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Abstract. We tackle the essential task of finding dense visual corre-
spondences between a pair of images. This is a challenging problem
due to various factors such as poor texture, repetitive patterns, illu-
mination variation, and motion blur in practical scenarios. In contrast
to methods that use dense correspondence ground-truths as direct su-
pervision for local feature matching training, we train 3DG-STFM: a
multi-modal matching model (Teacher) to enforce the depth consistency
under 3D dense correspondence supervision and transfer the knowledge
to 2D unimodal matching model (Student). Both teacher and student
models consist of two transformer-based matching modules that obtain
dense correspondences in a coarse-to-fine manner. The teacher model
guides the student model to learn RGB-induced depth information for
the matching purpose on both coarse and fine branches. We also evalu-
ate 3DG-STFM on a model compression task. To the best of our knowl-
edge, 3DG-STFM is the first student-teacher learning method for the
local feature matching task. The experiments show that our method out-
performs state-of-the-art methods on indoor and outdoor camera pose
estimations, and homography estimation problems. Code is available
at:https://github.com/Ryan-prime/3DG-STFM.

1 Introduction

Establishing correspondences between overlapped images is critical for many
computer vision tasks including structure from motion (SfM), simultaneous lo-
calization and mapping (SLAM), visual localization, etc. Most existing meth-
ods that tackle this problem follow the classical tri-stage pipeline, i.e., fea-
ture detection [28,38], feature description [29,23,3,50,13,12], and feature match-
ing [29,35,41]. To improve efficiency, HLoc [40] was proposed to incorporate these
matching techniques for visual localization. Several recent works [35,36,24,44]
attempted to avoid the detection step and established a dense matching by con-
sidering all points from a regular grid. These dense matching approaches aim to
supply interest points in low-texture regions and provide sufficient candidates
for the matching purpose.

To generate dense ground-truth correspondences as supervision, depth maps,
camera intrinsic and extrinsic matrices are used for the calculation of point repro-
jections from one image to the other [41,44,24]. Although photometric objective,
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(a) LoFTR (b) 3DG-STFM

Fig. 1: Comparison between dense local feature matching method
LoFTR [44] and the proposed method 3DG-STFM. This example demon-
strates that our approach, embedded the depth distribution via student-teacher
learning, could find the correct correspondences under challenging scenario with
repetitive patterns and low-texture regions. The red color indicates epipolar er-
ror beyond 5× 10−4 (in the normalized image coordinates).

widely used in optical flow estimation [33,21,32], could provide dense correspon-
dences, its constant brightness assumption is not allowed to be generalized for
the geometric matching problem. One typical adversarial scenario is image pairs
taken under radically different illumination. On the other hand, given a set of
images with dense correspondences, triangulation could easily reconstruct the
3D scene and depth maps. Therefore, depth information is implicitly provided
by dense correspondence supervision.

However, to the best of our knowledge, none of the existing methods explored
the depth modality distribution during the training phase. Depth maps, unlike
RGB images, provide 3D information, which depicts the geometry distribution
in an explicit manner. We argue that the introduction of depth modality distri-
bution can provide two-fold benefits. First, depth information, even if in lower
quality or sparse, can remove lots of ambiguity in 2D image space and enforce ge-
ometric consistency for feature matching, which is very difficult using only RGB
inputs. That is particularly true when there are multiple similar objects within
the image pair. In that case, most of existing methods tend to find implausi-
ble matching candidates since they purely discriminate 2D descriptors without
depth or size knowledge. An example is shown in the first row of Fig. 1, where
the baseline method is confused by the similar 2D appearance and incorrectly
matches the closer chair to the further one. Second, as the example shown in the
second row of Fig. 1, low texture area of single object haunts 2D descriptor in
terms of enforcing dense and consistent matching. That deficiency can also be
nicely regularized by leveraging the discrimination of depth modality.

Despite the advantage of depth information, high quality RGB-D inputs can
only be collected in well-controlled lab environment, and very few, especially low
cost devices can capture similar well aligned RGB-D pairs in real world scenarios.
Most imaging systems are only equipped with RGB sensors as input and cannot
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afford high computational cost stemmed from multi-modal inference. That makes
naive multi-modal fusion of RGB and depth inputs during both inference and
training a restrictive solution. Consequently, a good way of transferring expensive
RGB-D knowledge into RGB modality inference is needed in practical scenarios,
considering constraints from both hardware and computational load.

