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Fig. 1. Given a noisy 3D scan with missing data, our method extracts many possible
cuboids, and then efficiently selects the subset that fits the scan best.

Abstract. We present MonteBoxFinder, a method that, given a noisy
input point cloud, fits cuboids to the input scene. Our primary contribu-
tion is a discrete optimization algorithm that, from a dense set of initially
detected cuboids, is able to efficiently filter good boxes from the noisy
ones. Inspired by recent applications of MCTS to scene understanding
problems, we develop a stochastic algorithm that is, by design, more effi-
cient for our task. Indeed, the quality of a fit for a cuboid arrangement is
invariant to the order in which the cuboids are added into the scene. We
develop several search baselines for our problem and demonstrate, on the
ScanNet dataset, that our approach is more efficient and precise. Finally,
we strongly believe that our core algorithm is very general and that it
could be extended to many other problems in 3D scene understanding.
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1 Introduction

Representing a 3D scene with a set of simple geometric primitives is a long-
standing computer vision problem [24]. Solving it would provide a light repre-
sentation of 3D scenes that is arguably easier to exploit by many downstream
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applications than a 3D point cloud for example. But maybe more importantly,
this would also demonstrate the ability to reach a “high-level understanding” of
the scene’s geometry, by creating a drastically simplified representation.

In this work, we start from a point cloud of a indoor scene, which can be
obtained by 3D reconstruction from images or scanning with an RGB-D cam-
era. Recent works have considered representing 3D point clouds with primi-
tives [10,9,22,21]; however they consider “ideal 3D input data”, in the sense that
the point cloud is complete and noise-free. By contrast, point clouds from 3D
reconstruction or scans are typically very noisy with missing data, and robust
methods are required to handle this real data.

To be robust to noise and missing data, we propose a discrete optimization-
based method. Our approach does not require any training data, which would
be very cumbersome to create manually. Given a point cloud, we extract a large
number of primitives. While in our experiments we consider only cuboids as
our primitives, our approach can be generalized to other choices of primitives.
We rely on a simple ad hoc algorithm [25] to obtain an initial set of primitives.
We expect this algorithm to generate correct primitives but also many false
positives. Our problem then becomes the identification of the correct primitives
while rejecting the incorrect ones, by searching the subset of primitives that
explains the scene point cloud the best.

While the theoretical combinatorics of this search are huge, as they grow ex-
ponentially with the number of extracted primitives, the search is structured by
some constraints. For example two primitives should not intersect. To tackle this
problem, we take inspiration from a recent work on 3D scene understanding [13].
[13] proposes to rely on the Monte Carlo Tree Search (MCTS) algorithm to han-
dle a similar combinatorial problem to select objects’ 3D models: The MCTS
algorithm is probably best known as the algorithm used by AlphaGo [29]. It
is typically used to explore the tree of possible moves in the game Go because
it scales particularly well to high combinatorics. [13] adapts it to 3D models
selection by considering a move as the selection of a 3D model for one object,
and showed it performs significantly better than the simple hill-climbing algo-
rithm that is sometimes used for similar problems [34]. Another advantage of
this approach is that it does not impose assumptions on the form of the objective
function, unlike other approaches based on graphs, for example [26].

While exploring the solution tree with MCTS as done in [13] is efficient,
we show we can still speed up the search for a solution significantly more. The
tree structure imposes an ordering of the possible 3D models to pick from. Such
sequential structures are necessary when MCTS is applied to games as game
moves depend on the previous ones, but we argue that there is a more efficient
alternative in the case of object detection and selection for scene understanding.

As illustrated in Figure 2, MCTS works by performing multiple iterations
over the tree structure, focusing on the most promising moves. The estimate
of how much a move is promising is updated at each iteration. For our prob-
lem of primitive selection, we propose to also proceed by iteration. Instead of
considering a tree search, at the end of each iteration, we sort the primitives
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Fig. 2. Comparative overview The hill-climbing algorithm—simply taking the prim-
itive that improves the most the objective function— can terminate × quickly as it
gets stuck into a local minimum because of the constraints between primitives. MCTS
as used in [13] explores iteratively the solution tree by traversing blue paths, updating
which primitives are the most promising ones, but keeping the tree structure fixed. At
each iteration, our approach also updates (→) which primitives are the most promising
ones, and starts with them. This makes our approach identify a good solution much
faster than MCTS in general. Red circles represent objective function evaluations.
Hill-climbing has to evaluate the complete objective function each time it considers a
primitive, while MCTS and our algorithm evaluate the objective function only at the
end of an iteration when a complete solution is complete.

according to how likely they are to belong to the correct solution. The next iter-
ation will thus evaluate a solution that integrates the most promising primitives.
Our experiments show that this converges much faster to a correct solution.

