
Detecting Tampered Scene Text in the Wild

Yuxin Wang1 , Hongtao Xie1⋆ , Mengting Xing1 , Jing Wang2 , Shenggao
Zhu2 , and Yongdong Zhang1

1 University of Science and Technology of China
2 Huawei Cloud

{wangyx58,metingx}@mail.ustc.edu.cn, {htxie,zhyd73}ustc.edu.cn,
{wangjing105,zhushenggao}@huawei.com

Abstract. Text manipulation technologies cause serious worries in re-
cent years, however, corresponding tampering detection methods have
not been well explored. In this paper, we introduce a new task, named
Tampered Scene Text Detection (TSTD), to localize text instances and
recognize the texture authenticity in an end-to-end manner. Different
from the general scene text detection (STD) task, TSTD further intro-
duces the fine-grained classification, i.e. the tampered and real-world
texts share a semantic space (text position and geometric structure) but
have different local textures. To this end, we propose a simple yet effec-
tive modification strategy to migrate existing STD methods to TSTD
task, keeping the semantic invariance while explicitly guiding the class-
specific texture feature learning. Furthermore, we discuss the potential
of frequency information for distinguishing feature learning, and pro-
pose a parallel-branch feature extractor to enhance the feature represen-
tation capability. To evaluate the effectiveness of our method, a new
TSTD dataset (Tampered-IC13) is proposed and released at https:

//github.com/wangyuxin87/Tampered-IC13.

Keywords: Tampered Scene Text Detection; Parallel-branch Feature
Extractor; Deep Learning;

1 Introduction

As an important media for information transmission, scene text contains amounts
of important and sensitive information [33,31,3,22]. With the development of text
manipulation technologies [34,38,21], computers can automatically tamper with
the important and sensitive content into fake information, being used in fraud,
marketing or other illegal purposes. In contrast, methods for the tampered text
detection field are currently blank. To fill such a research blank, we propose a
new task named Tampered Scene Text Detection (TSTD) in this paper. On the
basis of face forgery detection task [12,17] that tampering detection approaches
should not focus on only the tampered class, TSTD task needs to locate all the
texts in scene images and determine whether the text has been tampered with
(shown in Fig. 1).
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Fig. 1. The visualization of TSTD task. TSTD methods need to firstly locate all the
text regions and then determine whether the text has been tampered with. Left: original
image; right: tampered image. Green box: real-world texts; red box: tampered texts.

TSTD task has two main challenges: 1) Fine-grained perception. The
tampered and real-world texts share a semantic space (text position and geomet-
ric structure) but have local texture differences. As shown in Fig. 1, both tam-
pered and real-world texts exist in the same position (e.g. board, bus, etc.) and
have the identical geometric structure (e.g. horizontal/oriented posture and text
shape), while tampered texts contain different local textures (e.g. smoothness)
than real-world ones. Thus, TSTD methods need to maximize the discrimina-
tion of class-specific texture features while maintaining the semantic invariance.
2) The limited size of high-quality annotated tampered text images.
At present, the results of existing text manipulation methods [34,38] are still a
long way from practical application. In general, manual refinement in the post
processing is necessary for the visualization improvement, which inevitably re-
sults in lots of human cost. Thus, how to construct a TSTD method with low
data-dependency is necessary.