Motivated by these observations, we propose 3DG-STFM, a student-teacher
learning framework, to transfer depth knowledge learned by a multi-modal teacher
model to a unimodal student model to improve the local feature matching. To
the best of our knowledge, 3DG-STFM is the first student-teacher learning archi-
tecture to transfer cross-modal knowledge on the image matching problem. The
method aims to find the depth and RGB correlational distribution in RGB-D
images and transfer the knowledge to the RGB student branch by maintaining
such distribution. Therefore, depth modality is not explicitly required in the
actual inference process (student branch).

We propose attention mechanisms to guide the student model to study the
teacher model’s matching distribution and learning priority. Therefore, with
RGB images as input, the student unimodal model could explore RGB-induced
depth information and learn multi-modal matching strategies. The main contri-
butions of this paper are summarized as follows:

– We propose the first student-teacher learning architecture on the local fea-
ture matching problem that learns the induced depth distribution distilled
from dense RGB-D correspondence supervision.

– We propose attentive knowledge transfer strategies to help the student model
understand the matching distribution and learning priority during the train-
ing instead of learning point-to-point matching.

– We show that the proposed model produces high-quality dense correspon-
dences on a range of matching tasks and achieves state-of-the-art results on
both camera pose and homography estimation tasks.

2 Related Work

2.1 Learning-based Dense Local Feature Matching

In the past decades, many groups made great efforts to improve the local fea-
ture matching pipeline, i.e., feature detection, feature description and feature
matching, and achieved promising performance by leveraging learning-based
techniques. DeTone et al. proposed Superpoint [13], a self-supervised learnable
interest point detector and descriptor. ViewSynth [31] designed a depth map
keypoint detection method without using RGB domain information. Instead of
learning better task-agnostic local features, SuperGlue [41] built a densely con-
nected graph between two sets of keypoints by leveraging a Graph Neural Net-
work (GNN). Geometric correlation of the keypoints and their visual features
are integrated and exchanged within the GNN using the self and cross attention
mechanism. However, those detector-based local feature matching algorithms
only produced sparse keypoints, especially in low-texture regions.
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To address the above problem, detector-free methods [36,24,44,22] proposed
pixel-wise dense matching methods. [10] and [42] used contrastive loss to learn
dense feature descriptors and were followed by the nearest neighbor search for
the matching purpose. NCNet [35] proposed an end-to-end approach by directly
learning the dense correspondences. It enumerated all possible matches between
two images and constructed a 4D correlation tensor map. The 4D neighborhood
consensus networks learned to identify reliable matching pairs and filtered out
unreliable matches accordingly. Based on this concept, Sparse NCNet [36] im-
proved NCNet’s efficiency and performance by processing the 4D correlation map
with submanifold sparse convolutions [17]. And DRC-Net [24] proposed a coarse-
to-fine approach to generate higher accuracy dense correspondences. Recently,
LoFTR [44] was proposed to learn global consensus between image correspon-
dences by leveraging Transformers. Inspired by [41], the attention mechanism
was used to learn the mutual relationship among features. For memory effi-
ciency, the coarse matching features were first predicted and then fed to a small
transformer to produce the final fine-level matches. Benefiting from the global
receptive field of Transformers, LoFTR improved the matching performance by
a large margin. All above mentioned dense local feature matching approaches
needed dense ground-truth correspondences as supervision. None of the dense
matching methods has explored any modality beyond 2D image space in which
the feature ambiguities often exist due to the missing information in depth.

2.2 Student-Teacher Learning

Student-teacher learning has been actively studied in knowledge transfer context
including model compression [1,19], acceleration [53,9], and cross-modal knowl-
edge transfer [18,16]. Given a well-trained teacher model with large weight, the
goal of the student-teacher learning is to distill and compress the knowledge from
the teacher, and guides the lightweight student model for better performance. On
the other hand, data with multiple modalities commonly provides more valuable
supervisions than single modality data and could benefit model performance.
However, due to the lack of data or labels for some modalities during training
or testing, it is important to transfer knowledge between different modalities.

