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In the supplementary material, we share further details and analysis for our
work. In Sec. 1, we provide estimates for the latency and computations costs
added when using GLASS. In Sec. 2, we discuss our recognition head selection
and further implementation details of our main method. Finally, in Sec. 3, we ex-
plore GLASS’s effect over detection performance, share results for the TextOCR
validation set, present failure cases and further explore GLASS’s contribution
across different scales.

1 GLASS Computational Cost

In Table 1 we report the number of parameters in our model’s detection branch,
GLASS component and the recognition branch. During inference, GLASS pre-
forms two main operations: (a) Sampling high-resolution crops and extracting
their local features, and (b) Fusing the global features of each detected bounding
box with its local feature counterparts.

To minimize the added computational cost, we utilize a light-weight ResNet34
backbone [2] for extracting the local features. As described in the manuscript,
we use a block-based attention for fusing the local and global feature maps. This
alleviates much of the fusion computational cost, while still benefiting overall per-
formance, as demonstrated in our experiments. Overall, the addition of GLASS
leads to an inference time increase of roughly 10%. The latency increment is
similar when incorporating GLASS into Mask TextSpotter v3 [4] and ABCNet
v2 [5] frameworks, shown in Table 1. GLASS has no effect on the computational
cost of the detector, including its mask branch, and the recognizer heads.

2 Implementation Details

2.1 Recognition Head

We follow recent art [5], and design a light-weight recognition head. The recogni-
tion head consists of 2 convolution layers, a two-layer BiLSTM encoder, and an
attention decoder [1]. The input to the first block of the recognizer, the encoder,
is the expressive feature map zfused computed by GLASS component. The loss
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Table 1. Model’s number of parameters. “FPS” column states the frames-per-
second measured for Total-Text dataset.

Method
Detection Recognition GLASS Total #

FPS
Branch Head ResNet34 Fusion Parameters

Baseline 48.8M 3.2M - - 52M 2.7
+ GLASS 48.8M 3.2M 10.5M 1.5M 64M 3.0

MTSv3 [4] 41.3M 4.0M - - 45.3M 2.3
+ GLASS 41.3M 4.0M 10.5M 1.5M 57.3M 2.6

ABCNet v2 [5] 44.7M 3.0M - - 47.7M 6.0
+ GLASS 44.7M 3.0M 10.5M 1.5M 59.7M 6.5

used to train the recognition head is the Negative Log-Likelihood (NLL) as in
[2], denoted by Lrec.

We note that our GLASS component is modular, and benefits a variety of
additional end-to-end recognition branches, including those found in Mask Text
Spotter v3 [4], and ABCNet v2 [5].

2.2 Training and Optimization

We use a ResNet50 backbone with ImageNet [7] pre-trained weights. Data aug-
mentation includes multiple scales, pixel-level augmentations (color jitter), affine
transformations and image cropping. In all of our experiments, we set GLASS
feature parameters to C = 256, H = 8, W = 32 and k = 8. The recognition head
is trained to classify 96 characters, which covers alphabets, numbers, and special
characters.

Recall that the overall loss function L used for the E2E supervised training
is given by

L = Lrbox + λ1Lmask + λ2Lrec , (1)

where the mask loss Lmask is identical to Mask RCNN [3] and Lrec is the recog-
nition loss, described in Sec. 2.1. In our experiments, we set λ1 = 0.005, and
observe that higher values hurt the E2E text recognition performance. Also, we
empirically set λ2 = 2, and the Lrbox constants are chosen as α1 = α2 = αθ = 10
and α3 = α4 = 5. During inference, we resize the longer side of the input image
to 1600 for ICDAR15 and ICDAR13 datasets and the shorter side to 1000 for
Total-Text and TextOCR datasets.

3 Further Analysis

3.1 Detection Performance

In this section, we discuss the contribution of GLASS to detection performance.
The recognition head remains unchanged throughout all experiments. The sole
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Table 2. Ablation study - Detection. This table complements paper Table 3 with
detection results. “Fusion Type” stands the fusion operator used when both feature
types are included: channel-wise concatenation and our fusion method.

Features Fusion Total-Text ICDAR15

Global Local Type R P H R P H

Baseline ✓ 85.8 90.3 88.0 83.2 87.9 85.5
Baseline + Local ✓ 85.4 88.3 86.8 66.6 81.4 73.3

Baseline + Global-Local Concat. ✓ ✓ Concat 87.5 89.3 88.4 81.1 89.6 85.2
Baseline + GLASS ✓ ✓ Ours 85.5 90.8 88.1 84.5 86.9 85.7

Table 3. Results on the TextOCR validation and test datasets. R, P, and
H refer to recall, precision and H-mean. No lexicon is used. Our method with GLASS
module outperforms Mask TextSpotter v3 on the test set, noting both approaches were
optimized on similar data, including TextOCR train data [8]. On TextOCR validation
dataset, our method with the GLASS component surpasses the baseline by a large
margin for end-to-end recognition and word spotting metrics.