Firstly, to inherit the advantages (e.g. multi-scale text modeling [32,37], etc)
of general scene text detection (STD) methods [43,44], we argue that TSTD
methods should evolve from the STD approaches but not an entire new ar-
chitecture. In this paper, we propose a Separating Segmentation while Sharing
Regression (S3R) modification strategy to construct TSTD approaches based
on existing STD ones. The S3R strategy follows the phenomenon that tam-
pered and real-word texts only have local texture differences, but contain the
same global semantics (text position and geometric structure). In the previous
STD works, the pixel-level segmentation and distance regression show impres-
sive performance to model local texture [33] and global semantics [37] respec-
tively in STD task. Thus, the S3R strategy aims to maximize the discrimina-
tion of class-specific texture features while maintaining the semantic invariance
by sharing/separating the segmentation/regression branches between tampered
and real-world texts. On the one hand, S3R strategy separates the segmentation
branches between tampered and real-world texts, and introduces a represen-
tation suppression loss Lrs for class-specific texture feature learning. On the
other hand, S3R strategy shares the regression branch between tampered and
real-world texts to learn the invariant semantics (text position and geometric
structure). The proposed S3R strategy can be effectively embedded into any
current scene text detectors, migrating the general STD methods to TSTD task
without introducing obvious speed decrease (detailed in Sec. 4.3).
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Secondly, image manipulations are proved to leave high-frequency traces
[41,17]. However, such variant high-frequency information is difficult to be cap-
tured in the RGB domain. Thus, the network needs amounts of tampered im-
ages for the better convergency on tampered textures, resulting in a high data-
dependency. To this end, we introduce a parallel-branch feature extractor to cap-
ture the high-frequency information in frequency domain. Through aggregating
the RGB and high-frequency features, our parallel-branch feature extractor can
easily capture the high-frequency traces to assist the prediction and cause in low
data-dependency (detailed in Sec. 4.4).

In addition, a new word-level tampered TSTD dataset named Tampered-
IC13 is proposed (shown in Fig. 5). Tampered-IC13 is generated by tamper-
ing with the text in the most well-known scene text detection benchmark IC-
DAR2013 [10]. To the best of our knowledge, this is the first world-level TSTD
dataset, which will greatly promote the development of TSTD task.

The contribution of this paper can be summarized as following three points:

– We introduce a new tampered scene text detection (TSTD) task to fill the re-
search blank. Furthermore, the proposed united modification strategy (S3R)
can be embedded into any current scene text detection methods, helping
them to migrate to TSTD task without introducing obvious speed decrease.

– A parallel-branch feature extractor is constructed to capture both character-
istics in RGB and frequency domains, which is first introduced in TSTD task.
The exhaustive experiments prove its effectiveness in feature representation
enhancement and data-dependency reduction.

– We construct a new word-level TSTD dataset (Tampered-IC13) to evaluate
the effectiveness of our method, which is released publicly.

2 Related work

2.1 Scene Text Detection

Scene text detection (STD) networks [35,37,27] contain two processes: text local-
ization (TL) and geometric prediction (GP). TL process determines the position
of text instances (e.g. center point/line) and GP process aims to accurately re-
construct the text regions (e.g. contour line). Previous methods [32,33] mainly
divide the scene text detection methods based on the GP process, and classify
detection methods to GP-REG and GP-SEG ones. Here, SEG means that pixel-
level segmentation is utilized and REG refers to regressing the distance. As the
TL process is also important in the detection process and has various implemen-
tations [43,40,26], we provide a more detailed classification of STD methods by
taking the TL process into account: TL-SEG + GP-REG, TL-SEG + GP-SEG,
TL-REG + GP-SEG and TL-REG + GP-REG. In this section, we will detail
the differences among these four-category methods respectively.

TL-SEG + GP-REG methods [43,37,27,23] use pixel-level segmentation
to represent the text center location, e.g. shrinked polygons, while regressing
the distance to the border for geometric prediction. EAST [43] predicts the
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shrinked polygon for text center localization to avoid the overlapping of adjacent
texts. Then, distance regression to the four borders is utilized to reconstruct
the text regions. Similarly, to further handle the arbitrary-shaped texts, MSR
[37] regresses the distance from the closest border point to the center point.
Thus, arbitrary-shaped polygon can be obtained by clustering all the border
points. CentripetalText [23] proposes to use text kernels and centripetal shifts
to present text instances. First, it generates shrinked polygons to coarsely locate
text instances. The predicted centripetal shifts are then utilized to determine the
boundaries of text instances. FCENet [44] models text instances in the Fourier
domain via the Fourier transformation, and regresses compact Fourier signatures
to represent the contour of arbitrary-shaped texts in GP process.