Due to different network architectures, many different knowledge transfer
approaches have been proposed. The most popular response-based knowledge
for image classification was Knowledge Distillation (KD) loss proposed by [19].
In this method, KD loss employed the distribution of neural response of the
last output layer, logits layer, of the teacher model and guided the student to
learn the distribution. Besides the output, the intermediate layer’s feature rep-
resentation was also used to train the student model [37]. Zagoruyko et al. [54]
proposed a method to transfer the attention instead of the feature represen-
tations to achieve a better distillation performance. And NST [20] provided a
method to learn a similar activation of the neurons. Moreover, there are many
other related approaches [51,27,49,47,7,45]. However, none of them provided a
knowledge transfer solution for correspondence matching problems, which need
to consider all mutual relationships among local features of different images.
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Fig. 2: Overview of 3DG-STFM. For each of student or teacher branch, Fea-
ture Pyramid Networks (FPN) [26] are used to extract coarse-level local features
(FA

c , FB
c ) and fine-level features (FA

f , FB
f ) with 1

8 and 1
2 of the original image

resolution. The coarse level transformer consisting of Lc attention layers finds
coarse pairs and their matching scores. Matches with high confidence scores
will be selected and mapped to a fine-level feature map. Surrounding features on
FA
f , FB

f are collected by the w×w size window and fed to a fine-level transformer
with Lf attention layers. The fine-level matching module is applied to predict
correspondences (̂i, ĵ) on subpixel-level. The teacher model is first trained under
direct supervision. During student training, it will be frozen and provide addi-
tional supervision via attentive loss and Mutual Query Divergence (MQD) loss.

3 Method

Our proposed system, 3DG-STFM, is to train a unimodal local feature matching
model (Student) by leveraging the knowledge from a well-trained multi-modal
model (Teacher). As shown in Fig. 2, the RGBD image pairs (IARGBD, IBRGBD)
and RGB image pairs (IARGB , I

B
RGB) are fed to teacher and student branches

separately. The labels of dense correspondences provide direct supervision dur-
ing the teacher or student training. Once we reach a well-trained multi-modal
teacher model, two strategies are proposed for cross-modal knowledge transfer:
(1) Using the Mutual Query Divergence (MQD) loss guides the student model
to learn the coarse-level matching distributions embedded in the teacher model’s
correlation matrix Sc. (2) Using the attentive loss guides the student at the fine-
level module to pay more attention to the teacher’s confident predictions and
learn the matching distribution with priority.

Our method is based on the matching strategies mentioned in LoFTR [44]
due to their high performances. In this section, we will first introduce the
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Fig. 3: Coarse-level differentiable matching mechanism. Transformer out-
puts are correlated to generate correlation matrix Sc. Dual-softmax [46,35] op-
eration is applied on two dimensions to obtain the matching probability.

transformer-based model in Section 3.1. Section 3.2 and 3.3 will describe our
knowledge transfer strategies over both coarse and fine levels.

3.1 Transformer-based Local Feature Matching

As shown in Fig. 2, two transformer-based matching modules, inspired by [44],
are adopted in both teacher and student branches of our 3DG-STFM system.
Coarse-level Matching. Given the coarse-level feature map in dimension h×
w×c, we flatten them into hw×c and do the positional encoding [5]. The encoded
local feature vector will be fed to a coarse-level matching transformer. Unlike
classical vision transformer [14,6,48] focusing on self-attention, the matching
transformer adds a cross-attention layer to consider the relations between pixels
from different images. We interleave the self-attention and cross-attention layers
in matching transformer modules by Lc times. As shown in Fig. 3, the output
of the coarse matching transformer {F̂A, F̂B} corresponding to two different
images {IA, IB} will be used to calculate correlation matrix Sc by Sc(i, j) =
Corr(F̂A

i , F̂B
j ), in which F̂A

i and F̂B
j indicate local feature at position i of IA

and local feature at position j of IB . The dual-softmax [46,35], two softmax
operations with temperature τ = 0.1 in horizontal and vertical directions, is
applied on the correlation matrix to calculate forward and backword matching
probability: PA→B(i, j) = softmax( 1τ Sc(i, ·))j and PA←B(i, j) = softmax( 1τ
Sc(·, j))i. The confidence matrix Pc with the final matching probabilities has
same dimension as Sc and is calculated by: Pc(i, j) = PA→B(i, j) · PA←B(i, j).
We call the output of horizontal and vertical softmax as query matrix {QH , QV }
since they depict query results of each feature from one image to another and
vice versa. Given the ground-truth matrix derived from correspondence labels,
we calculate the cross-entropy loss:

