
When Counting Meets HMER:
Counting-Aware Network for Handwritten

Mathematical Expression Recognition

Bohan Li1,2∗, Ye Yuan1∗, Dingkang Liang2, Xiao Liu1, Zhilong Ji1,
Jinfeng Bai1, Wenyu Liu2, and Xiang Bai2‡

1 Tomorrow Advancing Life
{yuanye phy}@hotmail.com,{jizhilong}@tal.com

{ender.liux,jfbai.bit}@gmail.com
2 Huazhong University of Science and Technology
{bohan1024,dkliang,liuwy,xbai}@hust.edu.cn

Abstract. Recently, most handwritten mathematical expression recog-
nition (HMER) methods adopt the encoder-decoder networks, which di-
rectly predict the markup sequences from formula images with the at-
tention mechanism. However, such methods may fail to accurately read
formulas with complicated structure or generate long markup sequences,
as the attention results are often inaccurate due to the large variance of
writing styles or spatial layouts. To alleviate this problem, we propose
an unconventional network for HMER named Counting-Aware Network
(CAN), which jointly optimizes two tasks: HMER and symbol counting.
Specifically, we design a weakly-supervised counting module that can pre-
dict the number of each symbol class without the symbol-level position
annotations, and then plug it into a typical attention-based encoder-
decoder model for HMER. Experiments on the benchmark datasets for
HMER validate that both joint optimization and counting results are
beneficial for correcting the prediction errors of encoder-decoder mod-
els, and CAN consistently outperforms the state-of-the-art methods. In
particular, compared with an encoder-decoder model for HMER, the ex-
tra time cost caused by the proposed counting module is marginal. The
source code is available at https://github.com/LBH1024/CAN.

Keywords: Handwritten mathematical expression recognition · Atten-
tion mechanism · Counting

1 Introduction

Handwritten mathematical expression recognition (HMER) is an important task
of document analysis, which has broad applications including assignment grad-
ing, digital library service, and office automation. Despite the great successes of
the current OCR systems, HMER still remains a very challenging problem due
to the complex structures of formulas or irregular writings.

∗Authors contribute equally. ‡Corresponding author.

https://github.com/LBH1024/CAN

2 B. Li et al.

𝑑𝑦

𝑑𝑥
=

1

𝑑𝑥
𝑑𝑦

𝑑𝑦

𝑑𝑥
=

1

𝑑𝑥

(a) (b)

Symbol Counting
Input Image Attention Map Result

Existing Framework

Existing Framework
+ Symbol Counting

“d”: 4
“x”: 2

“1”: 1
“=”: 1

“y”: 2

“\frac”: 3

Fig. 1. (a) Illustration of the symbol counting task. (b) Comparison between the exist-
ing framework (e.g., DWAP [40]) and the proposed framework (CAN). By visualizing
the attention map, we can observe that the existing framework misses the denominator
“dy” while our CAN correctly locate it after using symbol counting.

Encoder-decoder architectures are extensively used in the recent HMER ap-
proaches [1,31,40], which formulate HMER as an image-to-sequence translation
problem. Given a handwritten formula, such methods predict its correspond-
ing markup sequence (e.g., LaTeX) with the attention mechanism. However,
encoder-decoder models often cannot guarantee the accuracy of attention, espe-
cially when the structure of a handwritten formula is complicated or the markup
sequence is long.

In this paper, we propose an unconventional method for improving the ro-
bustness of the encoder-decoder models for HMER. We argue that counting
and HMER are two complementary tasks, and using counting can improve the
performance of HMER. In this community, object counting [12,15] has been in-
tensively studied, but has seldom been applied in the OCR area. Our intuition
includes two aspects: 1) symbol counting (as illustrated in Fig. 1(a)) is able to
provide the symbol-level position information, which can make the attention re-
sults more accurate. 2) The counting results, representing the number of each
symbol class, can serve as additional global information to promote recognition
accuracy.

Specifically, we design a weakly-supervised counting module named MSCM,
which can be easily plugged into existing encoder-decoder networks and opti-
mized jointly in an end-to-end manner. With this counting module, an encoder-
decoder model can be better aware of each symbol’s position, as shown in Fig.
1(b). It is worth noticing that the proposed counting module just needs original
HMER annotations (LaTeX sequences) without extra labeling work. We combine
our counting module with a typical encoder-decoder model (e.g., DWAP [40]),
proposing a unified network for HMER named Counting-Aware Network (CAN).
We test it on the benchmark datasets and observe that both HMER and symbol
counting gain obvious and consistent performance improvement. In particular,

When Counting Meets HMER: Counting-Aware Network for HMER 3

compared with the original model, the extra time cost brought by MSCM is
marginal.

In summary, the main contributions of this paper are two-fold. 1) To the
best of our knowledge, we are the first to bring symbol counting into HMER and
reveal the relevance and the complementarity of HMER and symbol counting. 2)
We propose a new method that jointly optimizes symbol counting and HMER,
which consistently improves the performance of the encoder-decoder models for
HMER.

To be specific about the performance, with adopting DWAP [40] as the base-
line network, our method achieves state-of-the-art (SOTA) recognition accuracy
on the widely-used CROHME dataset (57.00% on CROHME 2014, 56.06% on
CROHME 2016, 54.88% on CROHME 2019). Moreover, with adopting the latest
SOTAmethod ABM [1] as the baseline network, CAN achieves new SOTA results
(57.26% on CROHME 2014, 56.15% on CROHME 2016, 55.96% on CROHME
2019). This indicates that our method can be generalized to various existing
encoder-decoder models for HMER and boost their performance.

