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Abstract. Context-aware STR methods typically use internal autore-
gressive (AR) language models (LM). Inherent limitations of AR mod-
els motivated two-stage methods which employ an external LM. The
conditional independence of the external LM on the input image may
cause it to erroneously rectify correct predictions, leading to signifi-
cant inefficiencies. Our method, PARSeq, learns an ensemble of internal
AR LMs with shared weights using Permutation Language Modeling.
It unifies context-free non-AR and context-aware AR inference, and it-
erative refinement using bidirectional context. Using synthetic training
data, PARSeq achieves state-of-the-art (SOTA) results in STR bench-
marks (91.9% accuracy) and more challenging datasets. It establishes
new SOTA results (96.0% accuracy) when trained on real data. PARSeq
is optimal on accuracy vs parameter count, FLOPS, and latency because
of its simple, unified structure and parallel token processing. Due to its
extensive use of attention, it is robust on arbitrarily-oriented text, which
is common in real-world images. Code, pretrained weights, and data are
available at: https://github.com/baudm/parseq.

Keywords: scene text recognition, permutation language modeling, au-
toregressive modeling, cross-modal attention, transformer

1 Introduction

Machines read text in natural scenes by first detecting text regions, then rec-
ognizing text in those regions. The task of recognizing text from the cropped
regions is called Scene Text Recognition (STR). STR enables the reading of
road signs, billboards, paper bills, product labels, logos, printed shirts, etc. It
has practical applications in self-driving cars, augmented reality, retail, educa-
tion, and devices for the visually impaired, among others. In contrast to Optical
Character Recognition (OCR) in documents where the text attributes are more
uniform, STR has to deal with varying font styles, orientations, text shapes,
illumination, amount of occlusion, and inconsistent sensor conditions. Images
captured in natural environments could also be noisy, blurry, or distorted. In
essence, STR is an important but very challenging problem.

STR is mainly a vision task, but in cases where parts of the text are impossi-
ble to read, e.g . due to an occluder, the image features alone will not be enough
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to make accurate inferences. In such cases, language semantics is typically used
to aid the recognition process. Context-aware STR methods incorporate seman-
tic priors from a word representation model [48] or dictionary [45], or learned
from data [52,32,3,50,33,69,21,53,9] using sequence modeling [6,60].

Sequence modeling has the advantage of learning end-to-end trainable lan-
guage models (LM). STR methods with internal LMs jointly process image
features and language context. They are trained by enforcing an autoregres-
sive (AR) constraint on the language context where future tokens are condi-
tioned on past tokens but not the other way around, resulting in the model
P (y|x) =

∏T
t=1 P (yt|y<t,x) where y is the T -length text label of the image x.

AR models have two inherent limitations arising from this constraint. First, the
model is able to learn the token dependencies in one direction only—usually the
left-to-right (LTR) direction. This unidirectionality causes AR models to be bi-
ased towards a single reading direction, resulting in spurious addition of suffixes
or direction-dependent predictions (illustrated in Appendix A). Second, during
inference, the AR model can only be used to output tokens serially in the same
direction used for training. This is called next-token or monotonic AR decoding.

(a) ABINet (b) Unified STR model (Ours)

Fig. 1. (a) State-of-the-art method ABINet [21] uses a combination of context-free
vision and context-aware language models. The language model functions as a spell
checker but is prone to erroneous rectification of correct initial predictions due to its
conditional independence on the image features. (b) Our proposed method performs
both initial decoding and iterative refinement by jointly processing image and context
features, resulting in a single holistic output. This eschews the need for separate lan-
guage and fusion models, resulting in a more efficient and robust STR method

To address these limitations, prior works have combined left-to-right and
right-to-left (RTL) AR models [53,9], or opted for a two-stage approach using
an ensemble of a context-free STR model with a standalone or external LM
[69,21]. A combined LTR and RTL AR model still suffers from unidirectional
context, but works around it by performing two separate decoding streams—
one for each direction—then choosing the prediction with the higher likelihood.
Naturally, this results in increased decoding time and complexity. Meanwhile,
two-stage ensemble approaches like in Figure 1a obtain their initial predictions
using parallel non-AR decoding. The initial context-less prediction is decoded
directly from the image using the context-free model P (y|x) =

∏T
t=1 P (yt|x).

