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Abstract. Text detection and recognition are essential components of
a modern OCR system. Most OCR approaches attempt to obtain ac-
curate bounding boxes of text at the detection stage, which is used as
the input of the text recognition stage. We observe that when using
tight text bounding boxes as input, a text recognizer frequently fails to
achieve optimal performance due to the inconsistency between bounding
boxes and deep representations of text recognition. In this paper, we pro-
pose Box Adjuster, a reinforcement learning-based method for adjusting
the shape of each text bounding box to make it more compatible with
text recognition models. Additionally, when dealing with cross-domain
problems such as synthetic-to-real, the proposed method significantly
reduces mismatches in domain distribution between the source and tar-
get domains. Experiments demonstrate that the performance of end-to-
end text recognition systems can be improved when using the adjusted
bounding boxes as the ground truths for training. Specifically, on several
benchmark datasets for scene text understanding, the proposed method
outperforms state-of-the-art text spotters by an average of 2.0% F-Score
on end-to-end text recognition tasks and 4.6% F-Score on domain adap-
tation tasks.
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Fig. 1. (a) The red boxes represent the ground-truth bounding boxes, while the others
are randomly shifted. Fig.(a1) represents the recognition confidence and recognition
results with the ground-truth bounding box, while Fig.(a2) to Fig.(a4) with randomly
shifted bounding boxes. The recognition results are presented on the left of (a1) to
(a4), and the recognition confidence on the right; (b) text recognition accuracy with
adjusting widths of the ground-truth bounding boxes; (c) text recognition accuracy
with adjusting angles of the ground-truth bounding boxes.

1 Introduction

In modern society, text plays a more important role than ever before as an es-
sential tool for communication and collaboration. Meanwhile, scene text reading
has become an active research area due to its wide applications in the real world,
such as image instant translation [6,28], image search [25,30], and industrial au-
tomation [1,10].

Text detection and recognition can be roughly divided into two categories:
two-step systems and end-to-end systems. For two-step systems [33,19,2,29,26,27,16],
since detected texts are cropped from the image, detection and recognition
are two separate steps. Some of these methods first generate text proposals
using a text detection model and then recognize them with a text recogni-
tion model [11,18,7]. For end-to-end systems, many end-to-end trainable net-
works [3,4,9,15,21] have recently been proposed. [4,9,21] develop unified text
detection and recognition systems with very similar overall architectures, which
consist of a recognition branch and a detection branch. However, current models
simply use tight annotated text bounding boxes as the ground truth, ignoring the
inconsistency between bounding boxes and deep representations of text recog-
nition. So, are tight bounding boxes the most suitable for recognition tasks?
Through a series of experiments, we observe that a text recognizer frequently
fails to achieve its best performance when using tight bounding boxes as inputs.
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As shown in Fig.1(a), with suitable adjustments to the bounding boxes, we can
get higher recognition confidence and correct recognition results (see Fig.1(a3)).
As shown in Fig.1(b) and Fig.1(c), the text recognizer can perform better when
adjusting the widths or rotation angles of the ground-truth bounding boxes.
The above experiments show a certain inconsistency between bounding boxes
and deep representations of text recognition. Additionally, unlike in COCO [20],
where clipping two pixels off an object does not prevent recognition, a 1-2 pixel
error in text boxes may render the correct recognition prediction unrecoverable.
The text recognition result is more sensitive to changes in the bounding box.
To address the aforementioned problems, this paper presents a reinforcement
learning-based method for adjusting the shape of each ground-truth bounding
box so that it is more compatible with the text recognition task.

We propose a reinforcement learning-based method named Box Adjuster,
which mitigates the inconsistency between bounding boxes and deep representa-
tions of text recognition. Our method can be summarized as follows: Firstly, we
choose a range of representative text recognizers and regard the average recog-
nition confidence as a reward. Secondly, the Box Adjusting Deep Q Network
(BoxDQN) with Feature Fusion Module (FFM) is trained, which can automati-
cally adjust bounding boxes according to the text recognition reward. Finally, we
train the end-to-end scene text recognition model with the refined ground-truth
bounding boxes for better recognition. Furthermore, as a preprocessing method,
it is only applied in the process of creating training datasets. Thus, there is no
additional computational cost in the forward phase.