TL-SEG + GP-SEG approaches [28,26,29] regard scene text detection task
as a pure pixel-level classification task. PSENet [28] predicts kernels with differ-
ent scales for text reconstruction. To handle the adjacent text instances, the ker-
nel map with minimum scale is used to separate adjacent texts, and other kernel
maps constrain the geometric representation during the reconstruction process.
To further simplify the reconstruction rules, PAN [29] only uses two different
scales of kernel maps (shrinked polygon and full text region) for text localiza-
tion and geometric prediction respectively, and proposes a low computational-
cost segmentation head for real-time text detection. Similarly, Tian et al. [26]
proposes a learnable post-processing (embedding feature) for accurate arbitrary-
shaped text representation. To be specific, pixels of the full text are assigned to
different text centers based on the pixel embedding distance.

TL-REG + GP-SEG methods [33,36,35] are mainly inspired by general
two-stage [7,20] object detection methods, which firstly regress the coarse loca-
tion of text region (e.g. text proposals). Then, pixel-level segmentation is im-
plemented in the region of interests (RoIs) for geometric prediction. To handle
the large-scale variance problem, ContourNet [33] firstly constructs an Adaptive-
RPN to perceive the shape characteristics, which is supervised under the scale-
invariance metric. Then, an orthogonal correction module is used to suppress
the false-positive contour points. To further supplement the limited correction
capability in 2D-space [33], LEMNet [36] distinguishes the false-positive samples
in a high-level semantic dimension. Besides, SPCNet [35] introduces a seman-
tic segmentation branch to enhance the feature representation capability and
re-score the box confidence.

TL-REG + GP-REG methods [45,30] have the similar architecture to TL-
REG + GP-SEG approaches. Instead of simply regarding geometric prediction
as the pure segmentation task, these methods try to regress the text-specific
geometric properties to handle the complex geometric variance. SLPR [45] uses
slide lines to regress the outline points in horizontal and vertical directions re-
spectively. To iteratively refine the contour points, ATRR[30] uses RNNs [39] to
regress the border points based on the region of interests (RoIs).

Special cases. We discuss some specific cases that can not be easily distin-
guished: 1) Compared with TL process, GP process is usually more complex in
scene text detectors. For example, LOMO [40] predicts both text segmentation
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and border distance for text reconstruction. Thus, the GP process in LOMO [40]
can be regarded as a combination of GP-SEG and GP-REG. 2) For the detec-
tion methods constructed on the one-stage detection framework [14,15] without
introducing an explicit TL process, we simply classify these methods based on
the GP process.

2.2 Scene Text Editing and Tampering Detection

Scene text editing task aims to end-to-end tamper with text content in scene
images. As deep learning becomes the most promising machine learning tool
[42,2,4,13], scene text editing has achieved remarkable improvement in recent
years. ETW [34] splits the text editing process into three sub-networks: text
conversion network, background inpainting network and fusion network. The
text transfer network learns to transform the style of input text image. Then,
the background inpainting network erases the text content in the source image
and reconstructs the background texture. Finally, the fusion network aggregates
the style-transferred text images and text erased images to generate the final
tampered sample. Based on ETW [34], SwapText [38] introduces TPS to han-
dle the severe geometric distortion cases. To edit the specific character in text
images, STEFANN [21] proposes a character-level text editing network. Though
text manipulation technologies have been well developed in recent years, methods
for tampered text detection field are almost blank. [18,11,24,1] regard tampered
text detection task as a pure classification task, and the detection process is not
included in their approaches. Benefiting from the gradient spread and shared
features between detection and classification branches, the end-to-end detection
framework is proved to be significant in both detection accuracy enhancement
and model complexity reduction [16,19]. Thus, the end-to-end tampered text
detection approaches need to be explored.

Although the face forgery detection methods achieve promising results in
capturing tampered textures, it is impossible to directly use the face-specific
texture learning (e.g. lips [6], eyes and nose [9]) to handle text-specific tampered
samples. Thus, it is necessary to explore a text-specific tampering detection
method for accurate tampered text detection.

3 Our method

In this section, we firstly introduce the proposed S3R modification strategy in
Sec. 3.1. Then, the parallel-branch feature extractor is detailed in Sec. 3.2. Fi-
nally, we introduce the proposed Tampered-IC13 dataset in Sec. 3.3.