2 Related Work

2.1 HMER

Traditional HMER methods usually take a three-step approach: a symbol seg-
mentation step, a symbol recognition step, and a grammar-guided structure anal-
ysis step. Classic classification techniques such as HMM [8,11,29], Elastic Match-
ing [2, 26] and Support Vector Machines [10] are mainly used in the recognition
step. In the structure analysis step, formal grammars are elaborately designed to
model the 2D and syntactic structures of formulas. Lavirotte et al. [13] propose
to use graph grammar to recognize mathematical expression. Chan et al. [3] in-
corporate correction mechanism into a parser based on definite clause grammar
(DCG). However, limited feature learning ability and complex grammar rules
make the traditional methods far to meet real-world application.

Recently, deep learning has rapidly boosted the performance of HMER. The
mainstream framework is the encoder-decoder network [1, 5, 24, 30, 31, 40, 42,
43, 46]. Deng et al. [5] first apply an attention-based encoder-decoder model
in HMER, inspired by its success in image caption task [34]. Zhang et al. [43]
also present a similar model named WAP. In their model, they apply a FCN
as the encoder and utilize the coverage attention, which is the sum of all past
attention weights, to alleviate the lack of coverage problem [25]. Wu et al. [30,31]
focus on the pair-wise adversarial learning strategy to improve the recognition
accuracy. Later, Zhang et al. [42] devise a tree-based decoder to parse formulas.
At each step, a parent and child node pair is generated and the relation between
parent node and child node reflects the structure type. Bi-directional learning
has been proven effective to improve model recognition performance [23]. Zhao
et al. [46] design a bi-directionally trained transformer framework and Bian et
al. [1] propose an bi-directional mutual learning network. They further prove
bi-directional learning can also significantly improve the HMER performance.

4 B. Li et al.

Backbone
…

…
…

…

Feature Map
HxWx684

CCAD

MSCM

4.5 3.0 2.3 2.2 1.1 0.9

Counting Vector
1xC

Counting
Vector

“d”: 4.5 “\frac”: 3.0 “y”: 2.3

“1”: 1.1 “=”: 0.9

......

“x”: 2.2

\frac { d y } y } }

Counting Map
HxWxC

Attention Map
HxW

Fig. 2. Structure of the proposed CAN, which consists of a backbone network, a multi-
scale counting Module (MSCM) and a counting-combined attentional decoder (CCAD).

2.2 Object Counting

Object counting can be roughly divided into two categories, detection-based
and regression-based. The detection-based methods [17, 21] obtain the number
by detecting each instance. The regression-based methods [15,33] learn to count
by regressing a density map, and the predicted count equals the integration of
the density map. To improve the counting accuracy, multi-scale strategy [44],
attention mechanism [39] and perspective information [35] are widely adopted
in the regression-based methods. Nevertheless, both detection-based and den-
sity map regression-based methods need the object position annotations (fully-
supervised), such as box-level [17,21] and point-level [15,33,44] annotations. To
relieve the expensive and laborious labeling work, several approaches [27,36] that
only use count-level annotations (weakly-supervised) are proposed. And they find
that the visualized feature map can accurately reflect the object regions. Differ-
ent from most of the previous counting modules that are category specifically
(e.g., crowd counting), our counting module is designed for multi-class object
counting since formulas usually contains various symbols. In the OCR area, Xie
et al. [32] propose a counting-based loss function mainly designed for scene texts
(words or text-lines), while our model can exploit the counting information of
more complicated texts (e.g., mathematical expressions) at both the feature level
and the loss level.

3 Methodology

3.1 Overview

As shown in Fig. 2, our Counting-Aware Network (CAN) is a unified end-to-end
trainable framework that comprises a backbone, a multi-scale counting mod-
ule (MSCM) and a counting-combined attentional decoder (CCAD). Follow-
ing DWAP [40], we apply DenseNet [9] as the backbone. Given a gray-scale

When Counting Meets HMER: Counting-Aware Network for HMER 5

…

…
…

…
…

…
…

…

ReLU Element-wise Average

Feature Map
HxWx684

Counting Map
HxWxC

Counting Vector
1x𝐶

GAP Linear Linear

Sum Pooling

…

…
…

…

Counting Map
HxWxC

Sum Pooling

Multi-Scale Counting Module (MSCM)

Sigmoid Channel-wise Product

3x3&BN

5x5&BN
Channel

Attention

1x1

1x1

Channel
Attention

A

A

Fig. 3. Structure of the proposed multi-scale counting module (MSCM).

image X ∈ RH
′
×W

′
×1, the backbone is first used to extract 2D feature map

F ∈ RH×W×684, where H
′

H = W
′

W = 16. The feature map F will be used by both
the MSCM and the CCAD. The counting module MSCM is used to predict the
number of each symbol class and generate the 1D counting vector V that rep-
resents the counting results. The feature map F and the counting vector V will
be fed into the CCAD to get predicted output.

3.2 Multi-Scale Counting Module

In this part, we present the detail of the proposed multi-scale counting module
(MSCM), which is designed to predict the number of each symbol class. Specif-
ically, as depicted in Fig. 3, MSCM consists of multi-scale feature extraction,
channel attention and sum-pooling operator. Formula images usually contain
various sizes of symbols due to different writing habits. Single kernel size can
not effectively handle the scale variations. To this end, we first utilize two paral-
lel convolution branches to extract multi-scale features by using different kernel
sizes (set to 3 × 3 and 5 × 5). Following the convolution layer, the channel
attention [7] is adopted to enhance the feature information further. Here, we

choose one of the branches for simple illustration. Let us denote H ∈ RH×W×C
′

as the extracted feature map from the convolution (3 × 3 or 5 × 5) layer. The
enhanced feature S can be written as:

Q = σ(W1(G(H)) + b1), (1)

S = Q⊗ g(W2Q+ b2), (2)

where G is the global average pooling. σ and g(·) refer to ReLU and sigmoid
function, respectively. ⊗ denotes channel-wise product and W1, W2, b1, b2 are
trainable weights.