Additionally, the proposed Box Adjuster is beneficial for resolving cross-
domain problems such as synthetic-to-real, in which the source domain repre-
sents labeled synthetic data and the target domain represents unlabeled real
data. To prove the effectiveness and generalization of our approach, we con-
duct experiments on standard benchmarks, including ICDAR 2013 [13], ICDAR
2015 [12], ICDAR 19-ReCTS [32] and ICDAR 19-MLT [24] datasets. The pro-
posed method achieves better performance on the datasets when compared with
the existing state-of-the-art methods. Besides, we demonstrate the efficacy of
our approach on domain adaptation tasks.

Our contributions can be summarized as follows:

– We introduce the Box Adjuster, which adjusts the shape of each annotated
text bounding box to make it more compatible with text recognition models.
Besides, a text recognition-based reward is proposed to train our BoxDQN
model in order to capture optimal annotated bounding boxes.

– Our proposed Feature Fusion Module (FFM), which integrates foreground,
background, and box coordinates, considerably enhances BoxDQN in terms
of application scope and accuracy.

– Our approach is generalized and can be easily applied to boost existing
OCR systems without any additional computational cost during the infer-
ence phase. Concurrently, the proposed method outperforms state-of-the-art
text spotters by an average of 2.0% F-Score on public datasets.
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– When utilized in the cross-domain area, the proposed method significantly
mitigates inconsistency between source and target domains, resulting in an
average improvement of 4.6% for state-of-the-art text spotters.

2 Related Works

The related work mainly consists of two-step OCR systems, end-to-end OCR
systems and reinforcement learning. Please refer to the supplementary material
for a detailed description.
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Fig. 2. Overview of our proposed method Box Adjuster and the details of BoxDQN
model architecture. In order to mitigate the inconsistency between bounding boxes and
deep representations of text recognition, we utilize Box Adjuster to adjust ground-truth
bounding boxes and train the text spotter with them. BoxDQN is a method based on
reinforcement learning with the reward of recognition confidence.

3 Methodology

This paper aims to mitigate the inconsistency problem between bounding boxes
and deep representations of text recognition. A reasonable solution is to train the
detection module with suitable bounding boxes that can boost the performance
of the recognition module. Thus, the issue is how to obtain these appropri-
ate bounding boxes. As illustrated in Fig.2(a), we propose a method with the
BoxDQN model structure termed Box Adjuster for adjusting bounding boxes to



Optimal Boxes 5

obtain suitable shapes. BoxDQN accepts an initial bounding box and adjusts it
continuously throughout the loop. Then we train the text spotter with adjusted
annotated bounding boxes.

The bounding box adjustment is formulated as a sequential decision-making
process. In the decision-making process, the agent constantly interacts with the
environment and takes a sequence of actions to adjust the bounding box. As
shown in Fig.2(b), the agent chooses which action from action space to perform
based on the input of four consecutive observations. Following the environment’s
execution of the selected action, the agent receives the next state and current
reward, which can be used to guide the agent’s action policy until it achieves a
reasonable bounding box by maximising the cumulative rewards. In this section,
we first introduce the state, action space, and reward of our model, then describe
the components of BoxDQN and its training process. Finally, we detail how our
method can be applied to cross-domain problems.

3.1 State and Action Space

Based on the current state and reward, the agent chooses which action to take
from action space. So it is crucial to capture abundant information from the state.
However, one observation can only provide limited information for the agent, and
it is necessary to make full use of historical observations for making decisions.
Thus, we choose four serial observations as the state and the current state can
be defined as st={ot−3, ot−2, ot−1, ot}, where ot denotes the current observa-
tion at step t. A single observation is composed of background, foreground, and
box-coordinates, denoted by ot={background, foregroundt, box-coordinatest}.
The background area is four times the size of the initial bounding box. The
foregroundt is cropped from the background by a minimum enclosing rectangle
of the bounding box at step t. The box-coordinatest represents the coordinates
of text in background at step t. We have 16 actions in action space which are
combinations of 4 vertexes and 4 directions. As we can see from Fig.2(b), the
first action in action spaces implies that the top-left vertex of the quadrangle
moves down by one pixel.

