
Appendix:
Scene Text Recognition with

Permuted Autoregressive Sequence Models

Darwin Bautista and Rowel Atienza

Electrical and Electronics Engineering Institute
University of the Philippines, Diliman

{darwin.bautista,rowel}@eee.upd.edu.ph

A Issues with unidirectionality of AR models in STR

As discussed in the main text, the unidirectionality of AR models could result in
spurious addition of suffixes and direction-dependent decoding. Shown in Table 1
is a sample output of a left-to-right (LTR) AR model trained on a 36-character
lowercase charset. Since the input is fairly clear and horizontal, the model was
very confident in the predictions for the first 10 characters. However, since it
was trained on alphanumeric characters only, it did not know how to recognize
the exclamation mark. The language context swayed the output of the model
to add the -ly suffix in order to make sense of the unrecognized character. A
right-to-left (RTL) AR model would not add the suffix due to the lack of context
(since the right-most characters would have to be predicted first). This direction-
dependent decoding is further illustrated in Table 2 where two ARmodels trained
on opposing directions produce different outputs. In this case, the input contains
ambiguity on the uppercase N character. If read from left to right, the context
of the earlier characters can be used to infer that the ambiguous character is
N. However, when read in the opposite direction, the context of OPE is not yet
available, prompting the RTL model to recognize two l ’s in place of a single N
character.

Table 1. Example of a spurious suffix from a left-to-right AR model. GT refers to the
ground truth label, while Confidence pertains to per-character prediction confidence

Input GT Prediction Confidence

terrifying terrifyingly [1.00, . . . , 1.00, 0.97, 0.72]

B Inefficiency of External Language Models in STR

As mentioned in the main text, ensemble methods such as ABINet [13] and SRN
[38] utilize a standalone or external Language Model (LM). In Table 3, we show

https://orcid.org/0000-0002-1050-0776
https://orcid.org/0000-0002-8830-2534

2 D. Bautista, R. Atienza

Table 2. Example of direction-dependent decoding with two AR models

Input GT Direction Prediction Confidence

open
LTR open [1.00, 1.00, 1.00, 0.66]
RTL opell [1.00, 1.00, 0.52, 0.57, 0.94]

the cost measurements of fvcore on the full ABINet model for a single input, as
well as the measurement breakdown for its component models. We can see that
while the LM accounts for around 34.48% of the parameter count, it only uses
13.65% of the overall FLOPS and 15.78% of the overall activations (a measure
shown to be correlated with model runtime [11,35]). When evaluated in spelling
correction on the 36-character set, the LM achieves a top-5 word accuracy of only
41.9% [13]. With the ground truth label itself as input (Table 4), the same model
gets a top-1 word accuracy of only 50.44% (36-char). This means that even if
the Vision Model (VM) is perfect (always predicting the correct label), the LM
will produce a wrong output 50% of the time. In summary, the external LM’s
dedicated compute cost, underutilization relative to its parameter and memory
requirements, and dismal word accuracy show the inefficiency of this approach.
For STR, an internal LM might be more appropriate since the primary input
signal is the image, not the language context.

Table 3. Commonly used cost indicators as measured by fvcore for ABINet. Full
Model pertains to the overall measurements

Module # of Parameters (M) FLOPS (G) # of Activations (M)

Full Model 36.858 (100.00%) 7.289 (100.00%) 10.785 (100.00%)

- Vision 23.577 (63.97%) 6.249 (85.73%) 9.036 (83.78%)
- Language 12.707 (34.48%) 0.995 (13.65%) 1.702 (15.78%)
- Alignment 0.574 (1.55%) 0.045 (0.62%) 0.047 (0.44%)

Table 4. Performance of ABINet’s LM when the ground truth label itself is used as
the input. NED refers to the Normalized Edit Distance [28]

Dataset # of samples Word acc. (%) 1 - NED

IIIT5k 3,000 47.33 69.50
SVT 647 65.38 83.48
IC13 1,015 62.07 78.77
IC15 2,077 40.49 67.72
SVTP 645 65.27 83.08

CUTE80 288 46.88 68.65

Combined 7,672 50.44 72.54

Scene Text Recognition with Permuted Autoregressive Sequence Models 3

C Multi-head Attention

The attention mechanism is central to the operation of Transformers [30]. In
scaled dot-product attention, the similarity scores between two dk-dimensional
vectors q (query) and k (key), computed using their dot-product, are used to
transform a dv-dimensional vector v (value). Formally, scaled dot-product at-
tention is defined as:

Attn(q,k,v) = softmax

(
qkT

√
dk

)
v (1)

It accepts an optional attention mask that limits which keys the queries could
attend to. In a Transformer with token dimensionality of dmodel, dk = dv =
dmodel.

Multi-head Attention (MHA) is the extension of scaled dot-product attention
to multiple representation subspaces or heads. To keep the computational cost of
MHA practically constant regardless of the number of heads, the dimensionality
of the vectors are reduced to dhead = dmodel/h, where h is the number of heads. A
head corresponds to an invocation of Equation (1) on projected versions of q, k,
and v using parameter matrices Wq ∈ Rdmodel×dhead , Wk ∈ Rdmodel×dhead , and
Wv ∈ Rdmodel×dhead , respectively, as shown in Equation (2). The final output
is obtained in Equation (3) by concatenating the heads and multiplying by the
output projection matrix Wo ∈ Rdmodel×dmodel .

headi = Attn(qWq
i ,kW

k
i ,vW

v
i) (2)

MHA(q,k,v) = Concat(head1, ..., headh)W
o (3)

D Model Architecture

PARSeq uses an encoder which largely follows the original ViT [12], and a pre-
LayerNorm [3,33] decoder with more heads. The architectures are practically
unchanged but are reproduced here for the convenience of the reader.

