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1 The Detailed Modifications to Four-category Methods

The training objective of these four-category methods (EAST [15], PSENet [9],
ContourNet [12] ATRR [11]) is defined in Eq. (1), where Ltl is the loss for text
localization (TL) process and Lgp is the loss for geometric prediction (GP) pro-
cess. Without special introduction, we use the loss function in the corresponding
paper to formulate Ltl and Lgp.

L = Ltl + Lgp (1)

1.1 The Modification details

The Modification to TL-SEG + GP-REG method EAST [15] constructs
a parallel branch. The segmentation branch predicts the shrunk polygons (TL
process) and the regression branch regresses the distance to four borders (GP
process).

Modification Details. 1) Shared TL process. Firstly, we fuse the ground-
truth shrink polygon maps of tampered and real-world texts through element-
wise addition. Then, we construct a single segmentation branch for fused shrink
polygon map prediction. Thus, the segmentation branch only locates the text
regions without classifying the tampered and real-world texts. Finally, an em-
bedding branch is introduced for classification. The embedding branch learns
pixel-level embedding features in the training stage. To be specific, we update
the mean of tampered and real-world embedding features in the training stage
to represent these two classes. In the testing stage, we classify the tampered and
real-world texts through calculating the distance from shrink polygons to the
two-class mean embedding features. 2) Separated TL process. We use two differ-
ent segmentation branches to predict the shrunk polygon maps of tampered and
real-world texts respectively. 3) Shared GP process. Similarly, we firstly fuse the
ground-truth distance regression maps of tampered and real-world texts through
element-wise addition. Then, a single distance regression branch is implemented
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to rebuild both tampered and real-world texts. 4) Separated GP process. We
use two different regression branches to predict the distance regression maps of
tampered and real-world texts respectively.

Training Details. 1) Shared TL process. In this implementation, Ltl =
Lsp + Lem, where Lsp is the loss for fused shrink polygon map, and Lem is the
embedding loss used in PAN [10]. 2) For separated TL/GP process, we firstly
double the original prediction branches to generate the prediction for tampered
and real-world texts respectively. Then we add the losses from both branches to
train the network. 3) For shared GP process, the fused ground-truth distance
map is used to guide the geometric learning.

The Modification to TL-SEG + GP-SEG method PSENet [9] predicts
shrink polygons with different scales in TL and GP process. Specially, the shrink
polygon map with minimum scale provides the coarse localization and the shrink
polygon with other scales determines the final geometric information of text
regions.

Modification Details. 1) For shared TL/GP process, we combine the cor-
responding ground-truth shrink polygon maps of the tampered and real-world
texts to the single shrink polygon map (using element-wise addition), and use
a single segmentation head for prediction. 2) In contrast, for separated TL/GP
process, we use two different segmentation heads to predict the corresponding
shrink polygon maps of tampered and real-world texts respectively.

Training Details. 1) For shared TL/GP process, the loss is calculated be-
tween the corresponding fused ground-truth shrink polygon maps and predicted
shrink polygon maps. 2) For separated TL/GP process, the loss function of
TL/GP process consists of two parts: Ttl/gp = Ttl/gp,tamper + Ttl/gp,real, where
Ttl/gp,tamper and Ttl/gp,real are losses for tampered and real-world texts respec-
tively in TL/GP process.

The Modification to TL-REG + GP-SEG method. As a method inspired
from Mask R-CNN [4], ContourNet [12] contains two parts: region proposal
network (RPN) and segmentation head. Firstly, in the TL process, RPN coarsely
provides region of interests (RoIs). Then, the segmentation head predicts the
contour points for geometric prediction.