To evaluate our approach, we experiment on the ScanNet dataset [8], a large
and challenging set of indoor 3D RGB-D scans. It contains 3D point clouds of
real scenes, with noisy captures and large missing parts, as some parts were not
scanned and dark or specular materials are not well captured by the RGB-D
cameras. We did not find any previous work working on similar problems, but
we adapted other algorithms, namely a simple hill-climbing approach [34] and
the MCTS algorithm of [13] to serve as our baselines for comparison. To do so,
we introduce several metrics to evaluate the fit quality.

Our algorithm is conceptually simple, and can be written in a few lines of
pseudo-code. We believe it is much more general than the cuboid fitting problem.
It could first be extended to other type of primitives, and applied to many other
selection problems with high combinatorics, and could be applied to other 3D
scene understanding problems, for auto-labelling for example. We hope it will
inspire other researchers for their own problems.

2 Related Work

In this section, we first discuss related work on cuboid fitting, and then on
possible optimisation methods to solve our selection problem.
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2.1 Cuboid Fitting on Point Clouds

Primitive fitting is a long standing Computer Vision problem. In the section, we
only discuss about methods that operate on point clouds, although there are a
large number of methods that are seeking progress in the field of cuboid fitting
from 2D RGB images [24,12,18].

Object scale. Sung et al [31] leveraged cuboids decompositions to improve 3D
object completion of scans of synthetic objects. Tulsiani et al [32] introduced ob-
ject abstraction using cuboids on more challenging objects from the Shapenet [4]
dataset. Paschalidou et al [22] extended [32] by using the more expressive su-
perquadrics to fit 3D objects. However these methods only operate at the scale
of a single objects, on synthetic data, and always assume or are limited to a
moderate number of primitives. Some older work related to us have focused on
parsing an input point cloud as a decomposition into primitives. Li et al [20] de-
compose a real scan of an object into primitives by extracting a set of primitives
with RANSAC, which they refine by reasoning on relationship between these
primitives. However their method works only on very clean scans, and using ob-
ject that were built as a set of primitives. Furthermore, since they reason about
interaction between primitives using a graph, the complexity of there method
quickly becomes untractable.

Room-scale cuboid detection. Another class of works has focused on room-scale
3D point cloud parsing with cuboids. A large number of works focused on de-
tecting object bounding boxes in 3D scans have recently emerged since the deep
learning era [23,27,28]. Guo et al [11] wrote a great survey regarding these meth-
ods. Contrary to these methods, our method is able to parse 3D scans with
cuboids at the granularity level of parts of objects. Liang et al [17] used RGB-D
images to fit cuboids to the point cloud obtained by the depth map. In con-
trast to us, they operate using single-view images, but also leverage color cues
via superpixels. Shao et al [26] also parse depth maps with cuboids. Given an
initial set of cuboids, they build a graph to exploit physical constraints between
them to refine the cuboids arrangement. However, they still require human-in-
the-loop for challenging scenes, and their graph based method limits the number
of cuboids that can be retrieved without exceeding complexity. Our method, in
contrast, can deal with number of cuboids that are an order of magnitude larger.

2.2 Solution Search for Scene Understanding

We focus here on scene understanding methods which, like us, do not rely on
supervised training data for complete scenes, even if some of them require train-
ing data to recognize the objects. These methods typically start from a set of
possible hypotheses for the objects present in the scene (similar to the primitives
in our case), and choose the correct ones with some optimization algorithms.

Monte Carlo Markov Chain (MCMC) [2] is a popular algorithm to select
the correct objects in a scene by imposing constraints on their arrangement.
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Method Uphill MCTS Ours

Exploratory ✗ ✓ ✓

Stochastic ✗ ✓ ✓

Leverage order invariance ✓ ✗ ✓

Table 1. Properties of different solution search methods. Our method leverages
all popular mechanisms for efficient solution search while leveraging the structure of
the problem, which does not require employing tree structures for solution search.