This enables the external LM, P (y) =
∏T

t=1 P (yt|y̸=t) in ABINet [21] for exam-
ple, to use bidirectional context since all characters are available at once. The
LM functions as a spell checker and rectifies the initial prediction, producing a
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context-based output. The conditional independence of the LM from the input
image may cause it to erroneously rectify correct predictions if they appear mis-
spelled, or if a similar word with a higher likelihood exists. This is evident in
the low word accuracy of the LM in SRN (27.6%) and in ABINet (41.9%) when
used as a spell checker [21]. Hence, a separate fusion layer is used to combine
the features from the initial prediction and the LM prediction to get the final
output. A closer look at the LM of ABINet (Appendix B) reveals that it is ineffi-
cient for STR. It is underutilized relative to its parameter count, and it exhibits
dismal word accuracy despite using a significant chunk of the overall compute
requirements of the full ABINet model.

In sequence model literature, there has been recent interest in generalized
models of sequence generation. Various neural sequence models, such as AR
and refinement-based non-AR, were shown to be special cases in the generalized
framework proposed by Mansimov et al . [40]. This result posits that the same
generalization can be done in STR models, unifying context-free and context-
aware STR. While the advantages of this unification are not apparent, we shall
show later that such a generalized model enables the use of an internal LM while
maintaining the refinement capabilities of an external LM.

Permutation Language Modeling (PLM) was originally proposed for large-
scale language pretraining [68], but recent works [58,47] have adapted it for
learning Transformer-based generalized sequence models capable of different de-
coding schemes. In this work, we adapt PLM for STR. PLM can be considered
a generalization of AR modeling, and a PLM-trained model can be seen as an
ensemble of AR models with shared architecture and weights [59]. With the
use of attention masks for dynamically specifying token dependencies, such a
model, illustrated in Figure 2, can learn and use conditional character proba-
bilities given an arbitrary subset of the input context, enabling monotonic AR
decoding, parallel non-AR decoding, and even iterative refinement.

Fig. 2. Illustration of NAR and iterative refinement (cloze) models in relation to an
ensemble of AR models for an image x with a three-element text label y. Four different
factorizations of P (y|x) (out of six possible) are shown, with each one determined by
the factorization order shown in the subscript

In summary, state-of-the-art (SOTA) STR methods [69,21] opted for a two-
stage ensemble approach in order to use bidirectional language context. The low
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word accuracy of their external LMs, despite increased training and runtime
requirements, highlights the need for a more efficient approach. To this end, we
propose a permuted autoregressive sequence (PARSeq) model for STR. Trained
with PLM, PARSeq is a unified STR model with a simple structure, but is
capable of both context-free and context-aware inference, as well as iterative
refinement using bidirectional (cloze) context. PARSeq achieves SOTA results
on the STR benchmarks for both synthetic and real training data (Table 6)
across all character sets (Table 4), while being optimal in its use of parameters,
FLOPS, and runtime (Figure 5). For a more comprehensive comparison, we also
benchmark on larger and more difficult real datasets which contain occluded and
arbitrarily-oriented text (Figure 4b). PARSeq likewise achieves SOTA results in
these datasets (Table 5).

2 Related Work

The recent surveys of Long et al . [38] and Chen et al . [12] provide comprehensive
discussions on different approaches in STR. In this section, we focus on the use
of language semantics in STR.

Context-free STR methods directly predict the characters from image fea-
tures. The output characters are conditionally-independent of each other. The
most prominent approaches are CTC-based [22] methods [51,37,63,10], with a
few using different approaches such as self-attention [20] for pooling features into
character positions [2], or casting STR as a multi-instance classification problem
[25,11]. Ensemble methods [69,21] use an attention mechanism [6,60] to produce
the initial context-less predictions. Since context-free methods rely solely on the
image features for prediction, they are less robust against corruptions like oc-
cluded or incomplete characters. This limitation motivated the use of language
semantics for making the recognition model more robust.

Context-aware STR methods typically use semantics learned from data to
aid in recognition. Most approaches [3,32,52,13,53] use RNNs with attention [6]
or Transformers [50,33,9] to learn internal LMs using the standard AR training.
These methods are limited to monotonic AR decoding. Ensemble methods [69,21]
use bidirectional context via an external LM for prediction refinement. The con-
ditional independence of the external LM on image features makes it prone to
erroneous rectification, limiting usefulness while incurring significant overhead.
VisionLAN [66] learns semantics by selectively masking image features of indi-
vidual characters during training, akin to denoising autoencoders and Masked
Language Modeling (MLM) [19]. In contrast to prior work, PARSeq learns an
internal LM using PLM instead of the standard AR modeling. It supports flex-
ible decoding by using a parameterization which decouples the target decoding
position from the input context, similar to the query stream of two-stream at-
tention [68]. Unlike ABINet [21] which uses the cloze context for both training
and inference, PARSeq uses it for iterative refinement only. Moreover, as said
earlier, the refinement model of ABINet is conditionally independent of the in-
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put image, while PARSeq considers both input image and language context in
the refinement process.