Modification Details. 1) Shared TL process. As RPN naturally has the
capability for multi-class prediction, we simply modify the output channel in the
classification layer and use a same proposal regression layer for both tampered
and real-world texts. 2) Separated TL process. We use two independent RPNs
to localize tampered and real-world texts respectively. Specially, each RPN only
needs to classify two classes (the background class + tampered/real-world class),
and only calculate the regression loss of class-matched proposals in the related
RPN. 3) Shared GP process. We simply use a single segmentation head to predict
the contour points of both tampered and real-world texts. 4) Separated GP
process. We use two independent segmentation heads to predict the contour
points for tampered and real-world texts respectively.
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Training Details. 1) For shared TL process, a simple RPN loss is used
to formulate Ltl. 2) For separated TL process, Ltl = Lrpn,tamper + Lrpn,real.
Lrpn,tamper and Lrpn,real are RPN loss [4] for tampered and real-world texts
respectively. 3) For shared GP process, Lgp only focuses on whether the pixel is
a contour point without considering the class difference between tampered and
real-world texts. 4) For separated GP process, Lgp = Lgp,tamper + Lgp,real +
0.1 ∗ Lrs. Lgp,tamper and Lgp,real are class-balanced cross-entropy losses [12] for
tampered segmentation head and real-world segmentation head respectively. To
explicitly distinguish the characteristics of tampered and real-world texts, Lrs

aims to suppress the activation of real-world contour points in tampered segmen-
tation head, and activation of tampered contour points in real-world segmenta-
tion head. To be specific, Lrs is a cross-entropy loss and guides the tampered
segmentation head to predict real-world contour points as the background class.
Similarly, Lrs also guides the real-world segmentation head to predict tampered
contour points as the background class. In the testing stage, the class-specific
contour points are used to represent tampered or real-world texts respectively.

The Modification to TL-REG + GP-REG method To simplify the struc-
ture of ATRR [11] and improve its generalization, we use several convolutional
layers to replace the original RNN-based prediction layer. To be specific, we
firstly reduce the size of RoIs from H ×W to 1×W . Then, we use two convo-
lutional layers with channel W + 1 to regress the distance to top and bottom
contour points in each column. Specially, the additional channel means that no
contour points exist in the current column. During the inference, we sequentially
link the contour points to reconstruct the text instances.

Modification Details. For shared and separated TL process, the modifi-
cation of ATRR [11] is identical to previous detailed ContourNet [12]. For GP
process, 1) shared GP process means that we use a single regression head to pre-
dict the distance to contour points for both tampered and real-world texts, while
2) in the separated GP process, we construct two independent regression heads
for tampered and real-world texts respectively. Specially, we find that using Lrs

in separated GP brings no improvement to the performance. As the distance
regression aims to perceive the global semantic information (e.g. shape of texts),
the identical semantics do not introduce new information. Thus, we simply fuse
the loss of tampered and real-world regression heads to formulate Lgp without
implementing Lrs.

1.2 The S3R Strategy on Four-category Methods

We visualize the modified structure of four-category methods under S3R strategy
in Fig. 1. To be specific, 1) we use the Head1 and Head2 for TL prediction in
EAST [15], which use shrink polygon maps to represent real-world and tampered
texts respectively. Head3 is constructed to predict the geometric information
of both real-world and tampered texts (including four distance and one angle
maps). 2) For PSENet [9], we directly construct two heads to predict the shrink
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Fig. 1. The modified structure of four-category methods under S3R strategy. C is the
channel of output features. W is the width of the input RoI features. Box refinement
is used to optimize the proposals [11].

polygon maps of different scales (seven scales) for real-world and tampered texts
respectively. 3) For ContourNet [12], we use Head1 (Region Proposal Network)
for both real-world and tampered texts to predict location information. Head2
and Head3 are used to predict the contour points in two orthogonal directions
for real-world and tampered texts respectively. 4) For ATRR [11], we share the
Head1 and Head2 for both real-world and tampered texts to predict location
and geometric information respectively.