D.1 ViT Encoder

The encoder is composed of 12 layers. All layers share the same architecture
shown in Figure 1. The output of the last encoder layer goes through a final
LayerNorm.

D.2 Visio-lingual Decoder

The decoder (Figure 2) consists of only a single layer. The immediate outputs
of all MHA and MLP layers go through Dropout (p = 0.1, not shown). Image
Features are already LayerNorm’d by the encoder (hence no LayerNorm prior
to input).

4 D. Bautista, R. Atienza

Fig. 1. Illustration of a ViT layer from Dosovitskiy et al . [12]. Norm pertains to
LayerNorm

D.3 Architecture Configuration

The main results are obtained from the base model, PARSeq-S, which has a
similar configuration to DeiT-S [29] but uses an image size of 128×32 and a
patch size of 8×4 (a change also adapted in our reproduction of ViTSTR-S).
Based on our experiments, scaling up the model only marginally improves word
accuracy on the benchmark. We instead explore scaling down the model to make
it more suitable for edge devices. PARSeq-Ti, which uses a configuration similar
to DeiT-Ti [29], is more similar to CRNN [26] in terms of parameter count and
FLOPS. The detailed configuration parameters are shown in Table 5.

Table 5. Configurations for the base (PARSeq-S) and smaller (PARSeq-Ti) model
variants. dmodel refers to the dimensionality of the model which dictates the dimensions
of the vectors and feature maps. h refers to the number of attention heads used in MHA
layers. dMLP refers to the dimension of the intermediate features within the MLP layer.
depth refers to the number of encoder or decoder layers used

encoder decoder
Variants dmodel h dMLP depth h dMLP depth

PARSeq-Ti 192 3 768 12 6 768 1
PARSeq-S 384 6 1536 12 12 1536 1

Scene Text Recognition with Permuted Autoregressive Sequence Models 5

Fig. 2. Visio-lingual decoder architecture with LayerNorm layers shown

E Permutation Language Modeling

In this section, we provide additional details about the adaptation of PLM for
use in PARSeq. We give a concrete illustration of masked multi-head attention
first. Next, the intuition behind the usage of permutation pairs is discussed.
Lastly, implementation details and considerations about the training procedure
are discussed.

E.1 Illustration of attention masking

As discussed in the main text, Transformers process all tokens in parallel. In
order to enforce the AR constraint which limits the conditional dependencies
for each token, attention masking is used. Figure 3 shows a concrete example of
masked multi-head attention for a sequence y. The position tokens always serve
as the query vectors, while the context tokens (context embeddings with position
information) serve as the key and value vectors. Note that the sequence order is
fixed, and that only the AR factorization order (specified by the attention mask)
is permuted.

E.2 Permutation Sampling

As discussed in the main text, we sample permutations in a specific way. We use
pairs of permutations, and the left-to-right permutation is always used. Thus, we
only sample K/2−1 permutations every training step. To illustrate the intuition
behind the usage of flipped permutation pairs, we give the following example.
Given a three-element text label y = [y1, y2, y3] andK = 4 permutations: [1, 2, 3],
[3, 2, 1], [1, 3, 2], and [2, 3, 1]. The first two permutations are the left-to-right and
right-to-left orderings, respectively. Both are always used as long as K > 1. The
corresponding factorizations of the joint probability per pair are as follows:

p(y)[1,2,3] = p(y1)p(y2|y1)p(y3|y1, y2)
p(y)[3,2,1] = p(y3)p(y2|y3)p(y1|y2, y3)

6 D. Bautista, R. Atienza

(a) MHA for output token y1 (b) MHA for output token y2

(c) MHA for output token y3 (d) MHA for output token [E]

Fig. 3. Masked MHA for a three-element sequence y = [y1, y2, y3] given the factoriza-
tion order [1, 3, 2]. c are context embeddings with position information

Scene Text Recognition with Permuted Autoregressive Sequence Models 7

p(y)[1,3,2] = p(y1)p(y3|y1)p(y2|y1, y3)
p(y)[2,3,1] = p(y2)p(y3|y2)p(y1|y2, y3)

For each permutation pair, if we group the probabilities per element, we get
Table 6. Notice that the probabilities of each element for every permutation pair
consists of disjoint sets of conditioning variables. For example, the probabili-
ties of element y1 for [1, 2, 3] (left-to-right permutation) and [3, 2, 1] (right-to-left
permutation) are p(y1) and p(y1|y2, y3), respectively. The first term is the prior
probability of y1. It is not conditioned on any other element of the text label,
unlike the second term which is conditioned on all other elements, y2 and y3.
Similarly for y2, the first term is conditioned only on y1 while the second term
is conditioned only on y3. In our experiments, we find that using flipped permu-
tation pairs results in more stable training dynamics where the loss is smoother
and less erratic.

Table 6. Probability terms grouped by permutation pairs

Perm. y1 y2 y3

[1, 2, 3] p(y1) p(y2|y1) p(y3|y1, y2)
[3, 2, 1] p(y1|y2, y3) p(y2|y3) p(y3)

[1, 3, 2] p(y1) p(y2|y1, y3) p(y3|y1)
[2, 3, 1] p(y1|y2, y3) p(y2) p(y3|y2)

E.3 Special handling of end-of-sequence [E] token

Although the [E] token is part of the sequence, it is handled in a specific way
in order to make training simpler. First, no character c ∈ C, where C is the
training charset, is conditioned on [E]. Intuitively, it means that [E] marks the
end of the sequence (hence its name) since no more characters are expected after
it is produced by the model. More formally, it means that p(c|[E]) = 0. This is
achieved by masking the positions of [E] in the input context. Second, we train
[E] on only two permutations, left-to-right and right-to-left. The left-to-right
lookahead mask provides the longest context to [E] (conditioned on all other
characters in the sequence), while the right-to-left mask provides no context,
which is necessary for NAR decoding. We could also train [E] on different subsets
of the input context, but doing so needlessly complicates the training procedure
without offering any advantages.