Generation from Sequence Models can be categorized into two contrast-
ing schemes: autoregressive (one token at a time) and non-autoregressive (all to-
kens predicted at once). Mansimov et al . [40] proposed a generalized framework
for sequence generation which unifies the said schemes. BANG [47] adapted
two-stream attention [68] for use with MLM, in contrast to our use of PLM.
PMLM [34] is trained using a generalization of MLM where the masking ratio
is stochastic. A variant which uses a uniform prior was shown to be equivalent
to a PLM-trained model. Closest to our work is Tian et al . [58] which adapts
the two-stream attention parameterization [68] to decoders by interspersing the
content and query streams from different layers. In contrast, our decoder does
not use self-attention and does not intersperse the two streams. This allows our
single layer decoder to use the query stream only, and avoid the overhead of the
unused content stream.

3 Permuted Autoregressive Sequence Models

In this section, we first present the Transformer-based model architecture of
PARSeq. Next, we discuss how to train it using Permutation Language Modeling.
Lastly, we show how to use the trained model for inference by discussing the
different decoding schemes and the iterative refinement procedure.

3.1 Model Architecture

Multi-head Attention (MHA) [60] is extensively used by PARSeq. We denote it
as MHA(q,k,v,m), where q, k, and v refer to the required parameters query,
key, and value, while m refers to the optional attention mask. We provide the
background material on MHA in Appendix C.

PARSeq follows an encoder-decoder architecture, shown in Figure 3, com-
monly used in sequence modeling tasks. The encoder has 12 layers while the
decoder is only a single layer. This deep-shallow configuration [28] is a deliber-
ate design choice which minimizes the overall computational requirements of the
model while having a negligible impact in performance. Details in Appendix D.

ViT Encoder. Vision Transformer (ViT) [20] is the direct extension of the
Transformer to images. A ViT layer contains one MHA module used for self-
attention, i.e. q = k = v. The encoder is a 12-layer ViT without the classi-
fication head and the [CLS] token. An image x ∈ RW×H×Ch, with width W ,
height H, and number of channels Ch, is tokenized by evenly dividing it into
pw×ph patches, flattening each patch, then linearly projecting them into dmodel-
dimensional tokens using a patch embedding matrix Wp ∈ RpwphCh×dmodel ,
resulting in (WH)/(pwph) tokens. Learned position embeddings of equal dimen-
sion are added to the tokens prior to being processed by the first ViT layer.
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Fig. 3. PARSeq architecture and training overview. LayerNorm and Dropout layers
are omitted due to space constraints. [B], [E], and [P] stand for beginning-of-sequence
(BOS), end-of-sequence (EOS), and padding tokens, respectively. T = 25 results in 26
distinct position tokens. The position tokens both serve as query vectors and position
embeddings for the input context. For [B], no position embedding is added. Attention
masks are generated from the given permutations and are used only for the context-
position attention. Lce pertains to the cross-entropy loss

In contrast to the standard ViT, all output tokens z are used as input to the
decoder:

z = Enc(x) ∈ R
WH
pwph

×dmodel (1)

Visio-lingual Decoder. The decoder follows the same architecture as the pre-
LayerNorm [5,65] Transformer decoder but uses twice the number of attention
heads, i.e. nhead = dmodel/32. It has three required inputs consisting of position,
context, and image tokens, and an optional attention mask.

In the following equations, we omit LayerNorm and Dropout for brevity.
The first MHA module is used for context–position attention:

hc = p+MHA(p, c, c,m) ∈ R(T+1)×dmodel (2)

where T is the context length, p ∈ R(T+1)×dmodel are the position tokens,
c ∈ R(T+1)×dmodel are the context embeddings with positional information, and
m ∈ R(T+1)×(T+1) is the optional attention mask. Note that the use of special
delimiter tokens ([B] or [E]) increases the total sequence length to T + 1.

The position tokens encode the target position to be predicted, each one
having a direct correspondence to a specific position in the output. This pa-
rameterization is similar to the query stream of two-stream attention [68]. It
decouples the context from the target position, allowing the model to learn from
PLM. Without the position tokens, i.e. if the context tokens are used as queries
themselves like in standard Transformers, the model will not learn anything
meaningful from PLM and will simply function like a standard AR model.

The supplied mask varies depending on how the model is used. During train-
ing, masks are generated from random permutations (Section 3.2). At inference
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(Section 3.3), it could be a standard left-to-right lookahead mask (AR decoding),
a cloze mask (iterative refinement), or no mask at all (NAR decoding).