After getting the enhanced feature S, we use a 1 × 1 convolution to reduce
the channel number from C

′
to C, where C is the number of symbol classes.

6 B. Li et al.

Coverage
Attention

HxW

…

…
…

…

Feature Map
HxWx684

Counting Vector
1x𝐶

…

…
…

…

Hidden State
1x256

Linear&
Softmax

Linear

Tanh

Element-wise Sum

Spatial-wise Product

Transformed Feature
HxWx512

𝑦𝑡

Linear&
Softmax

Positional
Encoding
HxWx512

Linear

Linear Linear

Linear

Counting-Combined Attentional Decoder (CCAD)

Linear

1x1

GRU

11x11

𝐸(𝑦𝑡−1)
1x256

Fig. 4. Structure of the proposed counting-combined attentional decoder (CCAD).

Ideally, the symbol counting result should mainly calculate from the foreground
(symbols), i.e., the response of the background should be close to zero. Thus,
following the 1×1 convolution, we utilize a sigmoid function to yield the value in a
range of (0,1) to generate counting map M ∈ RH×W×C . For each Mi ∈ RH×W ,
it is supposed to effectively reflect the position of the i-th symbol class, as shown
in Fig. 2. In this sense, each Mi is actually a pseudo density map, and we can
utilize sum-pooling operator to obtain counting vector V ∈ R1×C :

Vi =

H∑
p=1

W∑
q=1

Mi,pq (3)

Here, Vi ∈ R1×1 is the predicted count of the i-th class symbol. It is notewor-
thy that the feature maps of different branches contain different scale information
and are highly complementary. Thus, we combine the complementary counting
vectors and use the average operator to generate the final result Vf ∈ R1×C ,
which is then fed into the decoder CCAD.

3.3 Counting-Combined Attentional Decoder

The structure of our counting-combined attentional decoder (CCAD) is shown in
Fig. 4. Given the 2D feature map F ∈ RH×W×684, we first use a 1×1 convolution
to change the number of channel and get transformed feature T ∈ RH×W×512.
Then, to enhance model’s awareness of spatial position, we use a fixed absolute
encoding P ∈ RH×W×512 to represent different spatial positions in T . Specif-
ically, we adopt the spatial positional encoding [20], which independently uses
sine and cosine functions with different frequencies for both spatial coordinates.

During the decoding process, when decoding at step t, we pass the embedding
of symbol yt−1 into a GRU cell [4] to get a hidden state ht ∈ R1×256. With the

When Counting Meets HMER: Counting-Aware Network for HMER 7

transformed feature T and the spatial encoding P, we can then get the attention
weights αt ∈ RH×W as follows:

et = wT tanh(T + P +WaA+Whht) + b, (4)

αt,ij = exp(et,ij)/

H∑
p=1

W∑
q=1

et,pq, (5)

where w, b, Wa, Wh are trainable weights and coverage attention A is the sum
of all past attention weights.

Applying spatial-wise product to the attention weights αt and the feature
map F , we can get context vector C ∈ R1×256. In most of the previous HMER
methods, they predict yt only using the context vector C, the hidden state ht

and the embedding E(yt−1). Actually, C just corresponds to a local region of the
feature map F . And we argue that ht and E(yt−1) also lack global information.
Considering that the counting vector V is calculated from a global counting per-
spective, which can serve as additional global information to make the prediction
more accurate, we combine them together to predict yt as follows:

p(yt) = softmax(wT
o (WcC +WvV +Wtht +WeE) + bo, (6)

yt ∼ p(yt), (7)

where wo, bo, Wc, Wv, Wt, We are trainable weights.

3.4 Loss Function

The overall loss function consists of two parts and is defined as follows:

L = Lcls + Lcounting, (8)

where Lcls is a common-used cross entropy classification loss of the predicted
probability p(yt) with respect to its ground-truth. Denoting the counting ground
truth of each symbol class as V̂, Lcounting is a smooth L1 [22] regression loss
defined as follows:

Lcounting = smoothL1(V, V̂) (9)

4 Experiments

4.1 Datasets

CROHME Dataset [18] is the most widely-used public dataset in the field
of HMER, which is from the competition on recognition of online handwrit-
ten mathematical expressions (CROHME). The CROHME training set contains
8836 handwritten mathematical expressions, and there are three testing sets:

8 B. Li et al.

Fig. 5. Some example images from the HME100K dataset.

CROHME 2014, 2016, 2019 with 986, 1147, and 1199 handwritten mathemati-
cal expressions, respectively. The number of symbol classes C is 111, including
“sos” and “eos”. In the CROHME dataset, each handwritten mathematical ex-
pression is stored in InkML format, which records the trajectory coordinates of
handwritten strokes. We convert the handwritten stroke trajectory information
in the InkML files into image format for training and testing.

HME100K Dataset [37] is a real scene handwritten mathematical expres-
sion dataset, consisting of 74,502 images for training and 24,607 images for test-
ing. The number of symbol classes C is 249 including “sos” and “eos”. These
images are from tens of thousands of writers, mainly captured by cameras. Con-
sequently, HME100K is more authentic and realistic with variations in color,
blur, and complicated background. Some example images are shown in Fig. 5.