3.2 Text Recognition-based Reward

The goal of BoxDQN is to capture appropriate bounding boxes for better recog-
nition. Therefore, a reliable reward is needed to guide the agent to automatically
adjust the bounding boxes. We select a few representative text recognition al-
gorithms, including CRNN [26], RARE [27] and others. The average recognition
confidence among them is regarded as a reward, so the reward at step t can be
formulated as rt = conft+1 − conft, where conft = Conf(foregroundt), conft
denotes the recognition confidence at step t.

conft =

NP∑
k=0

confk/max(NG, NP ), (1)
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where NP denotes the number of characters in a prediction word and NG denotes
the number of characters in a ground-truth word. The aim of reinforcement
learning is to maximize the cumulative rewards:

Gt =

T∑
k=0

γkrt+k, (2)

where γ denotes the discount factor and γ ∈ [0,1]. Ignoring the discount fac-
tor, the cumulative reward is equal to confT − conf0, where confT refers to
the recognition confidence of foreground in the terminal state, T means the
maximum number of steps and conf0 refers to the recognition confidence of
foreground in the initial state. Because conf0 is invariant and only determined
by the initial bounding box, maximizing cumulative rewards means maximizing
confT without γ.

3.3 BoxDQN Model

With the defined action space, state, and reward, the details of BoxDQN are
illustrated in Fig.2(b). The agent is composed of a feature fusion module (FFM)
and a transformer encoder [31]. It accepts a single state with four observations as
input and outputs 16 dimensional vectors, each of which specifies the appropriate
action to take. With two deep convolutional neural networks [14] and a trans-
former encoder, the FFM is proposed to integrate background, foreground, and
box-coordinates. During a bounding box adjustment, BoxDQN receives four ob-
servations and outputs the corresponding action according to the current state.
Every observation needs to be fused by the FFM successively. The feature maps
of the background and foreground are extracted from two convolution neural
networks, respectively. We concatenate two image feature maps and the position
encoding as the input of the transformer in the FFM. After all four observations
are passed through the FFM, the transformer in the agent selects an action
from the action space based on the concatenation of four fused feature maps.
The bounding box moves in response to the selected action, changing both the
box-coordinates and the minimum enclosing rectangle of the box-coordinates,
and then the next state starts.

3.4 Domain Adaptation

In many cases, due to the absence of labeled real data, we train and test mod-
els using synthetic data. However, the domain gap between synthetic and real
data degrades performance on real data. To address domain shift problems, we
propose a domain-adaptive approach based on our BoxDQN. As shown in Fig.3,
our method consists of four steps: (1) refer to the labeled synthetic data domain
as the source domain and the unlabeled real data domain as the target domain,
(2) train a text spotter with the labeled synthetic data, (3) use the trained text
spotter to generate pseudo-labels on real data and adjust the pseudo-labels by
employing the BoxDQN mentioned above, (4) finetune the text spotter with the
adjusted bounding boxes on real data.
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Fig. 3. Illustration of the pipeline with BoxDQN in the area of OCR domain adapta-
tion. We propose a solution that utilizes BoxDQN to tackle domain shift problems.

3.5 Training BoxDQN Model

We use a value-based reinforcement learning method to adjust the bounding
boxes, and the training process is presented in Algo.1. During the inner loop of
the algorithm, BoxDQN can only adjust one bounding box in a single iteration.
Thus, we crop all backgrounds from the source images by the bounding boxes in
advance. M is the number of backgrounds. Firstly, the agent selects and executes
an action according to an ϵ-greedy policy. The ϵ gradually decreases with iter-
ations from 1.0 to 0.2. Secondly, we present two methods to determine whether
the BoxDQN has reached the terminal state. Thirdly, we store a transition {st,
at, rt, st+1, Termt+1} and sample random mini-batch of transitions in replay
memory D. The at represents the action at step t and Termt+1 represents the
terminal state at step t+1, respectively. Termt+1 has two types: 0 and 1, where
0 and 1 represent termination and continuance, respectively. Finally, we refer to
the training method in the paper[23] that uses a separate network termed Q̂ for
generating the targets yj in the Q-learning update. Q represents the BoxDQN