E.4 Considerations for batched training

Text labels of varying lengths can be included in a mini-batch. However, the sam-
pled permutations for the mini-batch are always based on the longest sequence.

8 D. Bautista, R. Atienza

Hence, it is possible that after accounting for padding, multiple permutations
would become equivalent. To see why this is the case, consider a mini-batch
containing two samples: the first label has a single character, while the second
label has four characters. The first label has a sequence length of one and total
number of permutations also equal to one. On the other hand, the second label
has a sequence length of four which corresponds to 24 total permutations. If
we use K = 6 permutations, then it means that the permutations for the first
label would be oversampled since there is only one valid permutation for T = 1.
We find that this oversampling actually helps training. We experimented with a
modified training procedure wherein sequences with T < 4 are grouped together
(i.e. 1-, 2-, and 3-character sequences are grouped separately). This training pro-
cedure results in increased training time due to the mini-batch being split further
into smaller batches, but it does not improve accuracy nor hasten convergence.
Thus, we stick with the simpler batched training procedure.

F Dataset Matters

F.1 Open Images Datasets

TextOCR and OpenVINO are datasets both derived from Open Images—a large
dataset with very diverse images often containing complex scenes with several
objects (8.4 per image on average). Open Images is not specifically collected for
STR. Thus, it contains text of varying resolutions, orientations, and quality, as
shown in cropped word boxes in Figure 4. TextOCR and OpenVINO significantly
overlap in terms of source scene images, as shown in Table 7. Samples of source
scene images common to both are shown in Figure 5. Only the validation set of
OpenVINO and the test set of TextOCR do not overlap any other image set.
The labels of TextOCR’s test set are kept private.

Table 7. Overlap between TextOCR and OpenVINO in terms of the number of com-
mon source scene images

TextOCR
train val test

O
p
e
n
V
IN

O train 1 1,612 225 0
train 2 1,444 230 0
train 5 1,302 184 0
train f 1,068 157 0

validation 0 0 0

Scene Text Recognition with Permuted Autoregressive Sequence Models 9

Fig. 4. Cropped word boxes from Open Images

Fig. 5. Examples of source scene images common to TextOCR and OpenVINO

10 D. Bautista, R. Atienza

F.2 Data preparation for LMDB storage

We use the archives released by Baek et al . [2] for RCTW17, Uber-Text, ArT,
LSVT, MLT19, and ReCTS. Thus, we only preprocess data for the remaining
datasets.

For COCO-Text, we use the v1.4 test annotations released as part of the
ICDAR 2017 challenge. For train and val, we use the latest (v2.0) annotations.
We preprocess TextOCR, OpenVINO, and COCO-Text with minimal filtering
and modifications, in contrast to the usual practice of removing non-horizontal
text and special characters. We only filter illegible and non-machine printed text.
The only modification we perform is the removal of whitespace on either side of
the label, or duplicate whitespace between non-whitespace characters.

For IC13 and IC15, we use the original data from the ICDAR competition
website and perform no modifications to the data. We emulate the previous
filtering methods [32,8] to create the subsets used for evaluation.

Long and Yao [21] have reannotated IIIT5k, CUTE, SVT, and SVTP be-
cause the original annotations are case-insensitive and lack punctuation marks.
However, both the reannotations and the originals contain some errors. Hence,
we review inconsistencies between the two versions and manually reconcile them
to correct the errors.

Table 8 provides a detailed summary of how each dataset was used.

Table 8. Summary of dataset usage after on-the-fly filtering for the 94-character set.
Numbers indicate how many samples were used from each dataset. t and v refer to
splits that were repurposed as training and validation data, respectively. * indicates
private ground truth labels. – indicates that the dataset does not have a particular
split. IC13 and IC15 have two versions of their respective test splits commonly used
in the literature

Dataset train val test

MJSynth 7,224,586 802,731t 891,924t

SynthText 6,975,301 – –

LSVT 41,439 – –

MLT19 56,727 – –

RCTW17 10,284 – –

ReCTS 21,589 – 2,467t

TextOCR 710,994 107,093t 0*

OpenVINO 1,912,784 158,757t –

ArT 32,028 – 35,149

COCO 59,733 13,394t 9,825

Uber 91,732 36,188t 80,587

IIIT5k 2,000v – 3,000

SVT 257v – 647

IC13 848v – 857 / 1,015

IC15 4,468v – 1,811 / 2,077

SVTP – – 645

CUTE – – 288

Scene Text Recognition with Permuted Autoregressive Sequence Models 11

G Training Details

In the main text, the 169,680 training iterations (batch size of 384) is equivalent
to 20 epochs on the combined real training dataset (3,257,585 samples). The
same exact number of training iterations is used when training on synthetic
data (MJ+ST, 15.89M samples), resulting in just over 4 epochs of training. As
shown in Table 9, this training schedule is more than twice as long as Baek et al .
[2] but is still much shorter than ABINet’s original training schedule of 8 epochs
VM pretraining on MJ+ST, 80 epochs LM pretraining on WikiText-103, and 10
epochs full model training on MJ+ST. This explains why our reproduction of
CRNN and TRBA obtain higher accuracy than the originals, and why ABINet
gets a slightly lower (1.4%) accuracy compared to the original results.