4.2 Implementation Details

The proposed CAN is implemented in PyTorch. We use a single Nvidia Tesla
V100 with 32GB RAM to train our model with batch size 8 and the Adadelta op-
timizer [38]. The learning rate starts from 0 and monotonously increases to 1 at
the end of the first epoch and decays to 0 following the cosine schedules [45]. For
the CROHME dataset, the total training epoch is set to 240, and we separately
present the results with and without data augmentation. Compared with previ-
ous methods, we use different data augmentation (rotation, affine, perspective,
erosion and dilation) to explore the ability of our method. For the HME100K
dataset, the total training epoch is set to 30 without data augmentation.

It is noteworthy that when counting the symbols in the handwritten mathe-
matical expression, six classes of symbols are ignored by assigning their counting
ground truth as zero because they are invisible: “sos”, “eos”, “ˆ”, “ ”, “{”, “}”.
Counting these symbols will confuse the model and bring lower accuracy.

4.3 Evaluation Metrics

Expression recognition. Expression recognition rate (ExpRate), defined as
the percentage of correctly recognized expressions, is used to evaluate the perfor-
mance of different methods on mathematical expression recognition. Moreover,
≤ 1 and ≤ 2 are also used, indicating that the expression recognition rate is
tolerable at most one or two symbol-level errors.

Symbol counting. The mean absolute error (MAE) and the mean squared
error (MSE) are the primary metrics in the object counting task. In our multi-
class symbol counting task, we use MAE and MSE to evaluate the counting

When Counting Meets HMER: Counting-Aware Network for HMER 9

Table 1. Results on the CROHME dataset. ⋆ indicates using stoke trajectory coor-
dinates annotations. † indicates our reproduced result. CAN-DWAP and CAN-ABM
represent using DWAP and ABM as the baseline respectively. Note that we use dif-
ferent data augmentation than previous methods. Our intention is to show that even
with data augmentation, our counting module can still stably improve existing HMER
methods’ performance.

Method
CROHME 2014 CROHME 2016 CROHME 2019

ExpRate↑ ≤ 1 ↑ ≤ 2 ↑ ExpRate↑ ≤ 1 ↑ ≤ 2 ↑ ExpRate↑ ≤ 1 ↑ ≤ 2 ↑
Without data augmentation
UPV [18] 37.22 44.22 47.26 - - - - - -
TOKYO [19] - - - 43.94 50.91 53.70 - - -
PAL [30] 39.66 56.80 65.11 - - - - - -
WAP [43] 46.55 61.16 65.21 44.55 57.10 61.55 - - -
PAL-v2 [31] 48.88 64.50 69.78 49.61 64.08 70.27 - - -
TAP [41]⋆ 48.47 63.28 67.34 44.81 59.72 62.77 - - -
DLA [14] 49.85 - - 47.34 - - - - -
DWAP [40] 50.10 - - 47.50 - - - - -
DWAP-TD [42] 49.10 64.20 67.80 48.50 62.30 65.30 51.40 66.10 69.10
DWAP-MSA [40] 52.80 68.10 72.00 50.10 63.80 67.40 47.70 59.50 63.30
WS-WAP [24] 53.65 - - 51.96 64.34 70.10 - - -
MAN [28]⋆ 54.05 68.76 72.21 50.56 64.78 67.13 - - -
BTTR [46] 53.96 66.02 70.28 52.31 63.90 68.61 52.96 65.97 69.14
ABM [1] 56.85 73.73 81.24 52.92 69.66 78.73 53.96 71.06 78.65

DWAP (baseline)† 51.48 67.01 73.30 50.65 63.30 70.88 50.04 65.39 69.39
CAN-DWAP (ours) 57.00 74.21 80.61 56.06 71.49 79.51 54.88 71.98 79.40

ABM (baseline)† 56.04 73.10 79.90 53.36 70.01 78.12 53.71 71.23 78.23
CAN-ABM (ours) 57.26 74.52 82.03 56.15 72.71 80.30 55.96 72.73 80.57

With data augmentation
Li et al. [16] 56.59 69.07 75.25 54.58 69.31 73.76 - - -
Ding et al. [6] 58.72 - - 57.72 70.01 76.37 61.38 75.15 80.23

DWAP (baseline)† 57.97 73.81 79.19 55.97 71.40 79.86 56.05 72.23 79.15
CAN-DWAP (ours) 65.58 77.36 83.35 62.51 74.63 82.48 63.22 78.07 82.49

ABM (baseline)† 63.76 76.35 83.05 60.86 73.93 81.17 62.22 77.23 81.90
CAN-ABM (ours) 65.89 77.97 84.16 63.12 75.94 82.74 64.47 78.73 82.99

performance for each formula image, and then average the counting results of
all formula images to get MAEAve and MSEAve:

MAE =
1

C

C∑
i=1

|Vi − V̂i|, MSE =

√√√√ 1

C

C∑
i=1

|Vi − V̂i|2, (10)

MAEAve =
1

N

N∑
i=1

MAEi, MSEAve =
1

N

N∑
i=1

MSEi, (11)

where C denotes the number of symbol classes, N is the number of images in
the testing set, Vi and V̂i are the predicted count and its corresponding ground
truth of a symbol class respectively.

4.4 Comparison with State-of-the-Art

To demonstrate the superiority of our method, we compare it with previous
state-of-the-art (SOTA) methods. Table 1 shows the expression recognition rate

10 B. Li et al.

Input Image DWAP (Baseline) CAN-DWAP (Ours)

F (b) - F (G) F (b) - F (a)

\sum _ { n = 1 } ^ { \infty }
\frac { \cos \pi n } { n }

x ^ { 5 } + y ^ { 5 }
- 5 x y + 1 = 0

\sum _ { n = 1 } ^ { 1 0 0 0
0 } (1 0 0 0 1 - n) ^ { - 2 }

\sum _ { n = 1 } ^ { 1 0 0 0
0 0 0 0 0 1 - n) ^ { - 2 }

\log \log g

\sum _ { n = 1 } ^ { \infty }
\frac { \cos \pi } { n }

x ^ { 5 } + y ^ { 5 }
- x y + 1 = 0

Fig. 6. Some recognition cases of DWAP and CAN-DWAP.