agent and has the same network structures as Q̂. The Q̂-network parameters θ−

are only updated with the Q-network parameters θ every C steps and are held
fixed between individual updates. The parameters of Q are updated by optimiz-
ing the loss function with stochastic gradient descent. The training loss function
is defined as follows:

loss = (yj −Q(sj , aj ; θ))
2, (3)

where yj can be formulated as follows:

yj = rj + (1− Termj+1) ∗ γ ∗maxa′Q̂(a′, sj+1; θ
−). (4)
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Algorithm 1 Training procedure of the BoxDQN Model

Initialize replay memory D to capacity N
Initialize history memory H to capacity 4
Initialize action-value function Q with random weight θ
Initialize target action-value function Q̂ with weight θ− = θ
for episode = 1,M do

Initialize observation o0 according to the initial environment o0 =
{background, foreground0, box-coordinates0}
Store o0 in H four times
Initialize confidence conf0 = Conf(foreground0)
for t = 1, T do

With probability ϵ select a random action at
Otherwise select at = argmaxaQ(st, a; θ)
Execute action at, observe reward rt, new
observation ot+1 and new confidence conft+1

if conft+1 >= 1.2 ∗ conf0 or t+1==T: then
Termt+1 = 1

else
Termt+1 = 0

end
Get state st from H
Update H by using ot+1

Get state st+1 from H
Store transition (st, at, rt, st+1, T ermt+1) in D
Sample random mini-batch of transitions (sj , aj , rj , sj+1, T ermj+1) from
D
Set sj = H(j) and sj+1 = H(j + 1)

Set yj = rj + (1− Termj+1) ∗ γ ∗maxa′Q̂(a′, sj+1; θ
−)

Perform a gradient descent step on (yj − Q(aj , sj ; θ))
2 with respect to

the network paremeters θ
Every C steps reset Q̂ = Q
if Termt+1 == 1 then

break out
end

end

end

4 Experiments

4.1 Datasets

To verify the effectiveness of our method for the end-to-end text spotting meth-
ods and the classic two-step methods, we perform experiments on four different
datasets. Furthermore, we conduct domain-shift experiments on these datasets
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Fig. 4. Qualitative results of BoxDQN. Each pair in (a) is a comparison between the
original label (top) and our adjusted bounding boxes (bottom). (a-1) to (a-3) are the
results of manual ground truth, and (a-4) to (a-7) are the results on domain-shift,
whose bounding boxes are pseudo labels. (b) is a visual display of the adjustment
process of BoxDQN. The upper left corner of each image uses red numbers to indicate
the recognition confidence.

to show the robustness of our method in general scenarios. A detailed description
of the relevant datasets is given in the supplementary material.

4.2 Implementation Details

Baseline. The baseline methods are divided into two distinct categories: (1) two-
step methods and (2) end-to-end methods. For two-step methods, due to detected
texts are cropped from the image, the detection and recognition are two separate
steps. We choose EAST [33] and DBNET [19] to detect the position of the
characters, and then CRNN [26] and RARE [27] recognize the content within the
bounding boxes. For end-to-end methods, we adopt FOTS [21], ABCNET [22],
and MTS-V3 [17].

Training. A Linux workstation with 32 NVIDIA GeForce 2080Ti (11 GB)
is used in our experiments. We train the recognition models in advance on
SynthText-80k (for IC13 and IC15) and SynthText-MLT (for MLT19 and ReCTS)
as well as on the corresponding real datasets. The trained recognition models are
then used in BoxDQN training to continuously adjust and optimize the bounding
boxes. The training phase of BoxDQN costs 2 days.