3.1 The S3R Strategy

As tampered and real-word texts only have local texture differences but the same
global semantics (appearance and geometric structure), the S3R strategy mainly
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Fig. 2. The pipeline of our S3R strategy. TL is short for text localization process and
GP is short for geometric prediction process. TL and GP process are parallel branches
in [43,28], but are serial branches in [33,30]. P is short for prediction. Gtampered and
Greal are the ground truth of tampered and real-world texts respectively. Fusion is
the element-wise addition operation.

focuses on one point: “shall we separate the TL and GP processes of tampered
text from the real-world one?”.

As shown in the right top of Fig. 2, the shared TL/GP process means that
we aggregate the tampered and real-world ground truth in a single map and use
one TL/GP head for prediction. In contrast, separated TL/GP (right bottom
of Fig. 2) means that we use two independent heads to handle tampered and
real-world texts respectively. In general, 1) for shared TL/GP process, we firstly
aggregate the ground truth map of tampered texts Gtampered ∈ RH×W×C and
real-world texts Greal ∈ RH×W×C to a single map Gfusion ∈ RH×W×C through
element-wise addition. H, W and C mean height, width and the channel num-
ber respectively. Thus, the fused ground-truth map Gfusion guides the network
to eliminate the class difference between tampered and real-world texts. Then,
we use a single head to predict the shared feature map Pfusion, and calculate
the loss between the Pfusion and Gfusion. 2) For separated TL/GP process,
we simply use two independent heads for tampered (Ptampered) and real-world
(Preal) feature map prediction. The final loss function is the sum of the losses in
these two branches, calculated between [Ptampered, Gtampered] and [Preal, Greal]
respectively.

In S3R strategy, we use the separated TL/GP process for segmentation,
and use shared TL/GP process for regression. Specially, in order to guide the
class-specific texture learning in the segmentation branch, we introduce a rep-
resentation suppression loss Lrs in separated segmentation branches, which is
formulated in Eq. (1). Ltampered,real is the loss to suppress the representation
of tampered prediction in the real-world segmentation branch, which punishes
the tampered pixels activated in the real-world segmentation map. Similarly,
Lreal,tampered suppresses the representation of real-world prediction in tampered
segmentation branch. As the pixel-level segmentation and distance regression
shows an impressive performance in modeling local texture [33] and global se-
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Fig. 3. The structure of our parallel feature extractor. conv is the convolutional layer.
G2d is the 2d Gaussian kernel.

mantics [37], S3R helps the model to explicitly classify class-aware textures while
keeping semantic invarance (e.g. text appearance, textual shape) between tam-
pered and real-world texts (detailed in Sec. 4.3).

Lrs = Ltampered,real + Lreal,tampered (1)

3.2 The Parallel-branch Feature Extractor

Though image manipulations leave high-frequency traces [41,17] in the tam-
pered image, it is difficult for the network to capture the variant high-frequency
information in the RGB domain. According to this observation, we propose a
parallel-branch feature extractor with the goal of considering the characteristics
in both RGB and frequency domain. As shown in Fig. 3, our parallel-branch fea-
ture extractor contains two parts: frequency branch and RGB branch. Firstly,
the input image is processed by these two branches respectively. Then, the infor-
mation captured from two branches is fused by element-wise addition. Finally,
the aggregated features are sent to the backbone.

For the frequency branch, inspired from [41,17], we adopt Laplacian of Gaus-
sian (LoG) to capture high-frequency information. For input image I, a convolu-
tional layer with size k× k is firstly utilized for feature enhancement. The value
of k represents how much information can be perceived in the frequency branch,
which is an ablation study in our experiments. Then, a 2d Gaussian kernel is
used to smooth the features. Finally, a skip-connection and a 1 × 1 convolu-
tional layer are used for generating high-frequency information and dimension
alignment respectively. The detailed formulation of frequency branch is shown
in Eq. (2):

Ffre = w1×1(x− wgx) (2)

To be specific, wg is the 2d Gaussian kernel, w1×1 means the convolutional layer
with size 1× 1. x = wk×kI. I is the input image and wk×k is the convolutional
layer with size 1×1. For RGB branch, we utilize an m×m convolutional layer to
generate RGB information. In the real application, we use the first convolutional
layer in the backbone to replace our RGB branch. For example, m is set to 3 for
VGG16 [25] and 7 for ResNet50 [8] respectively.
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Fig. 4. The visualization of feature maps in parallel-branch feature extractor. (a): input
image; (b): the feature map in frequency branch; (c) the feature map in RGB branch.