2 Tampered-IC13 Dataset

Dataset Acquisition 1) The generation of paired tampered texts. We inte-
grated a total number of 1551 text instances with more than 1 character from
the IC13 training (737) and testing set (814), and these 1551 texts are regarded
as source texts. The content of paired tampered texts is word with the opposite
meaning or the similar number of characters as the source texts. 2) Tampering
operation. Compared with traditional methods, deep generative methods require
much less human cost in the real application, being welcome in the era of big
data. SRNet [13] is used in our text tampering process. To train a powerful
tampering network, we generate 50k paired synthetic training samples based on
the prepared source-tampered word pairs. SRNet [13] is trained using 1 2080Ti
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Table 1. The detection results of EAST with/without pre-training.

TL Accuracy

Pre-train R-T P-T F-T R-R P-R F-R mF

EAST
- 69.97 70.23 69.94 27.32 50.46 35.45 52.70
✓ 74.54 70.25 72.33 40.23 60.90 48.45 60.39

GPU for 10w iterations. Finally, we use ground-truth bounding box annotations
to crop the text patches from IC13 images, and use our well-trained SRNet to
generate tampered text patches. 3) Refinement. Firstly, the coarse tampered re-
sults are generated by placing tampered text patches back to the original image.
Considering that some hard samples obtain low-quality visualization, then, we
use photoshop (PS) software to refine the results. In the end, a total of 507 out
of 849 text instances in the training set and 488 out of 1095 text instances in
the test set are marked as tampered classes.

Diversity. The diversity of the dataset is reflected in the following two aspects.
1) The diversity of text styles. Due to the different scenes in which the texts
in Tampered-IC13 are distributed, correspondingly, the text fonts are also more
diverse. In addition, the text instances in the dataset range from book subscript
texts to large advertising slogans, showing a variety of font sizes. 2) The diversity
of background texture. There are a large number of complex textures such as
fences and grass in the background area in the dataset, which poses a greater
challenge to the discriminative ability of the model.

3 Experiment

3.1 The Effectiveness of Pre-training

As the most common trick in STD methods for performance boosting, we claim
that “the pre-training trick is also suitable for TSTD task”. To be specific, we
firstly use SynthText [3] to pre-train EAST [15] and then finetune the model
on Tampered-IC13. As the tampered texts are not included in the pre-training
stage, we fix the parameter of tampered branches and only update them in the
finetune stage. As shown in Tab. 1, the model implemented with pre-training
process provides significant improvement in both tampered and real-world detec-
tion results. To explore the reason for the impressive improvement, we visualize
the convergency process in the fine-tuning stage in Fig. 2. The global semantic
learning (e.g. text position, etc) in backbone helps to converge the network in
the fine-tuning stage, achieving a faster and better convergency compared with
the model trained from scratch.
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Fig. 2. The comparisons about convergency between the model with/without pre-
training stage.

Table 2. The detection results of models with/without introducing parallel-branch fea-
ture extractor. Specially, EAST [15] and PSENet [9] are pre-trained on the SynthText
[3] and MLT [1] respectively for a better convergency.

Accuracy

Frequency R-T P-T F-T R-R P-R F-R mF

EAST [15]
- 74.54 70.25 72.33 40.23 60.90 48.45 60.39
✓ 75.15 73.21 74.17 44.04 62.74 51.75 62.96

PSENet [9]
- 83.10 83.61 83.35 42.55 60.76 50.05 66.70
✓ 83.91 84.95 84.43 43.38 62.38 51.17 67.80

ContourNet [12]
- 91.45 86.68 88.99 54.80 77.88 64.33 76.66
✓ 91.85 88.43 90.11 56.61 75.83 64.83 77.47

ATRR [11]
- 90.63 84.60 87.52 54.63 76.74 63.83 75.68
✓ 90.84 86.10 88.40 55.13 77.08 64.29 76.35

3.2 The Effectiveness of Parallel-branch Feature Extractor

The Quantitative Analysis. A detailed comparison conducted on four-category
models is shown in Tab. 2. To be specific, the proposed parallel-branch feature ex-
tractor effectively improves the detection performance (mF) by 2.57% in EAST
[15], 1.1% in PSENet [9], 0.81% in ContourNet [12] and 0.67% in ATRR [11]
respectively. Besides, we also prove that our parallel-branch feature extractor
achieves significant performance in data-dependency reduction. Based on the
above analyses, the proposed parallel-branch feature extractor shows its signifi-
cance in TSTD task, and will give lots of insights to the TSTD community.