MCMCs can be applied to a parse graph [33,7,15,6] that defines constraints
between objects. However, this parse graph needs to be defined manually or
learned from manual annotations. Also, MCMCs typically converge very slowly.

Greedy approaches were also used in previous works [16], and they rely on
a hill-climbing method to find the objects’ poses [16]. [34] selects objects using
hill-climbing as well by starting from the objects with the best fits to an RGB-D
image. While simple and greedy, this approach can work well on simple scenes.
However, it can easily get stuck on complex situations, as our experiments show.
[19] uses beam search but this is also an approximation as it also cuts some
hypotheses to speed up the search.

Monte Carlo Tree Search (MCTS) was recently used in [13], where they
proposed to use MCTS as an optimization algorithm to choose objects that
explain an RGB-D sequence. [13] adapts MCTS by considering the selection of
one object as a possible move in a game. The moves are selected to optimize an
objective function based on the semantic segmentation of the images and the
depth maps. The advantage of this approach is that MCTS can scale to complex
scenes, while optimizing a complex objective function.

Our approach is motivated by [13]. However, we generate the primitives in
a very different way, but more importantly, we propose a novel optimization
algorithm, which, contrary to MCTS, does not rely on a tree structure, making
it is simpler and significantly more efficient than MCTS, as demonstrated by our
experiments.

3 Method

In this section, we first describe how we extract a large pool of cuboids from a
given 3D scan. Then, we formalize the selection of the optimal cuboid arrange-
ment. Finally, we detail the solution we propose.

3.1 Generating Cuboid Proposals from Noisy Scans

Figure 3 summarizes our cuboid proposal generation pipeline. The goal of this
pipeline is to provide a large pool of cuboids. Some extracted cuboids can be
false positives at this stage. The correct subset of cuboids will be selected by the
next stage. In this way, we can be robust to noise and missing data in the 3D
scan. Our pipeline can be divided in 3 steps: (1) we first extract plane segments;
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Fig. 3. Overview of our cuboid generation pipeline. After extracting plane seg-
ments using an off-the-shelf algorithm [25], we construct cuboids around these segments
and pairs of adjacent segments. The result is a dense set of cuboids, which may contain
many false positives.

(2) we construct cuboids from pairs of plane segments; (3) we also construct thin
cuboids by fitting a 3D bounding box to the each plane segment individually.
These thin cuboids allow us to represent planar surfaces as well in the final
representation. On average, we obtain 880 cuboids and 174 thin cuboids per
scene.

Extracting planes segments. We use Efficient-RANSAC by Schnabel et
al [25] to extract 3D planes from the input point cloud. Efficient-RANSAC iden-
tifies and returns planar connected components made of 3D points. It is con-
trolled by three hyperparameters: a threshold on the plane-to-point distance to
count the inliers, a threshold on the cosine-similarity between normals to points,
and a connectivity radius. We use the same hyperparameters for all the scenes
in ScanNet, although we could run RANSAC multiple times with various geo-
metric parameters in order to adapt to various types of noise, and still be able
to efficiently filter out false positives.

Constructing boxes from pairs of planes. Given a set of planes segments
{πi = (Xi,Ni)}, where a plane segment π is represented as a point cloud X and
its fitted plane normal N, we construct bounding boxes from all pairs of planes
(πA, πB) that satisfy two criteria, alignment and proximity. Alignment means
that the two normals should be orthogonal or co-linear. Proximity enforces planes
segments to have at least one connected component in 3D. We then employ
two Gram-Schmidt orthonormalizations to obtain the frame coordinate of two
bounding boxes, which are computed to enclose XA ∪XB . More details can be
found in the supplementary material.

