly.
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