Lc = − 1

|Mgt|
∑

(i,j)∈Mgt
c

FL(Pc(i, j)) logPc(i, j) (1)

FL(p) = α(1− p̂)γ , p̂ =

{
p if y=1

1− p otherwise
(2)
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(a) Coarse-level knowledge transfer. (b) Fine-level attentive knowledge transfer

Fig. 4: Knowledge transfer on coarse-level and fine-level. (a) The corre-
lation matrix is decomposed into multiple independent distributions depicting
mutual query processes for the student learning.(b) One center point of a fine-
level feature is selected and correlates with all points of the other feature map
for heatmap distribution generation. Both expectation and variance of teacher
branch’s heatmap are used for fine-level knowledge transfer.

in which Pc is the confidence matrix andMgt is the correspondence set generated
by ground-truth labels. We follow [44] to set a focal loss term, FL with predicted
probability p, to address the imbalance between matching and non-matching
pairs.

Fine-level Matching. Based on the confidence matrix Pc, matching pairs with
probability scores higher than a threshold θc are selected and refined by a fine-
level matching module. The selected coarse-level features are upsampled and
concatenated to fine-level features cropped by w×w size windows before passing
to the fine-level matching transformer.

The fine-level matching transformer is a lightweight transformer containing
Lf attention layers. It aggregates the contextual information to generate fea-

tures {F̃A
f , F̃B

f } and passes them to a differentiable matching module. Instead of
generating a confidence matrix, the fine-level matching module selects the center
feature of F̃A

f and correlates with all features in F̃B
f . The similarity distribution

is generated and the expectation µ is treated as the prediction. The final loss
based on direct supervision is calculated by:

Lf =
1

|Mf |
∑

(̂i,ĵ)∈Mf

1

σ2(̂i)
||µ(̂i)− ĵgt||22 (3)

where ĵgt is the ground-truth position we wrap from image solution to fine-level

heatmap scale. µ(̂i) is the prediction associated to coarse position î and σ2(̂i) is
the total variance of heatmap distribution. Mf is the set of fine matches pre-
dicted by module. The total variance of the similarity distribution is treated as
uncertainty to assign a weight to each fine-level match. The larger total variance
indicates it is an uncertain prediction and associate with low weights.
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3.2 Coarse-level Knowledge Distillation

A response-based knowledge distillation strategy is applied to help the student
learn from the teacher on a coarse level. This method distills the logits layer’s
distribution and guides the student to learn. As aforementioned, the logits layer’s
output in our case is correlation matrix Sc with size hw×hw. Each row or column
depicts the relation between one pixel and each pixel of the other image. The
dual softmax operation could be treated as a query process in two directions.
Local features at position i ∈ FA

c retrieve the closest feature from all positions
j ∈ FB

c and vice versa. Many existing response-based knowledge [19,18] distilla-
tion methods treat the logits layer’s output as a single distribution. However, as
shown in Fig. 3, exploring the relationship between Sc(i, j) and Sc(k, l) in differ-
ent row and column is meaningless for matching purpose. These uninterpretable
relations could produce extra loss that confuses the knowledge transfer process.

Instead of learning a single distribution from the correlation matrix Sc in
teacher, we split the distribution into two matching query matrices, as shown in
Fig. 4a, to avoid the unpredictable correlations between them. Based on Knowl-
edge Distillation (KD) loss [19], we propose Mutual Query Divergence loss LMQD

that employs all 2× hw mutual query distributions:

LMQD =
1

n

(
−

n∑
i=1

FL(p
(i)
S )p̂

(i)
S log(p̂

(i)
T )

)
(4)

p
(l)
S =

exp(o
(k)
S )∑L

k=1 exp(o
k
S)