Fitting 3D bounding boxes to 3D plane segments. Since we want our
method to also retrieve thin objects that may not have compatible neighbors,
we therefore fit a 3D oriented bounding box to each plane segment’s point cloud
X, using the efficient “Oriented Bounding Box” method from [5].3

3 We used CGAL’s [1] implementation of [25,5].
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Algorithm 1: Loss function

procedure evalObjFunc(S, Y )

Input : Set of cuboids S, target point cloud Y and its normals N(Y );
(X,N(X)) ← sample mesh surface(S);
ℓc := ChamferDistance(X → Y ) + ChamferDistance(Y → X);
ℓn := CosineDissimilarity(N(X)→ N(Y )) + CosineDissimilarity(N(Y )→ N(X));
return ℓc · (1 + 0.25 · exp(ℓn));

3.2 The Cuboids Arrangement Search Problem

We now want to select a subset S ′ of S, the set of cuboids generated in Sec-
tion 3.1, which fits well the input point cloud X of the scene. The cuboids in S ′
should not mutually intersect to ensure a minimal representation of this scene.

To solve this problem, we consider (1) an objective function ℓ, defined in
Algorithm 1, which will guide the search towards the best solution, and (2) a
search algorithm such as the baselines described in Section 3.3, that should be
designed to converge to the best solution as efficiently as possible. To better
present the algorithms, we introduce a Cuboid Class, which we present first.

Cuboid Class. We define a Cuboid class to instantiate cuboids for our solution
search algorithms. It is described by its faces normals and its 8 corners, yielding
a surface mesh from which we can sample 3D points. Other attributes can be
added to a Cuboid , depending on the needs of a particular algorithm, e.g. the
number of times a Cuboid s has been used in a solution can be denoted as s.n1.

To enforce constraints between cuboids, we need to test if the intersection
between two cuboids is small enough. We define this criterion using a variation of
the measure of a Intersection-over-Union criterion, and provide its pseudo-code
in Supp Mat. isCompatible(s1, s2, η) measures the ratio between the volume
vol(s1∩s2) of the intersection between both cuboids s1 and s2, and the minimum
of the volumes of each cuboid vol(s1) and vol(s2). In practice, we approximate
these volumes by uniformly randomly sampling points from both cuboids and
count the points that are inside both s1 and s2. The volume ratio is then com-
pared to a threshold η, to decide if the two Cuboid intersect. While this test
can be performed “on the fly” when searching solutions, we pre-compute the
pair-wise Cuboid compatibility matrix in advance for efficiency.

Objective Function We aim to minimize the distance between our cuboids
and the target point cloud, while keeping its normals aligned with the point-
cloud’s normals. We use Chamfer Distance (CD) and Cosine Dissimilarity, i.e.
the complement of Cosine Similarity, as our distance and normals deviation
losses, yielding full objective function is described in Algorithm 1. In the loss,
we truncate CD to τ = 0.1, and normalize it by τ .
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3.3 Solution Search Baseline Algorithms

Hill-Climbing Algorithm. The first baseline for our discrete optimization
problem is the Hill-Climbing algorithm [30], a naive greedy descent algorithm.
This algorithm constructs a solution iteratively, where at each iteration, it com-
prehensively searches for the proposal that best improves the loss function of a
solution SF , while leaving the solution valid i.e. with no incompatibilities. If no
proposal is available nor can improve the objective function, the algorithm stops
×. The pseudo code for Hill-Climbing is given in the supplementary material.

MCTS Algorithm. We first describe here the MCTS algorithm, as it inspired
our algorithm. [3] provides a full description of the MCTS algorithm. We present
it in the context of our cuboid selection problem, following what was done in
[13] for 3D model selection. [13] provides a pseudo code for MCTS.

MCTS is able to efficiently explore the large trees that result from the high
combinatorics of some games such as Go. As represented in Figure 2, the nodes
of the tree correspond to possible states, and the branches to possible moves.
MCTS does not build explicitly the entire tree—this would not be tractable
anyway—, but only a portion of it, starting from the root at the top.

⇝Simulation step. Nodes are thus created progressively at each iteration. To
decide which nodes should be created, the existing nodes contain in addition to
a state an estimate V of the value of this state. To initialize V , MCTS uses a
simulation step denoted ⇝ in Figure 2, which explores randomly the rest of the
tree until reaching a leaf without having to build the tree explicitly. For games,
reaching a leaf corresponds to either winning or loosing the game. If the game
is won, V should be large; if the game is lost, V should be small.

Adaptation to our problem. Figure 2 shows that in our case, a state in a node
is the set of primitives that have been selected so far. A “move” corresponds
to adding a primitive to the selected primitives. The children of a node contain
primitives that are mutually incompatible, and compatible with the primitives in
the ancestor nodes: Such structure ensures that every path in the tree represents
a valid solution. In this paper, we consider two possibilities: A varying number
of children as in [13] and MCTS-Binary, a binary tree version of MCTS: In
MCTS-Binary, a node has two children, corresponding to selecting or skipping
a primitive. More details are provided in the supplementary material.