(ExpRate) on the CROHME dataset. Most of the previous methods do not use
data augmentation, so we mainly focus on the results produced without data
augmentation.

As shown in Table 1, with adopting DWAP [40] as the baseline, CAN-DWAP
achieves SOTA results on CROHME 2014, CROHME 2016, CROHME 2019
and outperforms the latest SOTA method ABM [1] on CROHME 2016 by a
significant margin of 3.14%. Fig. 6 shows some qualitative recognition results of
DWAP and CAN-DWAP. We can observe that our method is less likely to miss
symbols or predict redundant symbols.

To further verify the effectiveness of our method, we reproduce the latest
SOTA method ABM [1] and adopt it as our baseline to construct CAN-ABM.
As shown in Table 1, CAN-ABM outperforms its baseline and achieves new
SOTA results. This indicates that our method can be generalized to various
existing encoder-decoder models for HMER and boost their performance.

4.5 Results on the HME100K Dataset

Although the CROHME dataset has been widely used and has great influence
in the field of HMER, its small size limits the performance of different meth-
ods. Hence, we further evaluate our method on the HME100K dataset, which
is nearly ten times larger than the CROHME dataset and has more variations
in color, blur, and background. The quantitative results are listed in Table 2,
CAN-DWAP and CAN-ABM largely outperform their baseline DWAP [40] and
ABM [1] respectively.

4.6 Inference Speed

To explore the efficiency of our proposed method, we evaluate its speed on the
HME100K dataset with a single Nvidia Tesla V100. As shown in Table 3, com-
pared with the baseline model, the extra parameters and FLOPs are mainly

When Counting Meets HMER: Counting-Aware Network for HMER 11

Table 2. Results on the HME100K dataset. † indicates our reproduced result. CAN-
DWAP and CAN-ABM represent using DWAP and ABM as the baseline respectively.

Method
HME100K

ExpRate↑ ≤ 1 ↑ ≤ 2 ↑
DWAP-TD [42]† 62.60 79.05 85.67

DWAP [40] (baseline)† 61.85 70.63 77.14
CAN-DWAP (ours) 67.31 82.93 89.17

ABM [1] (baseline)† 65.93 81.16 87.86
CAN-ABM (ours) 68.09 83.22 89.91

Table 3. Comparison on parameters, FLOPs, and FPS.

Method
HME100K

#Params Input size FLOPs FPS

DWAP [40] (baseline) 4.7M (1,1,120,800) 9.7G 23.3
CAN-DWAP (ours) 17.0M (1,1,120,800) 14.7G 21.7

brought by the counting module’s two convolution layers with kernels of sizes
3 × 3 and 5 × 5. As to the inference speed, the extra time cost brought by the
counting module is marginal.

4.7 Ablation Study

Component Analysis. In our method, symbol counting serves as an auxil-
iary task and influences the feature learning together with the primary task
HMER through joint optimization. Meanwhile, adding counting vector during
the decoding process also has an impact on the performance. So, to verify the
effectiveness of the three components: positional encoding, joint optimization,
and counting vector, we conduct experiments and the results are listed in Table
4. We can observe that both joint optimization and counting vector can boost
the performance to a certain degree, and adding positional encoding can also
slightly improve the recognition accuracy.

Impact of Convolution Kernel in Counting Module. In our counting
module MSCM, we adopt a multi-scale strategy by using convolution layer with
different sizes of kernels (3 × 3 and 5 × 5). To explore the impact of different
convolution kernels, we conduct experiments on CROHME 2014 with using dif-
ferent sizes of convolution kernels. As shown in Table 5, using 3 × 3 and 5 × 5
convolution kernels together achieves the best results (57.00% ExpRate, 0.033
MAEAve and 0.037 MSEAve). Using either 3×3 or 5×5 convolution kernel will
get lower counting accuracy and lower ExpRate. We think this phenomenon in-
dicates that multi-scale information obtained with different kinds of convolution
kernels can help the counting module better tackle the size variations.

Impact of Counting Vector on HMER. To explore the impact of count-
ing vector, we use the ground truth of counting vector and add different random
disturbances to it (e.g., randomly add or subtract 1) so that we can get sev-
eral counting vectors with different MAEAve and MSEAve. By providing these
counting vectors to the decoder during training and testing, we conduct several

12 B. Li et al.

Table 4. Ablation study of different components.

Method
CROHME 2014 CROHME 2016 CROHME 2019

ExpRate↑ ≤ 1 ↑ ≤ 2 ↑ ExpRate↑ ≤ 1 ↑ ≤ 2 ↑ ExpRate↑ ≤ 1 ↑ ≤ 2 ↑
DWAP [40] (baseline) 51.48 67.01 73.30 50.65 63.30 70.88 50.04 65.39 69.39
+ Positional encoding 51.88 68.12 74.21 51.00 64.06 71.37 50.96 66.14 70.48
+ Joint optimization 55.23 72.18 78.17 54.11 68.00 76.37 53.13 69.89 76.00
+ Counting vector 57.00 74.21 80.61 56.06 71.49 79.51 54.88 71.98 79.40

Table 5. Ablation study of different convolution kernels in counting module.