Inference. We evaluate the trained BoxDQN on the training set of the cor-
responding data and adjust the bounding boxes as the new ground truth to
train the detection or spotting models, respectively. The average time taken for
BoxDQN to adjust a bounding box is 25ms. In the process of baseline methods
evaluation, we follow the official public code repository for training and testing.
The datasets in the Section.4.1 are involved in evaluation.
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4.3 Qualitative Results

Our method mainly focuses on adjusting annotated bounding boxes for better
text recognition. To verify its effectiveness, we conduct experiments on the four
datasets, i.e.IC13, IC15, MLT19 and ReCTS. We show the adjustment results of
our method on the bounding boxes of different datasets. The qualitative results
of bounding boxes in English and Chinese are represented in Fig.4. We find
that our bounding boxes can achieve higher credibility in recognition. The (a-
1) to (a-3) in Fig.4 show that our BoxDQN can adjust the bounding boxes to
make them more suitable for recognition models. It can also correct inaccurate
recognition of text in images. Furthermore, we can learn from Fig.4(b) that the
adjustment steps of BoxDQN are a step-by-step process. The incorrectly labelled
”Europcar” is gradually being correctly recognized. It is worth noting that our
recognition confidence is increasing at each step.

4.4 Quantitative Results.

To verify the robustness of our method with those baseline methods, we use the
annotated bounding boxes refined by BoxDQN to train the baseline methods.
During the quantitative evaluation, the same dataset with the original annota-
tions is also used for training the baseline methods as a comparison. Finally, we
test the F-Score metrics of our adjusted bounding boxes under recognition. The
gain in Tab.1 indicates the gain after including our BoxDQN.
Two-Step Methods. Two-step methods are those in which the detection model
and the recognition model work separately. We choose the combination of [EAST,
DBNET] for detection and [CRNN, RARE] for recognition in our experiments.
The BoxDQN enhances the bounding boxes, and the detection models are then
trained on the adjusted training part of the datasets. The trained models are
then evaluated on the test datasets, respectively. From Tab.1, when any combi-
nation of two-step pipelines is trained on our BoxDQN refined data, the metrics
obtained are greatly improved. We find that our method has a greater improve-
ment for MLT19 in Tab.1. The gain of [EAST+CRNN] on the IC15 is 1.7%,
but for the same pipeline on MLT19, the gain is 3.0%. For more complex OCR
scenarios, our method has a more significant improvement. Regardless of any
pipeline, the gain of the F-Score can obtain an improvement of at least 1.6%,
which is robust to two-step methods.
End-to-End Methods. There are some differences between the end-to-end
methods and the two-step methods, mainly in the independence of the detection
branch and the recognition branch. We adopt the bounding boxes adjusted by
BoxDQN to train the whole end-to-end models rather than the detection models
and test the appearance of each metric. Tab.2 shows the results of different end-
to-end methods. Our BoxDQN is also helpful for the end-to-end text spotting
methods, especially for ABCNET, whose gain is 3.3% and 2.6% on the MLT19
and ReCTS, respectively. The gain of the end-to-end methods is slightly lower
compared with the two-step methods. This may be due to the fact that the end-
to-end training of text spotters can slightly mitigate inconsistencies in detection
and recognition.
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Table 1. The quantitative results of our method on the two-step methods. Gain stands
for the improvement of the F-Score with and without BoxDQN. We bold the results of
each gain to highlight the improvement of the effect by BoxDQN.

Methods BoxDQN
IC13 IC15 MLT19 ReCTS

F-score Gain F-score Gain F-score Gain F-score Gain

[EAST+CRNN]
– 84.7

2.1
82.2

1.7
53.9

3.0
69.7

2.8
✓ 86.8 83.9 56.9 72.5

[EAST+RARE]
– 85.5

1.8
83.7

1.9
55.5

2.9
71.1

2.6
✓ 87.3 85.4 58.1 73.7

[DBNET+CRNN]
– 85.2

1.9
83.4

1.7
55.9

2.7
70.0

2.9
✓ 87.1 85.1 58.6 72.9

[DBNET+RARE]
– 85.4

1.8
84.7

1.6
57.2

2.4
73.4

2.1
✓ 87.2 86.3 59.6 75.5

Table 2. The quantitative results of our method on the end-to-end methods. The
metrics are the same as the Tab.1.