×“Reaching a leaf” happens when no more primitives can be added, because
we ran out of primitives or because all the remaining primitives intersect with
the primitives already selected. The value V of the new nodes are initialized after
the simulation step by evaluating the objective function for the set of primitives
for the leaf. We take this objective function as a fitness measure between the
primitives and the point cloud. Note that this function does not need to have
special properties, nor do we need heuristics to guide the tree search.
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Selection and expansion steps. At each iteration, MCTS traverses the tree start-
ing from the root node, often using the standard Upper Confidence Bound (UCB)
criterion [3] to choose which branch to follow. A high UCB score for a node means
that it is more likely to be part of the correct solution. This criterion depends
on the values V stored in the nodes and balances exploitation and exploration:
When at a node N , we continue with its child node N ′ that maximizes the UCB
score, which depends on the number of times N and N ′ have been visited so far.
This criterion allows MCTS to balance exploration and exploitation.

At some point of this traversal procedure, we will encounter a node with a
child node N that has not been created yet, we add the child node to the tree. We
use the simulation step described above to initialize V (N) and initialize n(N)
to 1.

→Update step. MCTS also uses the value V (N) to improve the value estimate
of each node N ′ visited during the tree traversal. Different ways to do so are
possible, and we found that for our problem, it is better to take the maximum
between the current estimate V (N ′) and V (N): V (N ′) ← max(V (N ′), V (N)).
n(N ′), the number of times the node was visited is also incremented.

Final solution. After a chosen number of iterations, MCTS stops. For our prob-
lem, we obtain a set of primitives by doing a tree traversal starting from the
root node and following the nodes with the highest values V .

3.4 Our algorithm: MonteBoxFinder

We first review the issues when using MCTS for our problem, then give an
overview of our algorithm and its components. Finally, we provide some details
for each component.

Moving from MCTS. Our primitives selection algorithm is inspired by MCTS,
and it is motivated by two observations that show that MCTS is not optimal for
our selection problem:

– the order we select the primitives does not matter. However, MCTS keeps
growing its tree without modifying the nodes already created. This implies
that if a primitive appears at the top of the tree but does not actually belong
to the correct solution, it will slow down the convergence of MCTS towards
this solution.

– if a node corresponding to adding some primitive P has a high value V ,
the node corresponding to not keeping P should have a low value, and vice
versa. There is no mechanism in MCTS as used in [14] to ensure this. This is
unfortunate as one iteration could be used to update more nodes than only
the visited nodes.
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Algorithm 2: Our MonteBoxFinder Algorithm

Result: Set of selected Cuboid SF
Input: Set of available Cuboid S;
Number of evaluations Neval ;
Threshold η ;
Current solution Sc := ∅ ;
Final solution SF := ∅;
Current best loss ℓ∗ := +∞ ;
procedure InitializeNodes(S)

Input: Pool of Cuboid S;
S ← Shuffle(s ∈ S);
Sc ←Simulate(S, η);
ℓ← evalObjFunc(Sc);
// Update ALL Cuboid states

S ← Update(S, Sc, ℓ);
return S

// MonteBoxFinder Core Algorithm

S ← InitializeNodes(S);
for ( iter=0; iter̸= Neval; iter++ ) {
S ← Sorted↓(s ∈ S, s 7→ s.µ1);
Sc ←Simulate(S, η);
ℓ← evalObjFunc(Sc);
// Update ALL Cuboid states

S ← Update(S, Sc, ℓ);
if ℓ < ℓ∗ then

ℓ∗ ← ℓ;
SF ← Sc;

return Best solution SF ;

Overview. We give an overview of our algorithm in Algorithm 2. To exploit the
two observations described above, we do not use a tree structure. Instead, we use
the list of primitives which we sort at each iteration, by exploiting our current
estimate for each primitive to be part of the current solution. Our method pro-
gressively estimates and exploits a prior probability P for a primitive to belong
to the solution based on our adaptation of the Upper Bounding Criterion (UCB)
that balances the exploitation vs. exploration trade-off.