Table 9. Training schedule comparison vs reproduced methods. Sorted from shortest
to longest schedule based on the sample count (essentially batch size × number of
iterations)

Method Batch size # of iterations Sample count (M)

CRNN and TRBA [2] 128 200,000 25.6
ViTSTR [1] 192 300,000 57.6

Ours 384 169,680 65.2
ABINet (VM + full) [13] 384 745,074 286.1

ABINet (LM) [13] 4,096 1,688,720 6,917.0

G.1 Label preprocessing

Preprocessing and filtering are done as follows. Whitespace characters are re-
moved from the labels. Unicode characters are normalized using the NFKD
normalization form and then converted to ASCII. Next, labels longer than T
characters are filtered. Case-sensitivity is inferred from the charset. If all letters
in the charset are lowercase, the label is transformed to its lowercase version. If
the charset consists of purely uppercase letters, the label is converted to its up-
percase version. If the charset is mixed-case, no case conversion is done. Lastly,
all characters not specified in the charset are removed from the labels.

G.2 Learning Rate Optimization

For fair comparison during evaluation, all training hyperparameters—except the
learning rate—are kept constant across models. The learning rate is varied be-
cause different architectures and model sizes train differently [18]. Ray Tune
[19] was used to automatically search for the optimum maximum learning rate
given the fixed training schedule. Specifically, we used a combination of Me-
dian Stopping [14] and Bayesian Optimization [4] to efficiently narrow down

12 D. Bautista, R. Atienza

Table 10. Learning rates used for training. The Base LR is the raw value set in
the configuration, while the Effective LR is the actual value used for training. During
pretraining, ABINet (LM) is used for ABINet’s language model

Model Base LR Effective LR

CRNN 5.10 × 10−4 1.08 × 10−3

ViTSTR-S 8.90 × 10−4 1.89 × 10−3

TRBC 1.00 × 10−4 2.12 × 10−4

TRBA 6.90 × 10−4 1.46 × 10−3

ABINet (LM) 3.00 × 10−4 6.36 × 10−4

ABINet 3.40 × 10−4 7.21 × 10−4

PARSeq 7.00 × 10−4 1.48 × 10−3

the configuration space. Finally, a grid search over the narrowed down learning
rate range was performed with models trained to completion. The final learn-
ing rates used for training are shown in Table 10. The base learning rates are
scaled using two multipliers: the DDP factor (

√
nGPU) and the batch size linear

scaling rule (bsize/256) [15], where nGPU refers to the number of GPUs used
(i.e. nGPU = 2 for a dual-GPU setup) and bsize refers to the batch size (i.e.
bsize = 384).

H Accuracy of decoding schemes vs latency

Figure 6 shows how the word accuracy and latency evolve as functions of the
number of refinement iterations. For AR decoding, refinement iterations after
the first provide negligible increase in accuracy. For NAR decoding, the accuracy
increase becomes insignificant after the second iteration. Hence, we use one and
two refinement iterations for the AR and NAR decoding schemes, respectively.

8 10 12 14 16

92.5

93

93.5

0

1
2 3 0

1 2 3

Latency [msec/image]

A
cc
u
ra
cy

[%
]

NAR

AR

Fig. 6. PARSeq word accuracy and single-image latency for each decoding scheme.
The number of refinement iterations used is indicated for each point

Scene Text Recognition with Permuted Autoregressive Sequence Models 13

I Detailed Latency Measurements

1 5 9 13 17 21 25
0

5

10

15

20

25

30

35 Mean word length

Output label length

L
a
te
n
cy

[m
se
c/
im

a
g
e]

CRNN

ViTSTR-S

TRBA

ABINet

PARSeqN

PARSeqA

Fig. 7. Model latency vs output label length as measured by PyTorch’s benchmark
timer on an NVIDIA Tesla A100 GPU. Each point corresponds to a mean of five
runs of Timer.blocked autorange(). Lower is better. Mean word length is the average
length of the labels from all test datasets

Wemeasure model latency in an isolated manner. By doing so, we can reliably
factor out the effects of data loading, storage, and CPU latency. We use the built-
in benchmarking tool of PyTorch and measure latency for different label lengths,
as shown in Figure 7. As expected, NAR methods including PARSeqN exhibit
near-constant latency regardless of output label length. Meanwhile, the latency
of AR methods increases linearly as a function of the output label length. The
latency increase of PARSeqA is steeper than TRBA. However, since the average
length of words in the test datasets is quite short at 5.4, the actual difference in
mean latency between TRBA and PARSeqA is only about 2.3 msec.

J Experiments on arbitrarily-oriented text

In STR, the focus has mainly been on horizontal text, with a few explicitly
tackling arbitrarily-oriented text [25,9,24,36,37]. In our experiments, we observe
that existing attention-based models are capable of recognizing text in arbitrary
orientation, as shown in Table 11. Only CRNN, a CTC-based model, exhibits
dismal orientation robustness. We conjecture that the direct correspondence of
visual feature positions to textual feature positions in CTC-based models causes
this poor performance. On the other hand, attention-based models compute fea-
ture similarity scores on-the-fly, resulting in a more dynamic alignment between
visual and textual features.

We hypothesize that regardless of architecture and training procedure, the
attention mechanism makes STR models generally robust against orientation

14 D. Bautista, R. Atienza

Table 11. Orientation robustness benchmark. Word accuracy (94-char) on rotated
versions of the six benchmark datasets. %dec refers to the percentage decrease of the
Mean accuracy w.r.t. the 0° accuracy

Method 0°↑ 90°↑ 180°↑ 270°↑ Mean↑ %dec↓

CRNN 85.8 11.8±0.1 6.4±0.5 10.7±0.2 9.6 88.8
ViTSTR-S 91.8 87.9±0.2 78.9±0.3 80.6±0.9 82.4 10.2
TRBA 92.5 84.6±0.1 83.5±0.2 78.6±0.3 82.3 11.0
ABINet 92.4 66.0±1.5 77.1±0.9 65.5±1.8 69.6 24.7

PARSeqN 92.7 86.7±0.3 83.2±0.9 81.1±0.3 83.7 9.7
PARSeqA 93.3 88.0±0.1 86.6±0.3 84.1±0.1 86.2 7.6

variations. To test our hypothesis, we created a pose-corrected version of Tex-
tOCR which contains text in canonical orientation (practically horizontal), as
opposed to the original version which contains text in arbitrary orientation. One
possible contributor to the orientation robustness of TRBA is its image rectifica-
tion module [27]. To test if this is the case, we also train TRBC, the CTC-based
version of TRBA. We train all models on either TextOCR variants exclusively
and show the results in Table 12.