The second MHA is used for image–position attention:

hi = hc +MHA(hc, z, z) ∈ R(T+1)×dmodel (3)

where no attention mask is used. The last decoder hidden state is the output of
the MLP, hdec = hi +MLP (hi) ∈ R(T+1)×dmodel .

Finally, the output logits are y = Linear(hdec) ∈ R(T+1)×(C+1) where C is
the size of the character set (charset) used for training. The additional character
pertains to the [E] token (which marks the end of the sequence). In summary,
given an attention mask m, the decoder is a function which takes the form:

y = Dec(z,p, c,m) ∈ R(T+1)×(C+1) (4)

3.2 Permutation Language Modeling

Given an image x, we want to maximize the likelihood of its text label y =
[y1, y2, . . . , yT ] under the set of model parameters θ. In standard AR modeling,
the likelihood is factorized using the chain rule according to the canonical or-
dering, [1, 2, . . . , T ], resulting in the model log p(y|x) =

∑T
t=1 log pθ(yt|y<t,x).

However, Transformers process all tokens in parallel, allowing the output tokens
to access or be conditionally-dependent on all the input tokens. In order to have
a valid AR model, past tokens cannot have access to future tokens. The AR
property is enforced in Transformers with the use of attention masks. For exam-
ple, a standard AR model for a three-element sequence y will have the attention
mask shown in Table 1a.

The key idea behind PLM is to train on all T ! factorizations of the likelihood:

log p(y|x) = Ez∼ZT

[
T∑

t=1

log pθ(yzt |yz<t
,x)

]
(5)

where ZT denotes the set of all possible permutations of the index sequence [1,
2, . . . , T ], and zt and z<t denote the t-th element and the first t − 1 elements,
respectively, of a permutation z ∈ ZT . Each permutation z specifies an ordering
which corresponds to a distinct factorization of the likelihood.

To implement PLM in Transformers, we do not need to actually permute
the text label y. Rather, we craft the attention mask to enforce the ordering
specified by z. As a concrete example, shown in Table 1 are attention masks for
four different permutations of a three-element sequence. Notice that while the
order of the input and output sequences remains constant, all four correspond
to distinct AR models specified by the given permutation or factorization order.
With this in mind, it can be seen that the standard AR training is just a special
case of PLM where only one permutation, [1, 2, . . . , T ], is used.

In practice, we cannot train on all T ! factorizations due to the exponential
increase in computational requirements. As a compromise, we only use K of
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the possible T ! permutations. Instead of sampling uniformly, we choose the K
permutations in a specific way. We use K/2 permutation pairs. The first half
consists of the left-to-right permutation, [1, 2, . . . , T ], and K/2 − 1 randomly
sampled permutations. The other half consists of flipped versions of the first. We
found that this sampling procedure results in a more stable training.

With K permutations and the ground truth label ŷ, the full training loss
is the mean of the individual cross-entropy losses for each permutation-derived
attention mask mk:

L =
1

K

K∑
k=1

Lce(yk, ŷ) (6)

where yk = Dec(z,p, c,mk). Padding tokens are ignored in the loss computa-
tion. More PLM details are in Appendix E.

Table 1. Illustration of AR attention masks for each permutation. The table header
(with the [B] token) pertains to the input context, while the header column (with
the [E] token) corresponds to the output tokens. 1 means that the output token has
conditional dependency on the corresponding input token. 0 means that no information
flows from input to output

(a) [1, 2, 3]

[B] y1 y2 y3

y1 1 0 0 0
y2 1 1 0 0
y3 1 1 1 0
[E] 1 1 1 1

(b) [3, 2, 1]

[B] y1 y2 y3

y1 1 0 1 1
y2 1 0 0 1
y3 1 0 0 0
[E] 1 1 1 1

(c) [1, 3, 2]

[B] y1 y2 y3

y1 1 0 0 0
y2 1 1 0 1
y3 1 1 0 0
[E] 1 1 1 1

(d) [2, 3, 1]

[B] y1 y2 y3

y1 1 0 1 1
y2 1 0 0 0
y3 1 0 1 0
[E] 1 1 1 1

3.3 Decoding Schemes

PLM training coupled with the correct parameterization allows PARSeq to be
used with various decoding schemes. In this work, we only use two contrasting
schemes even though more are theoretically supported. Specifically, we elaborate
the use of monotonic AR and NAR decoding, as well as iterative refinement.

Autoregressive (AR) decoding generates one new token per iteration. The
left-to-right attention mask (Table 2a) is always used. For the first iteration, the
context is set to [B], and only the first position query token p1 is used. For any
succeeding iteration i, position queries [p1, . . . ,pi] are used, while the context is
set to the previous output, argmax(y) prepended with [B].