Methods BoxDQN
IC13 [13] IC15 [12] MLT19 [24] ReCTS [32]

F-Score Gain F-Score Gain F-Score Gain F-Score Gain

FOTS [21]
– 83.7

1.9
81.5

1.8
53.0

3.1
70.2

2.7
✓ 85.6 83.3 56.1 72.9

ABCNET [22]
– 86.8

1.6
82.4

1.7
56.2

3.3
72.5

2.6
✓ 88.4 84.1 59.5 75.1

MTS-V3 [17]
– 87.6

1.5
83.1

1.4
61.2

2.8
73.4

2.3
✓ 89.1 84.5 64.0 75.7

4.5 Domain Adaption

Taking into account the domain gap between the synthetic pretraining datasets
and the in-the-wild data, we conduct cross-domain experiments to verify the
generalization of our method. In detail, we pretrain BoxDQN on the synthetic
datasets (SynthText-80k [8] and Synthetic-MLT [24]). After that, we adopt the
pre-trained detection models on the relevant real datasets to obtain pseudo
bounding boxes. The BoxDQN adjusts the pseudo bounding boxes, and fi-
nally the recognition models work on the adjusted bounding boxes to obtain
the recognition results. We simulate in-the-wild data through unlabeled IC15
and MLT19, and verify the domain adaptability of our BoxDQN. The results
of domain adaption experiments are shown in Tab.3 and Fig.4(a-1,2,3). From
Fig.4(a-4,5,6,7), although our method has a slight visual deviation in the ad-
justment of pseudo-labels, it can improve the confidence and correct the wrong
recognition results. Tab.3 proves that our method can improve at least 4.4% in
cross-domain datasets.
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Table 3. The experiments results on the cross-domain unlabeled datasets, the anno-
tation information do not used in the datasets. We bold the gain of each pipelines.

Methods BoxDQN
IC15 [12] MLT19 [24]

F-Score Gain F-Score Gain

[EAST [33]+CRNN [26]]
– 67.1

5.4
41.3

7.0
✓ 72.5 48.3

[EAST [33]+RARE [27]]
– 68.3

5.3
42.9

6.7
✓ 73.6 49.6

[DBNET [19]+CRNN [26]]
– 68.3

5.2
42.7

5.4
✓ 73.5 48.1

[DBNET [19]+RARE [27]]
– 69.4

5.3
44.3

6.2
✓ 74.7 50.5

[FOTS [21]]
– 66.6

4.8
39.8

5.8
✓ 71.4 45.6

[ABCNET [22]]
– 69.4

4.4
44.4

5.1
✓ 73.8 49.5

[MTS-V3 [17]]
– 71.3

4.7
46.7

4.6
✓ 76.0 51.3

Table 4. Ablation study on grid search. The effect comparison under our BoxDQN
and the grid search policy. The experimental dataset is based on IC15 [12].

Methods
Grid Search BoxDQN

Precision Recall F-Score Precision Recall F-Score

[EAST [33]+CRNN [26]] 90.3 76.4 82.8 91.0 77.8 83.9
[DBNET [19]+RARE [27]] 91.9 80.3 85.7 92.5 80.8 86.3

[ABCNET [22]] 93.6 74.5 83.0 94.6 75.7 84.1
[MTS-V3 [17]] 93.5 75.2 83.4 94.8 76.2 84.5

4.6 Ablation Study

Grid Search. To verify that our BoxDQN is reasonable for adjusting annotated
bounding boxes, we compare our method with a grid search policy and include
the metric of F-Score in this experiments. In detail, we perform a grid search in
each bounding box’s four vertices in the directions of up, down, left, and right
with a step length of one pixel. The recognition models are trained in advance
and give the results with the highest confidence after 10 rounds of grid search
as the new ground truth. Refer to Tab.4 for the quantitative results. When
compared with grid search, BoxDQN can improve recognition accuracy. This
qualifies it as an appropriate bounding-box adjustment method in OCR systems
and indicates that it does not over-fit the datasets.