Method
CROHME 2014

ExpRate↑ ≤ 1 ↑ ≤ 2 ↑ MAEAve ↓ MSEAve ↓
CAN-DWAP (3 × 3) 54.92 71.26 78.07 0.048 0.046
CAN-DWAP (5 × 5) 55.53 71.88 78.58 0.044 0.043
CAN-DWAP (3 × 3 & 5 × 5) 57.00 74.21 80.61 0.033 0.037

Table 6. Ablation study of different counting vectors. ∗ indicates adding random
disturbance to counting vector. The latter counting GT with ∗ is added with more
disturbances than the former one.

Method
CROHME 2014

ExpRate↑ ≤ 1 ↑ ≤ 2 ↑ MAEAve ↓ MSEAve ↓
CAN-DWAP 57.00 74.21 80.61 0.033 0.037
CAN-DWAP (counting GT)∗ 58.28 74.92 81.02 0.027 0.025
CAN-DWAP (counting GT)∗ 60.10 76.04 81.73 0.019 0.016
CAN-DWAP (counting GT) 62.44 76.14 82.23 0.000 0.000

experiments and the results are shown in Table 6. When using the ground truth
of counting vector, the ExpRate on CROHME 2014 reaches 62.44%. As more
disturbances are added, the counting vector becomes more inaccurate, and the
ExpRate drops consequently.

Impact of HMER on Symbol Counting. Through joint optimization,
symbol counting can promote the performance of HMER. To find out whether
HMER can also promote the performance of symbol counting, we train CAN
only with the symbol counting task and compare it with CAN trained with
two tasks. As shown in Table 7, HMER can boost the performance of symbol
counting with improving MAEAve by 31.25% and MSEAve by 15.91%.

Some visual results are shown in Fig. 7. We can observe that when training
only with the symbol counting task, some symbols are wrongly located (e.g.,
“−”) or partially counted (e.g., “2”). Counting with the HMER task can alleviate
this problem by providing context-aware information, which is gained through
the context-aware decoding process in the decoder CCAD.

4.8 Case Study with Maps

In this part, we choose a typical example to visualize its counting map from
the counting module and its attention map from the decoder. As illustrated in
Fig. 8, after predicting the symbol “n”, DWAP misses the symbol “

∑
” and the

symbol “i” and directly predicts the symbol “ = ”. The missing symbol “
∑

” is
noticed later by the model when predicting the symbol “(” but the mistake has

When Counting Meets HMER: Counting-Aware Network for HMER 13

Table 7. Ablation study of HMER’s impact on symbol counting.

Method
CROHME 2014

MAEAve ↓ MSEAve ↓
Counting w/o HMER 0.048 0.044
Counting w HMER 0.033 0.037

“\frac”: 2.31 “\sqrt”: 2.26“-”: 1.06

“2”: 0.96 “z”: 0.50

“3”: 0.48

“x”: 1.27

“\frac”: 1.78 “\sqrt”: 2.89“-”: 0.91

“2”: 1.88 “z”: 0.08

“3”: 0.69

“x”: 1.89

Counting w/o HMER Counting w/ HMER

Fig. 7. Counting map generated with and without HMER task.

n } \sum _ { i =

1 } ^ { n } (

\frac { 2 i }

“2”: 2.83 “n”: 4.35“\frac”: 1.80 “i”: 1.65“\sum”: 1.10 “1”: 0.93“=”: 0.88

Attention Map

Counting Map

Prediction: … \lim _ { n \rightarrow \infty } \frac { 2 } { n } \sum _ { i = 1 } ^ { n } (\frac { 2 i } { n }) ^ { 2 } …

n = 1 } (\frac {

2 i i }

Attention Map

DWAP
(Baseline)

CAN-DWAP
(Ours)

Prediction: … \lim _ { n \rightarrow \infty } \frac { 2 } { n = 1 } (\frac { 2 i i } { n }) ^ { 2 } …

Fig. 8. Counting map and attention map of DWAP and CAN-DWAP.

already happened in this sequential decoding process. A redundant symbol “i”
is also wrongly predicted, and the attention map shows that this mistake is due
to the model’s repeated attention on the symbol “i”.

In contrast, our method CAN-DWAP predicts the formula correctly. From
the counting map, we can see that almost all symbols are accurately located (note
that we do not use symbol-level position annotations). And the predicted count
of each symbol class, which is calculated by summing each counting map, is very
close to its ground truth. These phenomenons demonstrate that by counting

14 B. Li et al.

Input Image CAN-DWAP (Ours) Ground Truth

\sqrt { a \sqrt { - a } } = \sqrt { -
a ^ { 2 } } = j \sqrt { a ^ { 2 } }

\sqrt { a } \sqrt { - a } = \sqrt { -
a ^ { 2 } } = j \sqrt { a ^ { 2 } }

\frac { 1 } { 2 } (1 -
\sqrt { \frac { \gamm

a } { 1 + \sqrt { 0 } } })

\frac { 1 } { 2 } (1 -
\sqrt { \frac { \gamma }
{ 1 + \gamma _ { 0 } } })

\sqrt { \alpha ^ { 2 }
- \beta ^ { 2 } } t

\sqrt { \alpha ^ { 2 }
- \beta ^ { p } t }

Fig. 9. Some failure cases of our CAN-DWAP.

each symbol class, the model becomes more aware of each symbol, especially
their positions. As a result, the model has more accurate attention results (seen
from the attention map) during the decoding process and is less likely to miss
or predict redundant symbols.

4.9 Limitation

Despite the significant performance improvement brought by symbol counting,
the variations in writing styles still cause some recognition problems and cannot
be solved very well with symbol counting, as shown in Fig. 9. Moreover, since
we do not explicitly model structure grammar, our method may make some
mistakes when extreme fine structure perception ability is needed.