, p̂
(l)
S =

exp(
o
(k)
S

T )∑L
k=1 exp(

okS
T )

, p̂
(l)
T =

exp(
o
(k)
T

T )∑L
k=1 exp(

okT
T )

(5)

in which p̂lS and p̂lT are student and teacher’s query distributions distilled from
their logits layer’s outputs oS and oT at temperature T . Additional focal loss
weight FL (Equation 2) is added to balance the matching/unmatching ground-
truth pairs. plS is the standard confidence score predicted by student model
expressed in Equation 5. The LMQD on coarse level is the mean of KD loss of
all n distribution, where n is equal to 2 × hw in our case. Based on this loss,
the coarse level matching module pays attention to the distributions benefit
matching and ignores noisy information across distributions.

3.3 Fine-level Attentive Knowledge Transfer

After transferring the coarse level matching knowledge from the teacher model
with the mutual query distribution distillation, an attentive loss (Latt) is pro-
posed for the student’s fine-level matching module. Instead of learning point-to-
point matching under the supervision of ground-truth, Latt explores the match-
ing distribution and learning priority of the teacher model.

As shown in Fig. 4b, the fine-level local feature matching is based on the dif-
ferentiable matching approach that could produce a heatmap that represents the
matching probability of each pixel in the neighborhood of j with i. By computing
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expectation µ over the probability distribution, we get the final position ĵ with
sub-pixel accuracy on IB . The uncertainty of the prediction is also measured
by the total variance of the correlation distribution. During the student-teacher
learning process, both branches could generate heatmaps. We treat heatmaps
of teacher model and student model as gaussian distributions Nt(µt, σ

2
t ) and

Ns(µs, σ
2
s). The Kullback–Leibler (KL) divergence loss (LKL) is applied to help

the student learn the distribution from the teacher. The KL divergence of two
gaussian distributions could be written as:

LKL(Ns,Nt) = log(
σt

σs
) +

σ2
s + (µs − µt)

2

2σ2
t

− 1

2
(6)

Although total variance {σt, σs}, and σ(̂i) (Equation 3) are included in the
loss, the optimizer would decrease loss by increase the total variance. To avoid
the incorrect loss, the gradient is not backpropagated through σs, σt, and σ(̂i).
Therefore, we generate Latt by removing those constant variable of LKL:

Latt =
1

|Mf |
∑

(̂i,ĵ)∈Mf

(µ
(̂i)
s − µ

(̂i)
t )2

2σ
(̂i)2
t

(7)

where the µ
(̂i)
s and the µ

(̂i)
t are the expectations of student’s and teacher’s output

distributions which corresponding to match (̂i, ĵ) in fine-level correspondence set
Mf . Therefore, the total loss is a mean of the weighted sum of all the fine-level
pairs’ l2 loss in matching set Mf . We call this attentive loss since it could be
treated as a l2 distance loss that pays more attention to the prediction associated
with large attention weight 1

2σ2
t
. The total variance is commonly treated as a

metric for certainty measure. The teacher prediction with a small total variance
indicates the teacher is quite certain about the location of the correspondence.
In this case, the loss is assigned with a large weight to guide the student model
to learn those certain predictions from the teacher in priority.

3.4 Supervision

Both teacher and student training processes are under the direct supervision
provided by correspondence ground-truths. The teacher model provides extra
supervision during the student model training. For direct supervision, we follow
the same procedure mentioned in [41,35,44] that uses the camera intrinsic,
extrinsic matrices, and depth maps to compute the dense correspondences. To
supervise coarse-level matching training, mutual nearest neighbors of the two sets
of 1

8 -resolution grids are selected as ground-truth Mgt
c . The pixel-level matching

positions could be used for l2 loss and supervise the fine-level matching learning.
The final loss for the teacher and student model is:

Lteacher = λ0Lc + λ1Lf (8)

Lstudent = λ0Lc + λ1Lf + λ2LMQD + λ3Latt (9)
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in which Lc and Lf are coarse-level and fine-level loss under direct supervision
described in Equation 1 and Equation 3. The student model is also guided by
the teacher model via Mutual Query Divergence loss LMQD and attentive loss
Latt for the coarse and the fine level knowledge transfer.