Non-autoregressive (NAR) decoding generates all output tokens at the
same time. All position queries [p1, . . . ,pT+1] are used but no attention mask is
used (Table 2b). The context is always [B].
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Iterative refinement can be performed regardless of the initial decoding
method (AR or NAR). The previous output (truncated at [E]) serves as the
context for the current iteration similar to AR decoding, but all position queries
[p1, . . . ,pT+1] are always used. The cloze attention mask (Table 2c) is used. It is
created by starting with an all-one mask, then masking out the matching token
positions.

Table 2. Illustration of information flow for the different decoding schemes. Conven-
tions follow Table 1. In NAR decoding, no mask is used; this is equivalent to using an
all-one mask. ”. . . ” pertains to elements y3 to yT−1

(a) left-to-right AR mask

[B] y1 y2 . . . yT

y1 1 0 0 0 0
y2 1 1 0 0 0
. . . 1 1 1 . . . 0
yT 1 1 1 1 0
[E] 1 1 1 1 1

(b) NAR mask

[B]

y1 1
y2 1
. . . 1
yT 1
[E] 1

(c) cloze mask

[B] y1 y2 . . . yT

y1 1 0 1 1 1
y2 1 1 0 1 1
. . . 1 1 1 . . . 1
yT 1 1 1 1 0
[E] 1 1 1 1 1

4 Results and Analysis

In this section, we first discuss the experimental setup including the datasets, pre-
processing methods, training and evaluation protocols, and metrics used. Next,
we present our results and compare PARSeq to SOTA methods in terms of the
said metrics and commonly used computational cost indicators.

4.1 Datasets

STR models are traditionally trained on large-scale synthetic datasets because of
the relative scarcity of labelled real data [3]. However, in recent years, the amount
of labelled real data has become sufficient for training STR models. In fact, train-
ing on real data was shown to be more sample-efficient than on synthetic data [4].
Hence, in addition to the commonly used synthetic training datasets MJSynth
(MJ) [25] and SynthText (ST) [23], we also use real data for training. Specifi-
cally, we use COCO-Text (COCO) [61], RCTW17 [54], Uber-Text (Uber) [73],
ArT [14], LSVT [57], MLT19 [44], and ReCTS [72]. A comprehensive discussion
about these datasets is available in Baek et al . [4]. In addition, we also use two
recent large-scale real datasets based on Open Images [30]: TextOCR [55] and
annotations from the OpenVINO toolkit [31]. More details in Appendix F.

Following prior works [3], we use IIIT 5k-word (IIIT5k) [42], CUTE80 (CUTE)
[49], Street View Text (SVT) [64], SVT-Perspective (SVTP) [46], ICDAR 2013
(IC13) [27], and ICDAR 2015 (IC15) [26] as the datasets for evaluation. Baek



10 D. Bautista, R. Atienza

et al . [3] provides an in-depth discussion of these datasets. We use the case-
sensitive annotations of Long and Yao [39] for IIIT5k, CUTE, SVT, and SVTP.
Note that IC13 and IC15 have two versions of their respective test splits com-
monly used in the literature—857 and 1,015 for IC13; 1,811 and 2,077 for IC15.
To avoid confusion, we refer to the benchmark as the union of IIIT5k, CUTE,
SVT, SVTP, IC13 (1,015), and IC15 (2,077).

These six benchmark datasets only have a total of 7,672 test samples. This
amount pales in comparison to benchmark datasets used in other vision tasks
such as ImageNet [18] (classification, 50k samples) and COCO [35] (detection,
40k samples). Furthermore, the said datasets largely contain horizontal text only,
as shown in Figure 4a, except for SVT, SVTP, and IC15 2,077 which contain
a number of rotated text. In the real world, the conditions are less ideal, and
captured text will most likely be blurry, vertically-oriented, rotated, or even
occluded. In order to have a more comprehensive comparison, we also use the
test sets of more recent datasets, shown in Figure 4b, such as COCO-Text (9.8k
samples; low-resolution, occluded text), ArT [14] (35.1k samples; curved and
rotated text), and Uber-Text [73] (80.6k samples; vertical and rotated text).

(a) Samples from the benchmark datasets (b) Samples from Uber, COCO, ArT

Fig. 4. Sample test images from the datasets used

4.2 Training Protocol and Model Selection

All models are trained in a mixed-precision, dual-GPU setup using PyTorch DDP
for 169,680 iterations with a batch size of 384. Learning rates vary per model
(Appendix G.2). The Adam [29] optimizer is used together with the 1cycle [56]
learning rate scheduler. At iteration 127,260 (75% of total), Stochastic Weight
Averaging (SWA) [24] is used and the 1cycle scheduler is replaced by the SWA
scheduler. Validation is performed every 1,000 training steps. Since SWA aver-
ages weights at the end of each epoch, the last checkpoint at the end of training
is selected. For PARSeq, K = 6 permutations are used (Section 4.4). A patch
size of 8× 4 is used for PARSeq and ViTSTR. More details are in Appendix G.