Table 12. Effect of training on horizontally-oriented (H) vs arbitrarily-oriented (A)
variants of TextOCR. 0° pertains to model accuracy (94-char) on non-rotated bench-
mark datasets. Rotated refers to the mean accuracy on 90°, 180°, and 270° rotations of
the benchmark datasets. In H vs A per row, bold indicates significantly higher accuracy

Method
0° Rotated

H A H A

CRNN 84.7±0.4 84.0±0.4 0.8±0.0 8.7±0.4
ViTSTR-S 87.8±0.7 88.1±0.3 2.5±0.2 72.8±1.3

TRBC 87.0±0.2 87.3±0.2 1.3±0.1 17.3±1.9
TRBA 89.7±0.0 90.1±0.2 2.7±0.1 76.3±0.4
ABINet 90.3±0.2 90.7±0.2 3.0±0.3 63.9±1.5

PARSeqN 89.8±0.3 90.4±0.0 6.4±0.4 77.9±0.6
PARSeqA 90.6±0.0 91.3±0.2 8.4±0.4 80.7±0.3

We observe that both CTC-based and attention-based models can be trained
on arbitrarily-oriented text. The mean 0° accuracy decreased for CRNN but the
decrease was not statistically-significant. For other models, the mean accuracy
even increased with TRBA and PARSeq showing statistically-significant im-
provements. This suggests that the common practice of filtering non-horizontal
text might be unnecessary. As far as arbitrarily-oriented text recognition is con-
cerned, training on arbitrarily-oriented text expectedly improves the accuracy
across all models. However, the improvement is minimal in CTC-based models
compared to attention-based models. Moreover, TRBC exhibits slightly better
orientation robustness compared to CRNN, but it still performs badly compared
to TRBA. This suggests that the contribution of the image rectification module

Scene Text Recognition with Permuted Autoregressive Sequence Models 15

to orientation robustness is minimal, and that the attention mechanism is the
primary contributor to orientation robustness.

K Combined word accuracy

Six small datasets are typically used to benchmark STR methods, resulting in
six different mean values for word accuracy. The combined word accuracy is
typically reported too, but we did not include it in Table 6 of the main text
because of space constraints and possible confusion due to inconsistencies in test
sets used. Table 13 shows the combined word accuracy on the benchmark (7,672
samples) and on the smaller test subset (using IC13 857 and IC15 1,811) with a
total of 7,248 samples.

Table 13. Word accuracy on the six benchmark datasets (36-character set). For Train
data: Synthetic datasets (S) - MJ [17] and ST [16]; Benchmark datasets (B) - SVT,
IIIT5k, IC13, and IC15; Real datasets (R) - COCO, RCTW17, Uber, ArT, LSVT,
MLT19, ReCTS, TextOCR, and OpenVINO; ”*” denotes usage of character-level la-
bels. In our experiments, bold indicates the highest word accuracy per column. 1Used
with SCATTER [20]. 2SynthText without special characters (5.5M samples). 3LM Pre-
trained on WikiText-103 [22]

Test datasets and # of samples

Method
Train Total Total (benchmark)
data 7,248 7,672

P
u
b
li
s
h
e
d

R
e
s
u
lt
s

PlugNet [23] S – 89.8
SRN [38] S 90.4 –

RobustScanner [39] S,B – 89.2
TextScanner [31] S* – 91.0
AutoSTR [40] S – –
RCEED [10] S,B – –
PREN2D [36] S 91.5 –
VisionLAN [34] S 91.2 –
Bhunia et al. [6] S – 90.9

CVAE-Feed.1 [5] S – –
STN-CSTR [7] S – –

CRNN [2] S – 75.8

ViTSTR-B [1] S2 85.6 83.8
TRBA [2] S – 85.7

ABINet [13] S3 92.7 –

E
x
p
e
r
im

e
n
t
s

CRNN S 84.5±0.2 83.2±0.2
ViTSTR-S S 90.0±0.1 88.6±0.0

TRBA S 92.0±0.2 90.6±0.1
ABINet S 91.3±0.2 89.8±0.1

PARSeqN (Ours) S 92.0±0.2 90.7±0.2
PARSeqA (Ours) S 93.2±0.2 91.9±0.2

CRNN R 89.6±0.1 88.5±0.0
ViTSTR-S R 94.7±0.1 94.3±0.1

TRBA R 95.7±0.1 95.2±0.1
ABINet R 95.9±0.2 95.2±0.1

PARSeqN (Ours) R 95.7±0.1 95.2±0.1
PARSeqA (Ours) R 96.4±0.0 96.0±0.0

16 D. Bautista, R. Atienza

L Qualitative Results

In the following tables, shown are qualitative results for all test datasets and for
some images obtained from the internet. The input images are shown in their
original orientations and in aspect ratios close to their original. For predictions
which are roughly aligned to the ground truth, wrong characters are highlighted
in red while missing characters are indicated by a red underscore .