Method

Validation set Test set

Detection Word
End-to-End

Word
End-to-End

R P H Spotting Spotting

MTSv3 [4] - - - - - - 50.8

Baseline 73.3 82.5 77.6 60.6 55.6 58.0 56.8
GLASS 71.5 84.3 77.4 71.3 64.8 70.4 67.1

difference are the input features used for recognition during both training and
inference. Here we present in Table 2, that contains complementary data to Table
3 of the main manuscript.

The first observation from Table 2, is that we observe a steep performance
drop when using only the local branch. This drop is expected, since when using
only the local branch for recognition, the detection backbone can not leverage
the supervised recognition as an auxiliary task, which was previously shown to
improve detection results in [6,9].

In the same vein, we see marginal differences between the baseline, which
attempts to recognize text only using the global features, and the other ap-
proaches that combine global and local information. This is mainly because the
back-propagation path and additional supervision to the detection backbone,
only occurs via the global feature branch, as can be seen in Fig. 2 in the main
manuscript. A simple channel-wise concatenation of global and local features
or using GLASS module, rows 3 and 4 respectively, shows only minor gains for
detection compared to the baseline.



4 R. Ronen et al.

MOMS

BODY SHOP

Madly British

GRAND
BAZAAR

LIM

HONGKONG

RIENDS STORE

HONGKONG

CLOSER BE MORE
LINE

SVERIGES AMBASSAD

BODY SHOP

British

GRAND

HONGKONG

STORE

HONGKONG

BE
LINE

K

SVERIGES

(a)

(b)

(c)

GRAND
BALAARSVERIGES AMBASSA

British

MOMS

BODY SHOP

HONGKONG

RIENDS STORE

HONGKONG

BE MORE
LINE

Fig. 1. Qualitative results on the Total-Text dataset. (a) Predictions of the
baseline experiment, a standard E2E text spotting framework. (b) Predictions of an
E2E framework where only the local (crop-level) features are used by the recognizer,
and (c) Predictions of our proposed configuration with the GLASS component. Poly-
gons and transcriptions in blue represent correct predictions, and red represents wrong
predictions. We observe that an E2E system trained with GLASS is capable of de-
tecting with a higher word recall, and higher recognition accuracy. We recommend
enlarging the digital version.

3.2 TextOCR Results

In Table 3, we report end-to-end text recognition and detection results on Tex-
tOCR validation dataset and end-to-end results for TextOCR test dataset. Test
set results are repeated for brevity. TextOCR validation and test datasets con-
tain a similar number of images and text instances. Incorporating GLASS module
into the baseline architecture increases the end-to-end results by a large margin
for both validation and test datasets.

3.3 Qualitative Results

Additional qualitative results from Total-Text are presented in Fig. 1. Our
method, Fig. 1c, shows high detection and recognition accuracy on curved, ro-
tated, upside down and occluded text and on a variety of fonts. It can be seen in
Fig. 1b that using only the crop-level features in the recognizer leads to a regres-
sion in both detection and recognition accuracy. In Fig. 1a we present the results
of our baseline. Although the text detection accuracy is qualitatively high, the
lack of crop-level features leads to worse recognition performance compared to
our model which uses both local and global features.
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Fig. 2. In-depth performance analysis for different scales. Different text in-
stances are over four different size groups S, M, L and XL. We analyze end-to-end
recognition performance for 3 different text scale dimensions: (a) Polygon area, (b)
Rotated bounding box width and (c) Rotated bounding box height. For all different
scale properties, GLASS increases performance over the baseline, especially on the ex-
tremities of small and large text.

3.4 In-Depth Scale Performance Analysis

We further explore the contribution of GLASS w.r.t. different sized words in
an image, and present the performance in relation to additional intrinsic scale
properties for word instances in Fig. 2. The left column in the figure presents the
histogram of all word instances and their distribution for both area, width and
height. The middle column shows the E2E Fscore over four quantiles marked
with S, M, L and XL, denoting the relative size groups for the text instances.

We note that regardless of the scale dimension on which we perform an
analysis, either area, width or height, we observe the same trend. GLASS out-
performs the baseline by up to 3 percentage points on the edges, measuring the
performance on either small or large text instances.
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Fig. 3. Failure cases of our model with GLASS component on the Total-Text
dataset. In the upper images, we see that our model fails to detect text instances with
a large space among the characters. In the second row of images, our model struggles
to detect and recognize text with irregular font.

3.5 Failure Cases

We show failure cases of our model with GLASS component and our novel ori-
entation loss in Fig. 3. We stress that our model fails to detect text instances
with a large space among the characters. It may be a result of our anchor based
Mask R-CNN detection branch. Additionally, we see that our model struggles
to detect and recognize text with irregular font. It may be resolved by training
the model on a larger dataset.
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