3.5 Implementation Details

We train the indoor model of 3DG-STFM on the ScanNet [11] dataset and the
outdoor model on the MegaDepth [25] dataset. The coarse-level transformer
contains 4 attention layers, and the fine-level transformer has 1 attention layer.
Each attention layer consists of a self-attention and a cross-attention layer with
8 heads. The focal loss parameters {α, γ} are set as {0.25, 2.0}. The confidence
score threshold θc is set to 0.2 to remove unreliable correspondences. The window
size w is 5. For indoor dataset ScanNet, the models are trained using AdamW
with an initial learning rate of 6×10−3 on 32 2080Ti GPUs. All images are resized
to 640×480. The weights of losses {λ0, λ1, λ2, λ3} are set as {0.25, 0.25, 4.0, 0.25}.
The outdoor models for Megadepth are trained using AdamW with an initial
learning rate of 8×10−3 on 16 P100 GPUs. The weights of losses {λ0, λ1, λ2, λ3}
are set as {0.25, 0.25, 1.0, 0.25}. It is worth mentioning that our method is based
on LoFTR [44], which provides two version implementations for the outdoor
dataset in their official code. One is for 840×840 resolution image and consumes
24 GB RAM during the training. The other is training on 640× 640 image pairs
and feasible for 16 GB RAM GPUs. In this work, we treat the latter one as the
baseline for the outdoor pose estimation and homography estimation tasks, and
our 3DG-STFM is also trained on images resized to 640×640 with padding. We
normalize depth maps in both ScanNet and Megadepth in the training process.
The depth maps of ScanNet are in the range of 0 to 10 meters. We normalize
it to [0, 1] and concatenate it to RGB images for multi-modal training. On the
other hand, Megadepth’s depth maps are relative estimations that come from
COLMAP [43] reconstructions and have a pretty large range. We normalized
them to [0, 1] for each pair of images for teacher model training.

4 Experiments

4.1 Indoor Pose Estimation

Dataset. We use ScanNet [11], a large-scale indoor scene dataset composed of
1613 monocular sequences with depth maps and camera poses. This dataset is
quite challenging due to extensive texture-less regions and repetitive patterns.
Following the [41,44], we sample 230M image pairs with overlap scores between
0.4 and 0.8 for training and the student model is evaluated on the 1500 testing
pairs. The images are resized to 640× 480 to fit the depth map’s dimension.
Evaluation Protocol. Following [44], we report the AUC of the pose error at
thresholds (5◦, 10◦, 20◦). The pose error is defined as the maximum of angular
error in rotation and translation. The predicted matches are used to solve the
essential matrix with RANSAC.
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Table 1: Evaluation on ScanNet [11] for indoor pose estimation. The
AUC of the pose error in percentage is reported.

Category Method
Pose estimation AUC
@5◦ @10◦ @20◦

Multi-Modal 3DG-STFM Teacher 27.93 47.11 63.74

Detector-based

ORB [39]+GMS [4] 5.21 13.65 25.36
D2-Net [15]+NN 5.25 14.53 27.96

ContextDesc [30]+Ratio Test [29] 6.64 15.01 25.75
SP [13]+NN 9.43 21.53 36.40

SP [13]+PointCN [52] 11.40 25.47 41.41
SP [13]+OANet [55] 11.76 26.90 43.85
SP [13]+SGMNet [8] 15.40 32.06 48.32

SP [13]+SuperGlue [41] 16.16 33.81 51.84

Detector free
LoFTR [44] 22.06 40.80 57.62

3DG-STFM Student 23.58 43.60 61.17

Fig. 5: Qualitative results. Our student model is compared to LoFTR [44] in
indoor and outdoor scenes. Our method performs better in challenge scenarios
with repetitive pattern and low texture region. The red color indicates epipolar
error beyond 5× 10−4 for indoor scenes and 1× 10−4 for outdoor scenes (in the
normalized image coordinates). More qualitative results in the supplementary.

Results. Since the released DRC-Net is trained on MegaDepth and LoFTR is
proved to have better performance, we only consider LoFTR as the state-of-the-
art for comparison. The results in Table 1 show that our student model learns
from the teacher model and outperforms all unimodal competitors. For detector
free methods, our student model outperforms LoFTR by ∼ 3% at AUC@10◦.