Fig. 5. Some examples in Tampered-IC13. Left: original images; right: our tampered
images. The tampered texts contain a high similarity to the real-world ones.

To better understand how frequency information helps the network for pre-
diction, we visualize the extracted features from frequency branch and RGB
branch. We normalize each map to [0, 1] for better visualization. As shown in
Fig. 4, different from RGB branch mainly focuses on the text content in the RGB
domain, the frequency branch effectively captures the high-frequency character-
istics in the outline areas. By fusing the features captured from both frequency
and RGB branches, the parallel-branch feature extractor is able to learn distin-
guishing features between tampered and real-world texts.

3.3 Tampered-IC13 Dataset

The difficulty of the TSTD task lies in how the network can better distinguish the
tampered class from the real class, which puts higher requirements on the data
generation process to ensure the texture consistency and background integrity
in the tampered region. Considering that ICDAR2013 (IC13) dataset is one of
the most well-known datasets in scene text detection community during the past
five years, we use IC13 dataset as the benchmark data to generate our tampered
dataset. Some examples of Tampered-IC13 are shown in Fig. 5. The details of
Tampered-IC13 dataset are available in the supplementaries.

Dataset Challenge Benefiting from the sophisticated tampering process and
effective later interventions, the proposed Tampered-IC13 achieves high-quality
tampered text textures, consistent text-free areas and smooth transmission in
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the contour regions. Thus, it is quite a challenge to achieve the accurate detection
on Tampered-IC13 and the detection results on Tampered-IC13 can well reflect
the performance of TSTD detectors.

4 Experiment

In this section, we firstly introduce the evaluation metrics and implementation
details in Sec. 4.1 and Sec. 4.2 respectively. Next, we evaluate the effectiveness
of S3R strategy in Sec. 4.3. Finally, the performance of parallel-branch feature
extractor and some discussions are shown in Sec. 4.4 and Sec. 4.5.

4.1 Evaluation Metric

Following the general scene text detection methods, we adopt precision (P),
recall (R) and F-measure (F) to evaluate the detection results of tampered and
real-world texts. To evaluate the average performance between tampered and
real-world detection results, we propose a new mean F-measure (mF), which
is inspired by mAP [20] and is formulated in Eq. (4). Ftampered and Freal are
F-measure calculated by Eq. (3) for tampered and real-world texts respectively.
In order to treat tampered and real-world results equally, we set λ1, λ2 = 1.

F = 2× P ×R/(P +R) (3)

mF = (λ1Ftampered + λ2Freal)/2 (4)

4.2 Implementation Details

We conduct the experiments on four well-known models to evaluate the effective-
ness of our method. To be specific, EAST [43] (TL-SEG + GP-REG), PSENet
[28] (TL-SEG + GP-SEG), ContourNet [33] (TL-REG + GP-SEG) and ATRR
[30] (TL-REG + GP-REG) are used in our experiments. Specially, we simplify
the prediction head in ATRR [30] and use a convolutional layer to replace RNNs
[39] to improve its generalization. All the models are constructed based on the
publicly released code3456. As there is not a published code in ATRR [30], we
reconstruct the model based on the structure of Mask-RCNN [7]. The training
settings follow the details in the corresponding paper. The training and testing
sets in Tampered-IC13 are used to train and evaluate our model respectively.
During the inference, we resize the image to 748× 748, 736× 736, 1200× 2000
and 1200×2000 for EAST, PSENet, ContourNet and ATRR respectively, where
each size reflects the best performance in the corresponding model.