Label preprocessing is done following prior work [53]. For training, we set
a maximum label length of T = 25, and use a charset of size C = 94 which
contains mixed-case alphanumeric characters and punctuation marks.

Image preprocessing is done like so: images are first augmented, resized,
then finally normalized to the interval [−1, 1]. The set of augmentation opera-
tions consists primarily of RandAugment [16] operations, excluding Sharpness.
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Invert is added due to its effectiveness in house number data [15]. GaussianBlur
and PoissonNoise are also used due to their effectiveness in STR data augmen-
tation [1]. A RandAugment policy with 3 layers and a magnitude of 5 is used.
RGB images are used, which are resized unconditionally to 128×32 pixels.

4.3 Evaluation Protocol and Metrics

All experiments are performed on an NVIDIA Tesla A100 GPU system. Reported
mean±SD values are obtained from four replicates per model. A t-test (α = 0.05)
is used to determine if model differences are statistically-significant. There can be
multiple best results in a column if the differences are not statistically-significant.
PARSeq results are obtained from the same model using two different decoding
schemes: PARSeqA denotes AR decoding with one refinement iteration, while
PARSeqN denotes NAR decoding with two refinement iterations (ablation study
in Appendix H).

Word accuracy is the primary metric for STR benchmarks. A prediction
is considered correct if and only if characters at all positions match.

Charset may vary at inference time. Subsets of the training charset can
be used for evaluation. Specifically, the following charsets are used: 36-character
(lowercase alphanumeric), 62-character (mixed-case alphanumeric), and 94-char-
acter (mixed-case alphanumeric with punctuation). In Python, these correspond
to array slices [:36], [:62], and [:94] of string.printable, respectively.

4.4 Ablation on training permutations vs test accuracy

As discussed in Section 3.2, training on all possible permutations is not feasible
in practice due to the exponential increase in computational requirements. We
instead sample a number of permutations from the pool of all possible permuta-
tions. Table 3 shows the effect of the number of training permutations on the test
accuracy for all decoding schemes. With K = 1, only the left-to-right ordering
is used and the training simplifies to the standard AR modeling. In this setup,
NAR decoding does not work at all, while AR decoding works well as expected.
Meanwhile, the refinement or cloze accuracy is at a dismal 71.14% (this is very
low considering that the ground truth itself is used as the initial prediction). All
decoding schemes start to perform satisfactorily only at K >= 6. This result
shows that PLM is indeed required to achieve a unified STR model. Intuitively,
NAR decoding will not work when training on just the forward and/or reverse
orderings (K <= 2) because the variety of training contexts is insufficient. NAR
decoding relies on the priors for each character which could only be sufficiently
trained if all characters in the charset naturally exist as the first character of a
sequence. Ultimately, K = 6 provides the best balance between decoding accu-
racy and training time. The very high cloze accuracy (∼94%) of our internal LM
highlights the advantage of jointly using image features and language context for
prediction refinement. After all, the primary input signal in STR is the image,
not the language context.
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Table 3. 94-char word accuracy (real training data) on the benchmark vs number of
permutations (K) used for training PARSeq. No refinement iterations were used for
both AR and NAR decoding. cloze acc. pertains to the word accuracy of one refinement
iteration. It was measured by using the ground truth label as the initial prediction

K AR acc. NAR acc. cloze acc. Training hours

1 93.04 0.01 71.14 5.86
2 93.48 22.69 94.55 7.30
6 93.34 92.22 94.81 8.48

12 92.91 91.71 94.59 10.10
24 92.67 91.72 94.36 13.53

4.5 Comparison to state-of-the-art (SOTA)

We compare PARSeq to popular and recent SOTA methods. In addition to the
published results, we reproduce a select number of methods for a fair compari-
son [3]. In Table 6, most reproduced methods attain higher accuracy compared
to the original results. The exception is ABINet (around 1.4% decline in com-
bined accuracy) which originally used a much longer training schedule (with pre-
training of 80 and 8 epochs for LM and VM, respectively) and additional data
(WikiText-103). For both synthetic and real data, PARSeqA achieves the highest
word accuracies, while PARSeqN consistently places second or third. When real
data is used, all reproduced models attain much higher accuracy compared to
the original reported results, while PARSeqA establishes new SOTA results.