5 Conclusion

In this paper, we design a counting module MSCM, which can perform sym-
bol counting just relying on the original HMER annotations (LaTeX sequences).
By plugging this counting module into an attention-based encoder-decoder net-
work, we propose an unconventional end-to-end trainable network for HMER
named CAN, which jointly optimizes HMER and symbol counting. Experiments
on the benchmark datasets for HMER validate three main conclusions. 1) Sym-
bol counting can consistently improve the performance of the encoder-decoder
models for HMER. 2) Both joint optimization and counting results contribute to
this improvement. 3) HMER can also increase the accuracy of symbol counting
through joint optimization.

Acknowledgements

This work was done when Bohan Li was an intern at Tomorrow Advancing
Life, and was supported in part by the National Natural Science Foundation of
China 61733007 and the National Key R&D Program of China under Grant No.
2020AAA0104500.

When Counting Meets HMER: Counting-Aware Network for HMER 15

References

1. Bian, X., Qin, B., Xin, X., Li, J., Su, X., Wang, Y.: Handwritten mathematical ex-
pression recognition via attention aggregation based bi-directional mutual learning.
In: Proc. of the AAAI Conf. on Artificial Intelligence. pp. 113–121 (2022)

2. Chan, K.F., Yeung, D.Y.: Elastic structural matching for online handwritten al-
phanumeric character recognition. In: Proc. of Intl. Conf. on Pattern Recognition.
vol. 2, pp. 1508–1511 (1998)

3. Chan, K.F., Yeung, D.Y.: Error detection, error correction and performance eval-
uation in on-line mathematical expression recognition. Pattern Recognition 34(8),
1671–1684 (2001)

4. Cho, K., van Merrienboer, B., Gulcehre, C., Bougares, F., Schwenk, H., Bengio, Y.:
Learning phrase representations using rnn encoder-decoder for statistical machine
translation. In: Conference on Empirical Methods in Natural Language Processing
(2014)

5. Deng, Y., Kanervisto, A., Ling, J., Rush, A.M.: Image-to-markup generation with
coarse-to-fine attention. In: Proc. of Intl. Conf. on Machine Learning. pp. 980–989
(2017)

6. Ding, H., Chen, K., Huo, Q.: An encoder-decoder approach to handwritten math-
ematical expression recognition with multi-head attention and stacked decoder.
In: Proc. of International Conference on Document Analysis and Recognition. pp.
602–616 (2021)

7. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proc. of IEEE Intl.
Conf. on Computer Vision and Pattern Recognition. pp. 7132–7141 (2018)

8. Hu, L., Zanibbi, R.: Hmm-based recognition of online handwritten mathematical
symbols using segmental k-means initialization and a modified pen-up/down fea-
ture. In: Proc. of International Conference on Document Analysis and Recognition.
pp. 457–462 (2011)

9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected
convolutional networks. In: Proc. of IEEE Intl. Conf. on Computer Vision and
Pattern Recognition. pp. 4700–4708 (2017)

10. Keshari, B., Watt, S.: Hybrid mathematical symbol recognition using support vec-
tor machines. In: Proc. of International Conference on Document Analysis and
Recognition. vol. 2, pp. 859–863 (2007)

11. Kosmala, A., Rigoll, G., Lavirotte, S., Pottier, L.: On-line handwritten formula
recognition using hidden markov models and context dependent graph grammars.
In: Proc. of International Conference on Document Analysis and Recognition. pp.
107–110 (1999)

12. Laradji, I.H., Rostamzadeh, N., Pinheiro, P.O., Vazquez, D., Schmidt, M.: Where
are the blobs: Counting by localization with point supervision. In: Proc. of Euro-
pean Conference on Computer Vision. pp. 547–562 (2018)

13. Lavirotte, S., Pottier, L.: Mathematical formula recognition using graph grammar.
In: Document Recognition V. vol. 3305, pp. 44–52 (1998)

14. Le, A.D.: Recognizing handwritten mathematical expressions via paired dual loss
attention network and printed mathematical expressions. In: Proc. of IEEE Intl.
Conf. on Computer Vision and Pattern Recognition Workshops. pp. 566–567 (2020)

15. Li, Y., Zhang, X., Chen, D.: CSRNet: Dilated convolutional neural networks for
understanding the highly congested scenes. In: Proc. of IEEE Intl. Conf. on Com-
puter Vision and Pattern Recognition (2018)

16 B. Li et al.

16. Li, Z., Jin, L., Lai, S., Zhu, Y.: Improving attention-based handwritten mathemat-
ical expression recognition with scale augmentation and drop attention. In: Proc.
of International Conference on Frontiers in Handwriting Recognition. pp. 175–180
(2020)

17. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.:
Ssd: Single shot multibox detector. In: Proc. of European Conference on Computer
Vision. pp. 21–37 (2016)

18. Mouchere, H., Viard-Gaudin, C., Zanibbi, R., Garain, U.: Icfhr 2014 competition
on recognition of on-line handwritten mathematical expressions (crohme 2014).
In: Proc. of International Conference on Frontiers in Handwriting Recognition. pp.
791–796 (2014)

19. Mouchère, H., Viard-Gaudin, C., Zanibbi, R., Garain, U.: Icfhr2016 crohme: Com-
petition on recognition of online handwritten mathematical expressions. In: Proc.
of International Conference on Frontiers in Handwriting Recognition. pp. 607–612
(2016)

20. Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A., Tran, D.:
Image transformer. In: Proc. of Intl. Conf. on Machine Learning. pp. 4055–4064
(2018)

21. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-
tection with region proposal networks. Proc. of Advances in Neural Information
Processing Systems 28 (2015)

22. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence 39(06), 1137–1149 (2017)

23. Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: Aster: An attentional scene
text recognizer with flexible rectification. IEEE Transactions on Pattern Analysis
and Machine Intelligence 41(9), 2035–2048 (2018)

24. Truong, T.N., Nguyen, C.T., Phan, K.M., Nakagawa, M.: Improvement of end-to-
end offline handwritten mathematical expression recognition by weakly supervised
learning. In: Proc. of International Conference on Frontiers in Handwriting Recog-
nition. pp. 181–186 (2020)

25. Tu, Z., Lu, Z., Liu, Y., Liu, X., Li, H.: Modeling coverage for neural machine
translation. In: Proc. of the Association for Computational Linguistics. pp. 76–85
(2016)

26. Vuong, B.Q., He, Y., Hui, S.C.: Towards a web-based progressive handwriting
recognition environment for mathematical problem solving. Expert Systems with
Applications 37(1), 886–893 (2010)

27. Wang, C., Zhang, H., Yang, L., Liu, S., Cao, X.: Deep people counting in extremely
dense crowds. In: Proc. of ACM Multimedia. pp. 1299–1302 (2015)

28. Wang, J., Du, J., Zhang, J., Wang, Z.R.: Multi-modal attention network for hand-
written mathematical expression recognition. In: Proc. of International Conference
on Document Analysis and Recognition. pp. 1181–1186 (2019)

29. Winkler, H.J.: Hmm-based handwritten symbol recognition using on-line and off-
line features. In: IEEE International Conference on Acoustics, Speech, and Signal
Processing Conference Proceedings. vol. 6, pp. 3438–3441 (1996)

30. Wu, J.W., Yin, F., Zhang, Y.M., Zhang, X.Y., Liu, C.L.: Image-to-markup gener-
ation via paired adversarial learning. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. pp. 18–34 (2018)

31. Wu, J.W., Yin, F., Zhang, Y.M., Zhang, X.Y., Liu, C.L.: Handwritten mathemati-
cal expression recognition via paired adversarial learning. International Journal of
Computer Vision 128(10), 2386–2401 (2020)

When Counting Meets HMER: Counting-Aware Network for HMER 17

32. Xie, Z., Huang, Y., Zhu, Y., Jin, L., Liu, Y., Xie, L.: Aggregation cross-entropy
for sequence recognition. In: Proc. of IEEE Intl. Conf. on Computer Vision and
Pattern Recognition. pp. 6538–6547 (2019)

33. Xu, C., Liang, D., Xu, Y., Bai, S., Zhan, W., Bai, X., Tomizuka, M.: Autoscale:
Learning to scale for crowd counting. International Journal of Computer Vision
pp. 1–30 (2022)

34. Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R., Zemel, R.,
Bengio, Y.: Show, attend and tell: Neural image caption generation with visual
attention. In: Proc. of Intl. Conf. on Machine Learning. pp. 2048–2057 (2015)

35. Yan, Z., Yuan, Y., Zuo, W., Tan, X., Wang, Y., Wen, S., Ding, E.: Perspective-
guided convolution networks for crowd counting. In: Porc. of IEEE Intl. Conf. on
Computer Vision (2019)

36. Yang, Y., Li, G., Wu, Z., Su, L., Huang, Q., Sebe, N.: Weakly-supervised crowd
counting learns from sorting rather than locations. In: Proc. of European Confer-
ence on Computer Vision (2020)

37. Yuan, Y., Liu, X., Dikubab, W., Liu, H., Ji, Z., Wu, Z., Bai, X.: Syntax-aware
network for handwritten mathematical expression recognition. In: Proc. of IEEE
Intl. Conf. on Computer Vision and Pattern Recognition. pp. 4553–4562 (2022)

38. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701 (2012)

39. Zhang, A., Yue, L., Shen, J., Zhu, F., Zhen, X., Cao, X., Shao, L.: Attentional
neural fields for crowd counting. In: Porc. of IEEE Intl. Conf. on Computer Vision
(2019)

40. Zhang, J., Du, J., Dai, L.: Multi-scale attention with dense encoder for hand-
written mathematical expression recognition. In: Proc. of Intl. Conf. on Pattern
Recognition. pp. 2245–2250 (2018)

41. Zhang, J., Du, J., Dai, L.: Track, attend, and parse (tap): An end-to-end framework
for online handwritten mathematical expression recognition. IEEE Transactions on
Multimedia 21(1), 221–233 (2018)

42. Zhang, J., Du, J., Yang, Y., Song, Y.Z., Wei, S., Dai, L.: A tree-structured decoder
for image-to-markup generation. In: Proc. of Intl. Conf. on Machine Learning. pp.
11076–11085 (2020)

43. Zhang, J., Du, J., Zhang, S., Liu, D., Hu, Y., Hu, J., Wei, S., Dai, L.: Watch,
attend and parse: An end-to-end neural network based approach to handwritten
mathematical expression recognition. Pattern Recognition 71, 196–206 (2017)

44. Zhang, Y., Zhou, D., Chen, S., Gao, S., Ma, Y.: Single-image crowd counting
via multi-column convolutional neural network. In: Proc. of IEEE Intl. Conf. on
Computer Vision and Pattern Recognition (2016)

45. Zhang, Z., He, T., Zhang, H., Zhang, Z., Xie, J., Li, M.: Bag of freebies for training
object detection neural networks. arXiv preprint arXiv:1902.04103 (2019)

46. Zhao, W., Gao, L., Yan, Z., Peng, S., Du, L., Zhang, Z.: Handwritten mathe-
matical expression recognition with bidirectionally trained transformer. In: Proc.
of International Conference on Document Analysis and Recognition. pp. 570–584
(2021)