Table 14 shows the results for samples from regular datasets like IIIT5k,
SVT, and IC13. Most of the models did not have a problem recognizing the
fairly clear, horizontal, and high-resolution input images. The only exception is
CRNN failing to recognize any character from the tilted CITY image sample
of SVT. No model was able to correctly recognize Verbandstoffe due to the
ambiguity caused by motion blur, making the character o look like an e.

Table 14. Qualitative results on samples from regular datasets IIIT5k, SVT, and IC13.
GT refers to the ground truth label

Predictions

Input GT PARSeqA ABINet TRBA ViTSTR-S CRNN

I
I
IT

5
k

Kellimar Kellimar Kellimar Kellimar Kellimar Kellimar

TIDE TIDE TIDE TIDE TIDE TIDE

Coca-Cola Coca-Cola Coca-Cola Coca-Cola Coca-Cola Coca-Cola

NESCAFE NESCAFE NESCAFE NESCAFE NESCAFE NESCAFE

S
V
T

ICEBOX ICEBOX ICEBOX ICEBOX OCESOX IREBOX

CITY CITY CITY CITY CITY —

BREWERY BREWERY BREWERY BREWERY BREWERY BREWERY

THE THE THE THE THE THE

IC
1
3

Distributed Distributed Distributed Distribated Distributed Distrm uted

Verbandstoffe Verbandsteffe Verbandsteffe Verbandstelle Verbandsteffe Verbandsteffe

GALORE GALORE GALORE GALORE CALORE GALORE

Input GT PARSeqA ABINet TRBA ViTSTR-S CRNN

Predictions

Table 15 shows the qualitative results for samples from the IC15 dataset.
Context-free methods, ViTSTR and CRNN, were not able to correctly predict
Kappa possibly due to the ambiguity caused by distortion on the first p char-

Scene Text Recognition with Permuted Autoregressive Sequence Models 17

acter. ABINet and CRNN both have difficulty in recognizing vertically-oriented
(CONCIERGE) and rotated text (UNSEEN). No model correctly predicted epi-
Centre due to the case ambiguity of the character C. Only PARSeq and CRNN
were able to correctly read the telephone number.

Table 15. Qualitative results from IC15 samples

Predictions

Input GT PARSeqA ABINet TRBA ViTSTR-S CRNN

Kappa Kappa Kappa Kappa Kaopa Kadpa

UNSEEN UNSEIN UNITIN UNSEEN UNSEEN MATA

CONCIERGE CONCIERGE ONNIIEOO CONCIERGE CONCIERGE —

epiCentre epicentre epicentre epicentre epicentre eplcentre

Tel:7778100 Tel:7778100 Tel:77778100 Teles7778100 Tel:17778100 Tel:7778100

Table 16. Qualitative results from SVTP samples

Predictions

Input GT PARSeqA ABINet TRBA ViTSTR-S CRNN

MINT MINT AINT MINT MINT MINT

REDWOOD REDWA D maCyyro Programmer REDWOBD Pe

HOUSE HOUCE HOUSE HOUSE HOUCE HOUSE

Restaurant Restaurant Restaurant Restaurant Restaurant Restaurant

CARLTON CARLTON CARLTON CARLTON CARLTON ANO

Table 16 shows the qualitative results for SVTP samples. All models ex-
cept ABINet were able to recognize MINT. No model correctly recognized the
vertically-oriented text, REDWOOD, with ViTSTR and PARSeq producing the
two closest predictions. Surprisingly, both PARSeq and ViTSTR fail at the rel-
atively easy HOUSE, where the character S is occluded. In PARSeq, the visual

18 D. Bautista, R. Atienza

features have a stronger effect on the final output than the textual features due
to the image–position MHA being closer to the final decoder hidden state. Thus,
a low-confidence visual feature might sway the output to the wrong character
given enough magnitude relative to the textual features. All models correctly
recognized Restaurant even though the image is relatively blurry. All models
except CRNN correctly recognized the vertically-oriented text, CARLTON.

Table 17. Qualitative results from CUTE80 samples

Predictions

Input GT PARSeqA ABINet TRBA ViTSTR-S CRNN

BALLYS BALLYS BALLY’S BALLYS BALLYS BALLYS

eBizu eBizu eBizu eBizu eBizu eBizu

CLUB CLUB CLUB CLUB CLUB 2U1

SALMON SALMON SALMON SALMON SALMON SA NON

Table 17 shows the results for CUTE80, a dataset which primarily contains
curved text. The samples are high-resolution and of good quality resulting in
generally accurate recognition across models. The only exceptions are BALLYS
for ABINet and the relatively vertical texts CLUB, and SALMON for CRNN.

Table 18. Qualitative results from ArT samples

Predictions

Input GT PARSeqA ABINet TRBA ViTSTR-S CRNN

FONDENTE FONDENIE FONDENIE FONDEN S FONDENTE FOMEON

cuisine cuisine cuisine cuisine cuisine culsi e

COFFEE COFFEE COFFEE COFFEE COFFEE COFFEE

Franziskaner Franziskaner Franziskaner Franziskaner Franziskaner Ranzishanes

TOMORROW’S TOMORROV’S TOMORRO ’SS TOMORROW’S TOMORROW’S TO

Scene Text Recognition with Permuted Autoregressive Sequence Models 19

Table 18 shows the results for samples from ArT, a dataset of arbitrarily-
oriented and curved text. CRNN fails to recognize text which are vertically-
oriented. Only ViTSTR is able to recognize FONDENTE correctly, with PARSeq
and ABINet both predicting I in place of T. For the almost upside down TO-
MORROW’S, only TRBA and ViTSTR are able to recognize it. PARSeq possibly
mistook W for a V due to aspect ratio distortion (vertical image being rescaled
into a horizontal one).