In Table 4, we show the mean accuracy for each charset. When synthetic
data is used for training, there is a steep decline in accuracy from the 36- to the
62- and 94-charsets. This suggests that diversity of cased characters is lacking in
the synthetic datasets. Meanwhile, PARSeqA consistently achieves the highest
accuracy on all charset sizes for both synthetic and real training data. Finally
in Table 5, PARSeq is the most robust against occlusion and text orientation
variability. Appendix J contains more experiments on arbitrarily-oriented text.
Altogether, bigger charsets and more challenging large-scale test datasets provide
a more stringent evaluation and reveal wider performance gaps between methods.

Figure 5 shows the cost-quality trade-offs in terms of accuracy and commonly
used cost indicators like parameter count, FLOPS, and latency. PARSeq-S is the
base model used for all results, while -Ti is its scaled down variant (details in
Appendix D). Note that for PARSeq, the parameter count is fixed regardless of
the decoding scheme. PARSeq-S achieves the highest mean word accuracy and
exhibits very competitive cost–quality characteristics across the three indicators.
Compared to ABINet and TRBA, PARSeq-S uses significantly less parameters
and FLOPS. In terms of latency (details in Appendix I), PARSeq-S with AR
decoding is slightly slower than TRBA, but is still significantly faster than ABI-
Net. Meanwhile, PARSeq-Ti achieves a much higher word accuracy vs CRNN
in spite of similar parameter count and FLOPS. PARSeq-S is Pareto-optimal,
while -Ti is a compelling alternative for low-resource applications.
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Table 4. Mean word accuracy on the benchmark vs evaluation charset size

Method Train data 36-char 62-char 94-char

CRNN S 83.2±0.2 56.5±0.3 54.8±0.2
ViTSTR-S S 88.6±0.0 69.5±1.0 67.7±1.0
TRBA S 90.6±0.1 71.9±0.9 69.9±0.8
ABINet S 89.8±0.2 68.5±1.1 66.4±1.0

PARSeqN S 90.7±0.2 72.5±1.1 70.5±1.1
PARSeqA S 91.9±0.2 75.5±0.6 73.0±0.7

CRNN R 88.5±0.1 87.2±0.1 85.8±0.1
ViTSTR-S R 94.3±0.1 92.8±0.1 91.8±0.1
TRBA R 95.2±0.2 93.7±0.1 92.5±0.1
ABINet R 95.2±0.1 93.7±0.1 92.4±0.1

PARSeqN R 95.2±0.1 93.7±0.1 92.7±0.1
PARSeqA R 96.0±0.0 94.6±0.0 93.3±0.1

Table 5. 36-char word accuracy on large-scale and more challenging datasets

Test datasets and # of samples

Method
Train ArT COCO Uber Total
data 35,149 9,825 80,551 125,525

CRNN S 57.3±0.1 49.3±0.6 33.1±0.3 41.1±0.3
ViTSTR-S S 66.1±0.1 56.4±0.5 37.6±0.3 47.0±0.2
TRBA S 68.2±0.1 61.4±0.4 38.0±0.3 48.3±0.2
ABINet S 65.4±0.4 57.1±0.8 34.9±0.3 45.2±0.3

PARSeqN S 69.1±0.2 60.2±0.8 39.9±0.5 49.7±0.3
PARSeqA S 70.7±0.1 64.0±0.9 42.0±0.5 51.8±0.4

CRNN R 66.8±0.2 62.2±0.3 51.0±0.2 56.3±0.2
ViTSTR-S R 81.1±0.1 74.1±0.4 78.2±0.1 78.7±0.1
TRBA R 82.5±0.2 77.5±0.2 81.2±0.3 81.3±0.2
ABINet R 81.2±0.1 76.4±0.1 71.5±0.7 74.6±0.4

PARSeqN R 83.0±0.2 77.0±0.2 82.4±0.3 82.1±0.2
PARSeqA R 84.5±0.1 79.8±0.1 84.5±0.1 84.1±0.0
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Fig. 5. 94-char mean word accuracy (real training data) vs computational cost. P-S
and P-Ti are shorthands for PARSeq-S and PARSeq-Ti, respectively. For TRBA and
PARSeqA, FLOPS and latency correspond to mean values measured on the benchmark



14 D. Bautista, R. Atienza

Table 6. Word accuracy on the six benchmark datasets (36-char). For Train data:
Synthetic datasets (S) - MJ [25] and ST [23]; Benchmark datasets (B) - SVT, IIIT5k,
IC13, and IC15; Real datasets (R) - COCO, RCTW17, Uber, ArT, LSVT, MLT19,
ReCTS, TextOCR, and OpenVINO; ”*” denotes usage of character-level labels. In our
experiments, bold indicates the highest word accuracy per column. 1Used with SCAT-
TER [36]. 2SynthText without special characters (5.5M samples). 3LM pretrained on
WikiText-103 [41]. Combined accuracy values are available in Appendix K