3 https://github.com/SakuraRiven/EAST
4 https://github.com/whai362/PSENet
5 https://github.com/wangyuxin87/ContourNet
6 https://github.com/facebookresearch/maskrcnn-benchmark
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Table 1. The detection performance of different modification strategies. Sep and Sha
are shorts for separated and shared. TL and GP are the TL process and GP process.
SEG+REG, SEG+SEG, REG+SEG and REG+REG mean TL-SEG+GP-REG, TL-
SEG+GP-SEG, TL-REG+GP-SEG and TL-REG+GP-REG respectively. R-T, P-T
and F-T are the recall, precision and F-measure of tampered detection results. R-R,
P-R and F-R are the recall, precision and F-measure of real-world detection results.
mF is the mean F-measure. To better understand the table, we set “separated” (Sep)
and “segmentation” (SEG) to red, and set “shared” (Sha) and “regression” (REG) to
blue.

TL GP Accuracy

Sha Sep Sha Sep R-T P-T F-T R-R P-R F-R mF

EAST [43]

(SEG+REG)

✓ ✓ 68.68 70.11 69.39 23.18 46.61 31.39 50.39
✓ ✓ 69.97 70.23 69.94 27.32 50.46 35.45 52.70
✓ ✓ 53.97 31.74 39.97 15.40 40.97 22.38 31.18

PSENet [28]

(SEG+SEG)

✓ ✓ 77.39 77.24 77.31 38.25 51.45 43.88 60.60
✓ ✓ 79.43 79.92 79.67 41.89 61.56 49.85 64.76
✓ ✓ 65.58 53.76 59.08 21.69 12.46 15.83 37.46

ContourNet [33]

(REG+SEG)

✓ ✓ 91.24 85.33 88.19 54.77 76.32 63.77 75.98
✓ ✓ 79.23 75.39 77.26 46.85 66.75 55.06 66.16

✓ ✓ 91.45 86.68 88.99 54.80 77.88 64.33 76.66

ATRR [30]

(REG+REG)

✓ ✓ 90.63 84.60 87.52 54.63 76.74 63.83 75.68
✓ ✓ 90.43 83.77 86.97 52.15 74.82 61.46 74.22

✓ ✓ 86.97 72.87 79.29 51.29 66.93 58.08 68.69

4.3 The Evaluation of S3R Strategy

The detailed modifications to four models in Tab. 1 are available in the sup-
plementary materials. As shown in Tab. 1, we summarize two conclusions: 1)
Separating the SEG branch benefits the class-specific texture learning between
tampered and real-world texts. For example, EAST, PSENet and ContourNet
obtains 2.31%(52.7% vs 50.39%), 27.30% (64.76% vs 37.46%) and 0.68% (76.66%
vs 75.98%) improvement in mF respectively. 2) Sharing the REG branches helps
the learning of invariant semantics. For example, when we shared the GP pro-
cess in EAST, there exists 21.52% improvement in the mF (52.70% vs 31.18%).
Based on the above two conclusions, our S3R strategy shows significance in both
tampered and real-world text detection. As shown in Tab. 1, the model imple-
mented with S3R strategy (separating segmentation while sharing regression)
outperforms other modification strategies by a large margin. To be specific, the
S3R strategy helps EAST [43], PSENet [28], ContourNet [33] and ATRR [30] to
obtain 52.70%, 64.76%, 76.66% and 75.68% in mF respectively.

How Does S3R Strategy Achieve Class-specific Texture Learning in
Separated Segmentation? We conduct an additional experiment to illustrate
how does S3R achieve the class-specific texture learning. Specially, ContourNet
[33] (TL-REG + GP-SEG) is used in this experiment. The results in Tab. 2
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Table 2. The evaluation of S3R strategy in class-specific texture learning. Sup is short
for representation suppression. GP is short for geometric prediction process.