Table 19 shows the results for COCO-Text samples. No model was able to
recognize ANTS, possibly due to the presence of small stray characters around
the main text. All models were able to recognize XT-862K in spite of the blurry
image, and People in spite of the occluded o and p characters. Chevron is a
particularly hard sample due to the last two characters being occluded by two
different objects. Only PARseq was able to detect the last two characters and
correctly recognize the o character, while all other models only recognized the
first five characters. GUNNESS is another hard sample due to its low resolution
and occluded character. Only PARSeq was able to infer the occluded character
correctly.

Table 19. Qualitative results from COCO-Text samples

Predictions

Input GT PARSeqA ABINet TRBA ViTSTR-S CRNN

ANTS ANTSTS KANTER BANTSEN AATSSE N

XT-862K XT-862K XT-862K XT-862K XT-862K XT-862K

People People People People People People

Chevron Chevrol Chevr Chevr Chevr Chevr

GUNNESS GUNNESS GSNNNSSS AWNESS GONNESSS GOWNESS

Table 20 shows the qualitative results for ReCTS, a dataset which contains
fairly high-resolution text with unconventional font styles. Model performance
across all samples is generally good since they are clear and horizontally-oriented.
No model correctly predicted the string of digits, with PARSeq and TRBA
producing the closest predictions with only one wrong character. Most models
correctly predicted AWON except for PARSeq and CRNN which mistook the
occluded W for an N.

Table 21 shows the results for Uber-Text, a dataset which contains many
vertical or rotated text from outdoor signages. PARSeq is the only model to
correctly recognize all samples.

20 D. Bautista, R. Atienza

Table 20. Qualitative results from ReCTS samples

Predictions

Input GT PARSeqA ABINet TRBA ViTSTR-S CRNN

SEVEN SEVEN SEVEN SEVEN SEVEN SEVEN

TEA TEA TEA TEA TEA TEA

13031863597 13031867597 13071863599 13031863599 13071967597 19091967599

Bubble Bubble Bubble Bubble Bubble Bubble

AWON ANON AWON AWON AWON A’NON

Table 21. Qualitative results from Uber-Text samples

Predictions

Input GT PARSeqA ABINet TRBA ViTSTR-S CRNN

MeridethLn MeridethLn Merittteww..... MeridethLn MeridethLn wata

5811 5811 3911 5011 5811 40

PARKING PARKING PARKING PARKING PARKING POME
2017 2017 2017 2017 2017 2017

Table 22 shows results from additional samples obtained from the Internet.
Overall, the samples are high-resolution, horizontally-oriented, and use uncon-
ventional fonts similar to ReCTS. PARSeq is the only model to correctly recog-
nize all samples, particularly Creative which uses a cursive handwriting type of
font.

Table 22. Qualitative results from samples obtained from the internet

Predictions

Input GT PARSeqA ABINet TRBA ViTSTR-S CRNN

COCKTAILS COCKTAILS COCKTAILS COCKTAHIS COCKTAILS COCKTAILS

Creative Creative Creat ne Crestire Creat ee Cedrre
TOGARASHI TOGARASHI TOGARASHI TOGARASHI TOGARASHI TOGARASH!

Scene Text Recognition with Permuted Autoregressive Sequence Models 21

References

1. Atienza, R.: Vision transformer for fast and efficient scene text recognition. In:
International Conference on Document Analysis and Recognition (ICDAR) (2021)

2. Baek, J., Matsui, Y., Aizawa, K.: What if we only use real datasets for scene text
recognition? toward scene text recognition with fewer labels. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). pp.
3113–3122 (6 2021)

3. Baevski, A., Auli, M.: Adaptive input representations for neural language mod-
eling. In: International Conference on Learning Representations (2019), https:
//openreview.net/forum?id=ByxZX20qFQ

4. Balandat, M., Karrer, B., Jiang, D.R., Daulton, S., Letham, B., Wilson, A.G.,
Bakshy, E.: BoTorch: A Framework for Efficient Monte-Carlo Bayesian Opti-
mization. In: Advances in Neural Information Processing Systems 33 (2020),
http://arxiv.org/abs/1910.06403

5. Bhunia, A.K., Chowdhury, P.N., Sain, A., Song, Y.Z.: Towards the unseen: Itera-
tive text recognition by distilling from errors. In: Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). pp. 14950–14959 (10 2021)

6. Bhunia, A.K., Sain, A., Kumar, A., Ghose, S., Chowdhury, P.N., Song, Y.Z.: Joint
visual semantic reasoning: Multi-stage decoder for text recognition. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp.
14940–14949 (10 2021)

7. Cai, H., Sun, J., Xiong, Y.: Revisiting classification perspective on scene text recog-
nition (2021), https://arxiv.org/abs/2102.10884

8. Cheng, Z., Bai, F., Xu, Y., Zheng, G., Pu, S., Zhou, S.: Focusing attention: To-
wards accurate text recognition in natural images. In: Proceedings of the IEEE
international conference on computer vision. pp. 5076–5084 (2017)

9. Cheng, Z., Xu, Y., Bai, F., Niu, Y., Pu, S., Zhou, S.: Aon: Towards arbitrarily-
oriented text recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pp. 5571–5579 (2018)

10. Cui, M., Wang, W., Zhang, J., Wang, L.: Representation and correlation enhanced
encoder-decoder framework for scene text recognition. In: Lladós, J., Lopresti, D.,
Uchida, S. (eds.) Document Analysis and Recognition – ICDAR 2021. pp. 156–170.
Springer International Publishing, Cham (2021)

11. Dollár, P., Singh, M., Girshick, R.: Fast and accurate model scaling. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
924–932 (2021)

12. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth
16x16 words: Transformers for image recognition at scale. In: International Con-
ference on Learning Representations (2020)