Test datasets and # of samples

Method
Train IIIT5k SVT IC13 IC15 SVTP CUTE
data 3,000 647 857 1,015 1,811 2,077 645 288

P
u
b
li
s
h
e
d

R
e
s
u
lt
s

PlugNet [43] S 94.4 92.3 – 95.0 – 82.2 84.3 85.0
SRN [69] S 94.8 91.5 95.5 – 82.7 – 85.1 87.8

RobustScanner [70] S,B 95.4 89.3 – 94.1 – 79.2 82.9 92.4
TextScanner [62] S* 95.7 92.7 – 94.9 – 83.5 84.8 91.6
AutoSTR [71] S 94.7 90.9 – 94.2 81.8 – 81.7 –
RCEED [17] S,B 94.9 91.8 – – – 82.2 83.6 91.7
PREN2D [67] S 95.6 94.0 96.4 – 83.0 – 87.6 91.7
VisionLAN [66] S 95.8 91.7 95.7 – 83.7 – 86.0 88.5
Bhunia et al. [8] S 95.2 92.2 – 95.5 – 84.0 85.7 89.7

CVAE-Feed.1 [7] S 95.2 – – 95.7 – 84.6 88.9 89.7
STN-CSTR [11] S 94.2 92.3 96.3 94.1 86.1 82.0 86.2 –

CRNN [4] S 84.3 78.9 – 88.8 – 61.5 64.8 61.3

ViTSTR-B [2] S2 88.4 87.7 93.2 92.4 78.5 72.6 81.8 81.3
TRBA [4] S 92.1 88.9 – 93.1 – 74.7 79.5 78.2

ABINet [21] S3 96.2 93.5 97.4 – 86.0 – 89.3 89.2

E
x
p
e
r
im

e
n
t
s

CRNN S 91.2±0.2 85.7±0.7 92.1±0.7 90.9±0.5 74.4±1.0 70.8±0.9 73.5±0.6 78.7±0.7

ViTSTR-S S 94.0±0.2 91.7±0.4 95.1±0.7 94.2±0.7 82.7±0.1 78.7±0.1 83.9±0.6 88.2±0.6

TRBA S 96.3±0.2 92.8±0.9 96.3±0.3 95.0±0.4 84.3±0.1 80.6±0.2 86.9±1.3 91.3±1.6

ABINet S 95.3±0.2 93.4±0.2 97.1±0.4 95.0±0.3 83.1±0.3 79.1±0.2 87.1±0.6 89.7±2.3

PARSeqN (Ours) S 95.7±0.2 92.6±0.3 96.3±0.4 95.5±0.6 85.1±0.1 81.4±0.1 87.9±0.9 91.4±1.5

PARSeqA (Ours) S 97.0±0.2 93.6±0.4 97.0±0.3 96.2±0.4 86.5±0.2 82.9±0.2 88.9±0.9 92.2±1.2

CRNN R 94.6±0.2 90.7±0.4 94.1±0.4 94.5±0.3 82.0±0.2 78.5±0.2 80.6±0.3 89.1±0.4

ViTSTR-S R 98.1±0.2 95.8±0.4 97.6±0.3 97.7±0.3 88.4±0.4 87.1±0.3 91.4±0.2 96.1±0.4

TRBA R 98.6±0.1 97.0±0.2 97.6±0.3 97.6±0.2 89.8±0.4 88.7±0.4 93.7±0.3 97.7±0.2

ABINet R 98.6±0.2 97.8±0.3 98.0±0.4 97.8±0.2 90.2±0.2 88.5±0.2 93.9±0.8 97.7±0.7

PARSeqN (Ours) R 98.3±0.1 97.5±0.4 98.0±0.1 98.1±0.1 89.6±0.2 88.4±0.4 94.6±1.0 97.7±0.9

PARSeqA (Ours) R 99.1±0.1 97.9±0.2 98.3±0.2 98.4±0.2 90.7±0.3 89.6±0.3 95.7±0.9 98.3±0.6

5 Conclusion

We adapted PLM for STR in order to learn PARSeq, a unified STR model
capable of context-free and -aware decoding, and iterative refinement. PARSeq
achieves SOTA results in different charset sizes and real-world datasets by jointly
conditioning on both image and text representations. By unifying different de-
coding schemes into a single model and taking advantage of the parallel com-
putations in Transformers, PARSeq is optimal on accuracy vs parameter count,
FLOPS, and latency. Due to its extensive use of attention, it also demonstrates
robustness on vertical and rotated text common in many real-world images.
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