Accuracy

Method Implementation R-T P-T F-T R-R P-R F-R mF

ContourNet [33]

Shared GP 91.24 85.33 88.19 54.77 76.32 63.77 75.98
Separated GP 86.35 85.66 86.00 52.12 77.62 62.36 74.18

Shared GP + Sup 91.33 85.27 88.20 54.80 77.29 64.12 76.16
Separaed GP + Sup 91.45 86.68 88.99 54.80 77.88 64.33 76.66

illustrate several conclusions: 1) Simply constructing the separated segmenta-
tion branches without representation suppression (Lrs in Eq. (1)) between two
branches is even harmful to performance (74.18% of Separated GP vs 75.98% of
Shared GP in mF). Thus, such an implicit separated structure has no capabil-
ity to learn class-specific texture features, and the extra introduced parameters
further increase the network learning difficulty. 2) By implementing a shared seg-
mentation head and only separating the segmentation map in the last convolu-
tional layer with the representation suppression, it obtains a slight improvement
in mF (76.16% of Shared GP + Sup vs 75.98% of Shared GP). The implemen-
tation of Shared GP + Sup is similar to Softmax loss, predicting multi-class
segmentation maps and suppressing the representation between each other. 3)
When we separate the segmentation head and further use the representation sup-
pression between two heads (Separated GP + Sup), the model obtains the best
results (76.66% in mF). Compared with separating only the last convolutional
layer (Shared GP + Sup), the separated segmentation heads have more powerful
capability for class-specific texture learning. Furthermore, such explicit separated
structure also benefits the model convergency (compared with Separated GP).
4) As EAST [43] and PSENet [28] segment the text regions in the entire image
rather than RoI-based prediction (e.g. shared-TL sends class-independent pro-
posals to both tampered and real-world heads), the ground-truth segmentation
maps in separated branches are mutually exclusive. Thus, the natural representa-
tion suppression in separated segmentation branches of EAST [43] and PSENet
[28] helps the model to learn class-specific texture features (Tab. 1). Based on
above analyses, the separated structure and representation suppression between
two branches together promote the class-specific texture learning, and improve
the detection performance to a new level. Specially, the implementation details
of Lrs in ContourNet [33] are shown in the supplementaries.

Why is It Important to Maintain Semantic Invariance? We infer that the
shared feature learning of global semantics helps the TSTD network converge.
As the distance regression is proved to perform well in modeling the text position
[33] and geometric structure [37], independently modeling these class-invariant
semantics will not introduce new information and the additionally introduced
parameters are harmful to the network convergency.
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Table 3. The comparison of testing speed. As the original ATRR [30] shares TL and
GP process, S3R strategy does not introduce extra computations.

Method Original (FPS) Modified (FPS)

EAST [43] 6.7 5.8
PSENet [28] 8.9 7.4
ATRR [30] 3.2 3.2

ContourNet [33] 3.7 3.6

Table 4. The comparison of parallel-branch feature extractor implemented with dif-
ferent k. Specially, EAST is pre-trained on the SynthText [5] for a better convergency.

Accuracy

kernel size (k × k) R-T P-T F-T R-R P-R F-R mF

5× 5 74.75 72.39 73.55 41.39 64.77 50.50 60.03
7× 7 75.15 73.21 74.17 44.04 62.74 51.75 62.96
9× 9 74.74 72.37 73.55 43.38 61.93 51.10 62.33

The Influence In Testing Speed We conduct several experiments to compare
the testing speed between original and our modified models. As shown in Tab. 3,
our S3R strategy only introduces a slight speed decrease to the original model.

4.4 The Effectiveness of Parallel-branch Feature Extractor

The Evaluation of k We conduct several experiments to study the relationship
between the k and the detection performance. The value of k determines how
much information can be perceived in the frequency branch. As shown in Tab. 4,
the kernel with size 7 × 7 obtains the best results. Thus, we set kernel size to
7× 7 in the later experiments.

The Effectiveness in Performance Boosting We embed parallel-branch
feature extractor into existing detection methods to evaluate its effectiveness.
As shown in Tab. 5, our parallel-branch feature extractor is able to improve
both tampered and real-world text detection results. The relative improvement
for EAST [43] and ATRR [28] are 2.57% and 0.67% in mF respectively. We
summarize the impressive improvement to that the high-frequency information
effectively assists the network to learn distinguishing features between tampered
and real-world texts. More experiments conducted on other models are available
in the supplementary materials.