13. Fang, S., Xie, H., Wang, Y., Mao, Z., Zhang, Y.: Read like humans: Autonomous,
bidirectional and iterative language modeling for scene text recognition. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). pp. 7098–7107 (6 2021)

14. Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J.E.,
Sculley, D. (eds.): Google Vizier: A Service for Black-Box Op-
timization (2017), http://www.kdd.org/kdd2017/papers/view/

google-vizier-a-service-for-black-box-optimization

https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
http://arxiv.org/abs/1910.06403
https://arxiv.org/abs/2102.10884
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization
http://www.kdd.org/kdd2017/papers/view/google-vizier-a-service-for-black-box-optimization

22 D. Bautista, R. Atienza

15. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tul-
loch, A., Jia, Y., He, K.: Accurate, large minibatch sgd: Training imagenet in 1
hour. arXiv preprint arXiv:1706.02677 (2017)

16. Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in nat-
ural images. In: IEEE Conference on Computer Vision and Pattern Recognition
(2016)

17. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and ar-
tificial neural networks for natural scene text recognition. In: Workshop on Deep
Learning, NIPS (2014)

18. Li, Z., Wallace, E., Shen, S., Lin, K., Keutzer, K., Klein, D., Gonzalez, J.: Train
big, then compress: Rethinking model size for efficient training and inference of
transformers. In: International Conference on Machine Learning. pp. 5958–5968.
PMLR (2020)

19. Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I.: Tune:
A research platform for distributed model selection and training. arXiv preprint
arXiv:1807.05118 (2018)

20. Litman, R., Anschel, O., Tsiper, S., Litman, R., Mazor, S., Manmatha, R.: Scatter:
Selective context attentional scene text recognizer. In: IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (June 2020)

21. Long, S., Yao, C.: Unrealtext: Synthesizing realistic scene text images from the
unreal world. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (2020)

22. Merity, S., Xiong, C., Bradbury, J., Socher, R.: Pointer sentinel mixture models.
In: 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net (2017),
https://openreview.net/forum?id=Byj72udxe

23. Mou, Y., Tan, L., Yang, H., Chen, J., Liu, L., Yan, R., Huang, Y.: Plugnet: Degra-
dation aware scene text recognition supervised by a pluggable super-resolution
unit. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XV 16. pp. 158–174. Springer (2020)

24. Munjal, R.S., Prabhu, A.D., Arora, N., Moharana, S., Ramena, G.: Stride: Scene
text recognition in-device. In: 2021 International Joint Conference on Neural Net-
works (IJCNN). pp. 1–8. IEEE (2021)

25. Phan, T.Q., Shivakumara, P., Tian, S., Tan, C.L.: Recognizing text with per-
spective distortion in natural scenes. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 569–576 (2013)

26. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE transac-
tions on pattern analysis and machine intelligence 39(11), 2298–2304 (2016)

27. Shi, B., Wang, X., Lyu, P., Yao, C., Bai, X.: Robust scene text recognition with
automatic rectification. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 4168–4176 (2016)

28. Sun, Y., Ni, Z., Chng, C.K., Liu, Y., Luo, C., Ng, C.C., Han, J., Ding, E., Liu,
J., Karatzas, D., et al.: Icdar 2019 competition on large-scale street view text with
partial labeling-rrc-lsvt. In: 2019 International Conference on Document Analysis
and Recognition (ICDAR). pp. 1557–1562. IEEE (2019)

29. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training
data-efficient image transformers & distillation through attention. In: International
Conference on Machine Learning. pp. 10347–10357. PMLR (2021)

https://openreview.net/forum?id=Byj72udxe

Scene Text Recognition with Permuted Autoregressive Sequence Models 23

30. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L.u., Polosukhin, I.: Attention is all you need. In: Guyon, I., Luxburg, U.V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in
Neural Information Processing Systems. vol. 30. Curran Associates, Inc. (2017)

31. Wan, Z., He, M., Chen, H., Bai, X., Yao, C.: Textscanner: Reading characters in
order for robust scene text recognition. In: Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 34, pp. 12120–12127 (2020)

32. Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: 2011
International Conference on Computer Vision. pp. 1457–1464. IEEE (2011)

33. Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D.F., Chao, L.S.: Learning deep
transformer models for machine translation. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. pp. 1810–1822 (2019)

34. Wang, Y., Xie, H., Fang, S., Wang, J., Zhu, S., Zhang, Y.: From two to one: A new
scene text recognizer with visual language modeling network. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 14194–
14203 (10 2021)

35. Xiao, T., Dollar, P., Singh, M., Mintun, E., Darrell, T., Girshick, R.: Early convo-
lutions help transformers see better. Advances in Neural Information Processing
Systems 34 (2021)

36. Yan, R., Peng, L., Xiao, S., Yao, G.: Primitive representation learning for scene text
recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). pp. 284–293 (6 2021)

37. Yan, R., Peng, L., Xiao, S., Yao, G., Min, J.: Mean: Multi-element attention net-
work for scene text recognition. In: 2020 25th International Conference on Pattern
Recognition (ICPR). pp. 1–8. IEEE (2021)

38. Yu, D., Li, X., Zhang, C., Liu, T., Han, J., Liu, J., Ding, E.: Towards accurate
scene text recognition with semantic reasoning networks. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12113–
12122 (2020)

39. Yue, X., Kuang, Z., Lin, C., Sun, H., Zhang, W.: Robustscanner: Dynamically
enhancing positional clues for robust text recognition. In: European Conference on
Computer Vision. pp. 135–151. Springer (2020)

40. Zhang, H., Yao, Q., Yang, M., Xu, Y., Bai, X.: Autostr: Efficient backbone search
for scene text recognition. In: Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIV 16. pp. 751–
767. Springer (2020)

	Appendix: Scene Text Recognition with Permuted Autoregressive Sequence Models