Only Foreground Image as Input. Our BoxDQN model adopts a FFM
that fuses the foreground, background, and coordinates from the text images.
The experimental settings in this section are the same as those in the Sec.4.2.
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Table 5. Ablation study on the DQN with only foreground image as input. The effect
between our BoxDQN and the original DQN is shown below. The dataset is IC15 [12].

Methods
DQN BoxDQN

Precision Recall F-Score Precision Recall F-Score

[EAST [33]+CRNN [26]] 90.5 77.2 83.3 91.0 77.8 83.9
[DBNET [19]+RARE [27]] 92.3 79.9 85.7 92.5 80.8 86.3

[ABCNET [22]] 94.0 74.5 83.1 94.6 75.7 84.1
[MTS-V3 [17]] 94.1 75.5 83.8 94.8 76.2 84.5

Table 6. Ablation study on the number of iterations of BoxDQN. Each row shows the
F-Score of the BoxDQN with a different iteration number. We bold the best value of
each column.

Iter [EAST+CRNN] [DBNET+RARE] [FOTS] [ABCNET] [MST-V3]

5 82.9 85.2 82.3 82.9 83.5
10 83.3 85.8 82.7 83.4 84.0
20 83.9 86.3 83.3 84.1 84.5
40 84.0 86.2 83.1 84.3 84.6

The comparison results are shown in Tab.5, demonstrating that the BoxDQN
with more prior information outperforms the classic DQN (86.3 vs. 85.7, [DB-
NET [19]+RARE [27]] row). And for all of the representative methods, our
method has a steady improvement on them. This verifies the robustness of our
BoxDQN. More importantly, with the background image as input, our model
can handle cases such as those shown in Fig.4(a-7) where the bounding box is
slightly shorter than the text transcription.
BoxDQN under Different Iterations. Since our BoxDQN is sensitive to the
times of iterations, different iterations have a great impact on the effect. We test
the BoxDQN under different iterations and compare the number of iterations
corresponding to the best BoxDQN. As shown in Tab.6, the best performance
of BoxDQN can be achieved when the number of iterations is set at 20, with
minimal resource consumption. This is the same as the number of iterations (20)
set in our experiments.

4.7 Exploration on Arbitrarily-shaped Text based on Bezier Curves

To further explore the potential of our approach, we perform experiments on
arbitrarily shaped text (TotalText [5] dataset). Our BoxDQN method requires a
text representation with a fixed number of boundary points for optimization, so
we have to convert polygon contour points that do not have a fixed number of
points to a representation that does. We can currently only convert arbitrarily-
shaped text to a fixed number of control points (8) with the help of Bezier
curves. We train our BoxDQN on the SynText150k [22] dataset which contains
150k synthetic arbitrary-shaped text annotated by Bezier curves. Then, we use
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Table 7. The quantitative results of our method on TotalText. The baseline model is
ABCNet with Bezier curves.

Methods BoxDQN
TotalText [5]
F-Score Gain

ABCNet [33]
– 61.5

2.3
✓ 63.8

BoxDQN to adjust the control points of the Bezier curve to obtain the optimal
ground truth. The rest of the experimental settings is consistent with the multi-
oriented text datasets, except for the differences mentioned above. From Tab.7,
we can find there is a considerable improvement(61.5 vs. 63.8) in recognition
performance when training with the ground-truth Bezier curves optimized by
BoxDQN. This experiment illustrates the possibility of extending our approach
to arbitrarily-shaped text if there is a more general representation of text boxes.

5 Conclusion and Future Work

In this work, we first analyze the inconsistency between bounding boxes and
text recognition, and then present a novel and general preprocessing method
called Box Adjuster, which learns the optimal distribution of the text recog-
nition module and delivers it to detection via bounding box adjustment. Our
proposed approach is employed exclusively during the training phase, with no
additional calculations during the prediction phase. More significantly, the cross-
domain problems will be alleviated by utilizing the Box Adjuster. Comprehensive
experiments have demonstrated that the proposed approach rationally addresses
the aforementioned inconsistency and significantly improves the performance of
both two-step and end-to-end text spotting approaches on standard datasets. In
the future, we hope to extend our method for arbitrary-shaped text spotting.
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