The Effectiveness in Data-dependency Reduction We further reduce the
training images to evaluate our effectiveness in data-dependency reduction. As
show in Tab. 6, we summarize two conclusions: 1) Model implemented with our
parallel-branch feature extractor obtains less performance decrease with fewer
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Table 5. The detection results of models with/without introducing parallel-branch
feature extractor. Specially, EAST is pre-trained on the SynthText [5] for a better con-
vergency. The evaluation on more models are available in the supplementary materials.

Accuracy

Frequency R-T P-T F-T R-R P-R F-R mF

EAST [43]
- 74.54 70.25 72.33 40.23 60.90 48.45 60.39
✓ 75.15 73.21 74.17 44.04 62.74 51.75 62.96

ATRR [30]
- 90.63 84.60 87.52 54.63 76.74 63.83 75.68
✓ 90.84 86.10 88.40 55.13 77.08 64.29 76.35

Table 6. The evaluation of parallel-branch feature extractor in data dependency reduc-
tion. EAST [43] is used in this experiment. To ensure a better convergency, SynthText
[5] is used to pre-train the model. Half means that we only use a half of images in the
training set.

Accuracy

Frequency Data R-T P-T F-T R-R P-R F-R mF ↓mF

-
Full 74.54 70.25 72.33 40.23 60.90 48.45 60.39 -
Half 72.91 68.71 70.75 37.09 57.14 44.98 57.87 2.52

✓
Full 75.15 73.21 74.17 44.04 62.74 51.75 62.96 -
Half 73.11 71.80 72.45 41.48 59.39 49.12 60.79 2.17

training images (2.17% vs 2.52% decrease in mF). 2) Compared with the model
without implementing parallel-branch feature extractor, our method can obtain
comparable even better detection performance with only a half of training images
(60.79% vs 60.39% in mF). Based on above analyses, our parallel-branch feature
extractor effectively reduces the data dependency of the network.

4.5 Discussion

The Generalization on Detecting Low-quality Images As images on the
web have different quality, we think it is necessary to evaluate the generaliza-
tion of TSTD methods on detecting low-quality images. Specifically, we use the
ffmpeg compression algorithm to reduce the image quality. Details are available
in the supplementaries.

The Qualitative Analysis We visualize some detection results in Fig. 6. From
the first and second rows, we find that the modified four models can effectively
handle most cases in TSTD task. We further provide some failure cases to discuss
the limitation of these methods. As shown in the third row of Fig. 6, methods
implemented with TL-SEG process (EAST [43] and PSENet [28]) fail to handle
the texts with extreme ratios (word “management” and string “002101”). We
infer that the simplicity of these two methods makes them difficult to consider
the long-range geometric structure [27].
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Fig. 6. The visualization of detection results from four models. From left to right:
ground truth, EAST [43], PSENet [28], ATRR [30], ContourNet [33]. Red boxes: tam-
pered texts; green boxes: real-world texts.

Limitation In this paper, we focus on only the word-level tampered text detec-
tion and propose the relatively word-level detection method. The character-level
and line-level tampered cases are not included in this paper. As the first work
for TSTD task, we think that our word-level detection approach also gives lots
of insights to TSTD community. Furthermore, we believe the methods proposed
in this paper can also be used in character-level and line-level tampered text
detection methods, e.g. the S3R strategy and parallel-branch feature extractor.

5 Conclusion

This paper introduces a new task, named Tampered Scene Text Detection (TSTD),
to localize text instances and recognize the texture authenticity. We propose a
unified modification (S3R) strategy to migrate the general STD method to TSTD
task while keeping high detection performance and inference speed. The S3R
strategy successfully maintains the semantic invariance and explicitly guides the
class-specific texture feature learning between tampered and real-world texts.
Furthermore, a parallel-branch feature extractor is constructed for the feature
representation capability enhancement and data-dependency reduction. The ex-
haustive experiments on the proposed Tampered-IC13 demonstrate the effec-
tiveness of our methods, and will give lots of insights to the TSTD community.
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