For the visual comparison in Fig. 5, our student model shows denser and more
reliable correspondences than LoFTR does, especially in regions with repetitive
patterns. In addition, our model provides more robust correspondences in the
low-texture region, which also benefits the pose estimation. On average, our
student model detects 1192.84 inlier (epipolar error less than 5 × 10−4 in the
normalized image coordinates) correspondences on each pair of indoor images,
which is much higher than 887.04 inlier correspondences of LoFTR. Both nu-
meric and qualitative results demonstrate the effectiveness of our student model
that learns the RGB-induced depth distribution from the teacher model.
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Table 2: Evaluation on MegaDepth [25] for outdoor pose estimation.
The AUC of the pose error in percentage is reported.

Category Method
Pose estimation AUC
@5◦ @10◦ @20◦

Multi-Modal 3DG-STFM Teacher 53.43 69.81 81.79

Detector-based SP [13]+SuperGlue [41] 42.18 61.16 75.96

Detector free
DRC-Net [24] 27.01 42.96 58.31
LoFTR [44] 51.38 67.11 79.29

3DG-STFM Student 52.58 68.46 80.04

4.2 Outdoor Pose Estimation

Dataset. We use MegaDepth [25], a dataset consisting of 1M internet images of
196 different outdoor scenes, for outdoor pose estimation evaluation. We follow
DISK [46] to select 1500 pairs for validation.
Results. We resize the images with the long side to 1200 during the inference
and follow the same evaluation protocol as indoor pose estimation. As shown in
Fig. 5, since the outdoor images contain less low texture regions and repetitive
patterns, the unimodal model baseline (LoFTR) could also predict many correct
correspondences for robust camera pose estimations. However, the results in
Table 2 indicate that our 3DG-STFM teacher model achieves better performance
by leveraging the relative depth. The student model learned from the teacher
could also outperform LoFTR, the state-of-art unimodal competitor. We find
our student model averagely detects 1864.63 inlier (epipolar error less than
1× 10−4 in the normalized image coordinates) correspondences on each outdoor
image pair, which is also higher than LoFTR’s 1694.60 inlier detections.

4.3 Homography Estimation

We also evaluate our student model for homography estimation on HPatches
dataset [2]. Following previous work [41,44], we select 108 image sequences un-
der large illumination changes or significant viewpoint variations for evaluation.
Every test image sequence contains one reference image and five pairing images.
Evaluation Protocol. We resize the original images with shorter dimensions
equal to 480 and find the top 1K correspondences for each pair for detector free
methods. Our 3DG-STFM student model is trained on Megadepth [25] men-
tioned in Section 4.2. All baseline results are reported using their original de-
fault implementation hyperparameters. Homography estimation is performed by
the OpenCV RANSAC implementation. Following [13], we compute the repro-
jected mean error of the four corners of the image and report the area under the
cumulative curve (AUC) up to three values: 3, 5, and 10 pixels in Table 3.
Results. Our 3DG-STFM student model is generalized well on the homogra-
phy estimation task and achieves best performance compare with detector free
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Table 3: Homography estimation on HPatches [2]. The AUC of the corner
error in percentage is reported.

Category Method
Homography est. AUC

#matches
@3px @5px @10px

Detector-based

D2Net [15]+NN 23.2 35.9 53.6 0.2k
R2D2 [34]+NN 50.6 63.9 76.8 0.5k
DISK [46]+NN 52.3 64.9 78.9 1.1k

SP [13]+SuperGlue [41] 53.9 68.3 81.7 0.6k

Detector free

Sparse-NCNet [36] 48.9 54.2 67.1 1.0k
DRC-Net [24] 50.6 56.2 68.3 1.0k
LoFTR [44] 63.4 71.9 79.9 1.0k
3DG-STFM 64.7 73.1 81.0 1.0k

LoFTR (Unimodal Model) 3DG-STFM Student Model 3DG-STFM Teacher Model

Fig. 6: Visualization of matching distribution change for better under-
stand student-teacher learning. The color of correspondence scatter is de-
termined by the confidence score predictions of each model. The teacher model
not only guide the student model to find more correspondences, but also teaches
the confidence score distribution to the student model.

methods as shown in Table 3. The method based on Superpoint [13] and Super-
glue [41] get better performance at AUC@10px than our approach. However, the
3DG-STFM student model shows more accurate performances under the other
two strict metrics. We provide more details in the supplementary material.