Algorithm 3: Simulate(⇝) and Update(→) functions of our algorithm

Input: Exploration probability Pϵ;
Threshold δ;
procedure Simulate(SA, η)

Input: Pool of available Cuboid SA,
threshold η

Output SF := ∅;
for ( s ∈ SA ) {

if s.isCompatible(SF , η) then
ϵ := uniform sample([0, 1]);
if (ϵ < Pϵ) then

if (s.µ1 > s.µ0) then
SF .add(s)

else
if (s.µ1 < s.µ0) then
SF .add(s)

return SF

procedure Update(S, SF , ℓ)
Input: Full pool of Cuboid S;
Selected set of Cuboid SF ⊂ S;
Solution score ℓ;
for ( s ∈ S ) {

if s ∈ SF then
// Update best ℓ when kept

s.ℓ1 ← min(ℓ, s.ℓ1)
s.n1 ← s.n1 + 1
s.µ1 ← −s.ℓ1 +

√
ln(1/δ)/s.n1

else
// Update best ℓ when

rejected

s.ℓ0 ← min(ℓ, s.ℓ0)
s.n0 ← s.n0 + 1
s.µ0 ← −s.ℓ0 +

√
ln(1/δ)/s.n0

return S
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Initialization. We initialize the run with a few random traversals in order to
initialize the states of each Cuboid proposal.

Simulate. (⇝) At every iteration we first sort primitives SA according to their
confidence value s.µ1 in descending order, hence more confident primitives will be
more likely selected. Afterwards, we perform the simulation that pops primitives
s from sorted SA. With probability Pϵ = 0.3, we perform exploitation and add
s to the list of selected proposals SF if (s.µ1 > s.µ0). Otherwise, we perform
exploration and add s to SF if (s.µ1 < s.µ0).

UCB Criterion. We modified the UCB score to fit our algorithm, which does
not rely on a tree structure. We use this modified term to estimate two confidence
measures s.µ0 and s.µ1 reflecting how much a cuboid s is likely to belong to the
correct solution or not:

s.µ0 = −s.ℓ0 +
√
ln(1/δ)/s.n0, s.µ1 = −s.ℓ1 +

√
ln(1/δ)/s.n1, (1)

where s.ρ0 and s.ρ1 are the minimum loss values reached when rejecting and
accepting primitive s, s.n0 and s.n1 denote the number of times that the prim-
itive were rejected and selected respectively, and δ = 0.03 is a hyperparameter
modifying the exploration rate, smaller δ implies larger exploration.

Update (→) In comparison with the update step of MCTS described in 3.3,
our MonteBoxFinder algorithm updates all primitives states after an iteration.
If a primitive s was selected, we update its s.ℓ1, s.µ1, and s.n1 values based on
the obtained loss ℓ and our adapted UCB criterion, otherwise we update its s.ℓ0,
s.n0, and s.µ0 values instead. In the next iteration during simulation, we use
these value to determine whether to select or reject the primitive.

4 Experiments

4.1 Dataset

ScanNet [8] is a dataset that contains noisy 3D scans of 1613 indoor scenes.
We evaluate our method on the full dataset, where for each scene, we used the
decimated and cleaned point clouds provided in [8] both for the box proposals
generation step and for the solution search step.

4.2 Metrics

Fitness measures. The most direct way to measure the quality of a solution
is to measure the loss function ℓ described in Algorithm 1. Indeed, we want to
evaluate the ability of our algorithm to search the solution space. Additionally,
we measure a bi-directional precision metric Prτ . Prτ is computed as the pro-
portion of points successfully matched between the “synthetic” point cloud X,
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Fig. 4. Value of the objective function for the best found solution as a func-
tion of the number of evaluations for Hill-Climbing, MCTS, MCTS-Binary,
and our MonteBoxFinder (MBF) method. Hill-Climbing requires many evalua-
tions before finding a reasonable solution, which explains the flat curve at the beginning.
It also gets stuck into a local minimum and stops improving. In this experiment, we give
the number of evaluations Hill-Climbing used before getting stuck to the three other
methods. Our method converges significantly faster than the other methods towards a
better solution. Similar graphs for other scenes are provided in the supplementary.

generated by sampling 3D points from retrieved 3D cuboid meshes, and the 3D
scan Y . A point is successfully matched if its Chamfer Distance (CD)4 value is
below a threshold τ = 0.2:

Prτ =
|{x ∈ X s.t. CD[x→ Y ] ≤ τ}|

2|X|
+
|{y ∈ Y s.t. CD[y → X] ≤ τ}|

2|Y |
. (2)

Efficiency measure. The motivation for developing our approach compared to
[13] is to converge faster towards a good solution. In order to measure efficiency of
a given method, we consider the curve of the objective function of the best found
solution as a function of the iteration, as the ones showed in Figure 4. We use
the Area Under the Curve (AUC) given a maximum budget of iterations Neval:
the lower the AUC, the faster the convergence. We also report AUC (norm),
which normalizes the AUC values of the different between 0 and 1, with 0 being
the value of the best performing method and 1 being the value of the worst
performing method.

Complexity measure. We observe that bad solutions tend to contain a small
number of selected primitives. This is because it is challenging to find a large
subset of cuboids with no intersection between any pair of cuboids. Hence we
also report the number of cuboids in the retrieved solutions.

4 In this case, we do not apply the normalization discussed in Algorithm 1
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Loss↓ Precision ↑ AUC ↓ AUC
(norm) ↓

Avg. #
Cuboids ↑

Hill-Climbing 0.383 0.928 0.871 0.998 12
MCTS 0.247 0.966 0.427 0.225 28
MCTS-Binary 0.292 0.961 0.370 0.102 35
Ours (MonteBoxFinder) 0.201 0.982 0.322 0.018 37

Table 2. Comparison between our method and our baselines. Our method
outperforms all baselines on all metrics computed on ScanNet. We retrieve a more
accurate fit, while being able to find more non-intersecting cuboids.

4.3 Evaluation Protocol

For all scenes from the ScanNet dataset [8], we run the Hill-Climbing method,
and obtain its solution SHC. We then consider the number Neval of evaluations of
the objective that were required by Hill-Climbing to construct this solution. We
then run MCTS and our algorithm using the same number of evaluations Neval.
This ensures the three methods are compared fairly, as they are given the same
evaluation budget, which is by far the most costly step of all three algorithms.

4.4 Quantitative results

Table 2 provides the results of our experimental comparisons. As expected, the
Hill-Climbing algorithm performs worst: By greedily selecting proposals that
minimize the loss, it gets stuck to local minimum solutions consisting of large
proposals. It can also provide a complete solution only once it converged, while
MCTS, MCTS-Binary and our method can provide a good solution much faster.
The table also shows that our algorithm converges significantly faster than
MCTS and MCTS-Binary, which was the desired goal. Interestingly, MCTS-
Binary performs better than the original MCTS method of [13]. In the sup-
plementary material, we discuss in details the links between our method and
MCTS-Binary.

4.5 Qualitative Results

Figure 5 shows qualitative results. Hill-climbing focuses on large cuboids to de-
scribe the scene. MCTS often selects many true positives but misses some of the
proposals because it cannot explore deeper levels of the tree for the given iter-
ation budget. In contrast, our algorithm is able to successfully retrieve cuboid
primitives for objects of different sizes, such as walls, floors, and furniture.

5 Conclusion

We proposed a method for efficiently and robustly finding a set of cuboids that
fits well a 3D point cloud, even under noise and missing data. Our algorithm is
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Hill-climbing MCTS-Binary MonteBoxFinder (ours)

Fig. 5. Qualitative results. Hill-climbing often selects large cuboids that span across
multiple different objects (first, third, fourth rows, and fifth rows). MCTS does better,
but does not sufficiently explore the solution space (second row). In contrast, our
algorithm outperforms both methods and is able to successfully reconstruct many chairs
in first, third, and fifth rows, and bedroom furniture in fourth row. More qualitative
results are provided in the supplementary material.

not restricted to cuboids, and could consider other primitives. Only a procedure
to identify the primitives is required, even if it generates many false positives as
our algorithm can reject them. Moreover, the output of our algorithm could be
used to generate labeled data for training a deep architecture for fast inference.
This could be done to predict cuboids from point clouds, but also from RGB-D
images, since the 3D scans of ScanNet were created from RGB-D images By
simply reprojecting the cuboids retrieved by our method, we can obtain RGB-D
images annotated with the visible cuboids.
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