The Qualitative Analysis. To demonstrate how the parallel-branch feature
extractor helps the TSTD task, we use CAM [14] to visualize the activation
map in tampered class. As shown in Fig. 3, the activation map of the model
constructed with parallel-branch feature extractor performs a more consistent
activation in the tampered text areas, and is able to give a more accurate clas-
sification result.
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(a) (b) (c) (d)

Fig. 3. The qualitative analysis of proposed parallel-branch feature extractor. To be
specific, PSENet [9] is used in this visualization. (a) (b): the detection results and
activation map without parallel-branch feature extractor; (c) (d): the detection results
and activation map with parallel-branch feature extractor.

Table 3. The evaluation of generalization capability of different TSTD methods.

Accuracy

Compress Method R-T P-T F-T R-R P-R F-R MF

C23

EAST [15] 74.54 70.25 72.33 40.23 60.90 48.45 60.39
PSENet [9] 56.01 74.53 63.95 28.64 43.47 34.53 49.24
ATRR [11] 66.80 82.00 73.63 43.05 62.05 50.83 62.23

ContourNet [12] 70.26 83.74 76.41 43.38 63.44 51.52 63.97

C31

EAST [15] 65.58 68.51 67.01 37.42 56.22 44.93 55.97
PSENet [9] 51.12 71.51 59.62 25.00 37.47 29.99 44.81
ATRR [11] 61.10 81.74 69.93 42.38 54.94 47.85 58.89

ContourNet [12] 61.30 81.57 70.00 42.55 59.35 49.47 59.74

3.3 The Generalization on Detecting Low-quality Images

We use the ffmpeg compression algorithm to reduce the image quality, by setting
the compression level to obtain images of different quality. The compression
level is a positive integer from 2 to 31, and a larger value indicates a higher
compression level. In this paper, the positive integers 23 and 31 are used. A
detailed table of performance is available in Tab. 3, the detection performance
of all the models degrades with lower image quality. We suggest that future
TSTD methods should also consider the generalization capability on low-quality
images to show their significance.

4 Discussion

4.1 The Differences Between Tampered Text Classification and
Detection

There are two main differences: 1) Different targets. Referring to text recognition
and end-to-end text recognition tasks, the defense against tampered texts con-
tains two tasks: tampered text classification (TTC) [7,6,8,2] and tampered
text detection (TSTD in our work). Different from the pure classification task
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(TTC), TSTD successfully integrates text localization and tampered text clas-
sification into an end-to-end manner. 2) Better performance. Benefiting from
the gradient spread and shared features between detection and classification
branches, TSTD performs better in both detection accuracy (mF) and model
complexity (Tab. 4).

Table 4. The comparison between TTC and TSTD.

Method mF extra parameters for classification

PSENet [18] + TTC 60.2 0.92M
TSTD 64.8 0.0018M

4.2 The Differences Between Forgery Detection in Document
Images and Scene Text Images

Compared with tampered document text detection, the detection in scene image
has two challenges: 1) Background diversity. The background textures are more
complex in scene images. 2) Text diversity. The texts in scene images contain
more complex fonts, color, etc. Actually, 1) and 2) are acknowledged in general
scene text detection task. We collect tampered bill document images (SROIE [5])
following Tampered-IC13 for the quantitative analysis. There exists 33.4% gap
in mF for EAST [15]. Thus, TSTD can better reflect the robustness of tampered
text detectors and has important research value.

Table 5. The comparison between tampered document text detection and tampered
scene text detection.

Dataset R-T P-T F-T R-R P-R F-R mF

Scene (TSTD) 75.2 73.2 74.2 44.0 62.7 51.8 63.0
Document 96.6 97.2 96.9 96.3 95.7 96.0 96.4
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