4.4 Student-Teacher Learning Understanding

Visualizing Knowledge Transfer. To understand how our teacher model
transfers knowledge to the student, we visualize the matching details to com-
pare our student model and teacher model on ScanNet. We remove the teacher
branch and training student branch solely based on direct supervision and treat
it as the vanilla unimodal model for comparisons. Since we adopt the LoFTR’s
matching strategy, this vanilla unimodal model is the same as LoFTR. In Fig. 6,
we plot all the predicted matches of models with a confidence score higher than
0.2. We show in the first row of Fig. 6 that both the teacher and student model
find much more correspondences around low-texture regions than state-of-the-
art. The teacher model explores the depth modality and then guides the student
model to learn the RGB-induced depth information to increase the discriminant
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Table 4: Ablation study.

Method
Pose estimation AUC
@5◦ @10◦ @20◦

Multi-model Teacher 18.41 36.53 54.07

Unimodal 14.78 31.47 48.44
Unimodal+MQD 16.46 33.62 51.70

Unimodal+MQD+Att 17.05 34.77 52.26

Table 5: Model compression study.

Method Lc Lf
Pose estimation AUC
@5◦ @10◦ @20◦

Teacher Model 4 1 18.41 36.53 54.07
Full-Size Student Model 4 1 17.05 34.77 52.26

Full-Size Model 4 1 14.78 31.47 48.44
Slim Model 2 1 14.18 29.68 46.45

Slim Student Model 2 1 14.49 31.76 49.51

features in areas with low texture but depth variations. We also show that the
student follows the teacher’s confidence score pattern, while both have different
patterns compared to LoFTR, shown in the second row of Fig. 6. The confidence
scores are indicated by color, high in red, low in blue. This knowledge transfer is
achieved by proposed MQD loss and attentive loss for coarse-level and fine-level
matching for our student-teacher architecture.
Ablation Study. To better understand the contribution in each module, we
randomly select 150 scenes from ScanNet as a mini version dataset and test dif-
ferent variants of our model. The test set is the same as the original ScanNet. As
shown in Table 4, the teacher model achieves the best performance and is used
to teach the two models, i.e., Unimodal+MQD and Unimodal+MQD+Att. The
unimodal model is trained under direct supervision provided by dense correspon-
dences labels based on Equation 8. Compared with the unimodal model, both
MQD and attentive loss help the knowledge transfer from teacher to student.
Model Compression Performance. Our architecture can also be general-
ized to model compression tasks. We implement the model compression exper-
iments on the mini version of ScanNet. The results shown in Table 5 indicate
our slim model has the competitive performance with the uncompressed model.
In Table 5, the slim matching model is proposed with half attention layers on
the coarse-level transformer Lc. The Slim Student Model is trained with our
student-teacher architecture, while both the Full-Size Model and the Slim Model
are trained under the direct supervision provided by ground-truth. By learning
knowledge from the Teacher Model, the Slim Student Model improves 2% com-
pared to the Slim Model and also shows better performance than the Full-Size
Model at AUC@10◦ and @20◦. More details are provided in the supplementary.

5 Conclusion

In this paper, we propose 3DG-STFM: a novel student-teacher learning frame-
work for the dense local feature matching problem. Our proposed framework
mines depth knowledge from one multi-modal teacher model to guide the stu-
dent model to learn the hidden depth information embedded in the RGB domain.
Two attentive mechanisms, i.e., MQD loss and attentive loss, are proposed to
help the knowledge transfer. Our student model is evaluated on several image
matching and camera pose estimation tasks on indoor and outdoor datasets and
achieves state-of-the-art performances. Our 3DG-STFM also shows generaliza-
tion ability on model compression tasks.
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35. Rocco, I., Cimpoi, M., Arandjelović, R., Torii, A., Pajdla, T., Sivic, J.: Neighbour-
hood consensus networks. Proceedings of the 32nd Conference on Neural Informa-
tion Processing Systems (2018) 1, 4, 6, 9
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