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Abstract. Recently, Vision-Language Pre-training (VLP) techniques
have greatly benefited various vision-language tasks by jointly learn-
ing visual and textual representations, which intuitively helps in Optical
Character Recognition (OCR) tasks due to the rich visual and textual
information in scene text images. However, these methods cannot well
cope with OCR tasks because of the difficulty in both instance-level
text encoding and image-text pair acquisition (i.e. images and captured
texts in them). This paper presents a weakly supervised pre-training
method, oCLIP, which can acquire effective scene text representations
by jointly learning and aligning visual and textual information. Our net-
work consists of an image encoder and a character-aware text encoder
that extract visual and textual features, respectively, as well as a visual-
textual decoder that models the interaction among textual and visual
features for learning effective scene text representations. With the learn-
ing of textual features, the pre-trained model can attend texts in images
well with character awareness. Besides, these designs enable the learning
from weakly annotated texts (i.e. partial texts in images without text
bounding boxes) which mitigates the data annotation constraint greatly.
Experiments over the weakly annotated images in ICDAR2019-LSVT
show that our pre-trained model improves F-score by +2.5% and +4.8%
while transferring its weights to other text detection and spotting net-
works, respectively. In addition, the proposed method outperforms exist-
ing pre-training techniques consistently across multiple public datasets
(e.g., +3.2% and +1.3% for Total-Text and CTW1500).

Keywords: Vision-Language Pre-training; Scene Text Detection; Scene
Text Spotting

1 Introduction

Optical Character Recognition (OCR) (including scene text detection, recog-
nition, and spotting) has attracted increasing interests in recent years in both
computer vision and deep learning research communities due to its wide range
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Fig. 1. Illustration of general Optical Character Recognition (OCR), Vision-
Language Pre-training (VLP) pipeline, and the proposed pipeline (oCLIP):
General OCR pipelines focus only on visual features from images. In addition, general
VLP models extract image and language features from input images and correspond-
ing sentence-level text, and model the interaction among all visual and textual features
through a multi-modal encoder. Differently, oCLIP extracts instance-level textual fea-
tures from texts instances in images. It models the interactions between each text
instance and its extracted image features which can be trained with weak supervision
only (i.e. partial texts in images without text bounding boxes). Our pre-trained model
weights can be directly transferred to various scene text detectors and spotters with
significant performance improvement.

of applications in multilingual translation, autonomous driving, etc. Most of
the existing OCR techniques follow general computer vision pipelines that first
extract visual features from the input image and and then perform feature re-
gression or classification for text detection or recognition, as shown in Fig. 1 (a).
However, we human usually read texts by utilizing not only the visual features
of each text but also our linguistic knowledge in our memory. For example, we
usually locate and read texts faster and more easily with the knowledge of the
corresponding text language. Therefore, both visual and textual information are
useful to robust reading of texts from natural scene images.

Recently, joint learning visual and textual representations has been stud-
ied in many Vision-Language Pre-training (VLP) techniques [40, 68, 5], and it
greatly promotes various Vision-Language (VL) tasks such as Visual Question
Answering (VQA), Image-Text Retrieval, etc. As a language-related task, OCR
can intuitively benefit from these VLP techniques. However, most existing VLP
methods usually suffer from two typical constraints while being applied to OCR
tasks. (1) Each image in VL tasks is usually associated with one sentence or
paragraph where words or phrases (i.e. tokens) are arranged in reading orders.
Instead, an image in OCR tasks often contains many text instances each of which
consists of one or multiple tokens. The tokens within one text instance are often
closely related to each other (e.g. ‘redefining’ and ‘insurance’ in Fig. 1(c)) while
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those from different text instances are completely irrelevant (e.g. ‘insurance’ and
‘154’ in Fig. 1(c)). This makes it difficult to encode the textual information in
a general sequential way. (2) Most VLP models learn from image-text pairs in
which images and texts are correlated with each other at content-level (e.g. im-
ages and captions) as illustrated in Fig. 1(b). These content-relevant image-text
pairs can be easily obtained from web, social media, etc., which has been proven
to be effective for various VL tasks [40]. In contrast, OCR tasks aim to detect
and recognize text instances that appear in images as shown in Fig. 1(c). The
image-text pairs (i.e. images and texts in them) are more difficult to obtain as
compared to VL tasks, requiring expensive and inefficient annotations.

We present an OCR Contrastive Language-Image Pre-training (oCLIP)
technique that exploits textual information for learning effective visual text rep-
resentations for better scene text detection and spotting. Different from the text
encoder in the existing VLP methods [40], we design a character-aware text en-
coder as illustrated in Fig. 1(c). It extracts language features by encoding textual
information from the sequence of characters in each text instance without con-
sidering the relations among irrelevant text instances. In addition, we introduce
a visual-textual decoder that models the relations between the input image and
each labelled text instance only instead of all captured texts in the input image.
With the two designs, oCLIP can learn effective visual text representations from
weakly-annotated data (i.e. partial text instances in images without text bound-
ing boxes) which greatly mitigates the data acquisition challenge and enables
exploitation of large amounts of weakly-annotated images.

The contributions of this paper are three-fold. First, it introduces an end-to-
end trainable pre-training network that allows to exploit language supervision to
learn effective visual text representations. Second, we design a character-aware
text encoder and a visual-textual decoder that can extract effective instance-level
textual information and learn from partial text transcriptions without requiring
text bounding boxes. Third, extensive experiments over multiple public datasets
show that the proposed weakly supervised pre-trained network achieves superior
performance on various scene text detection and spotting datasets.

2 Related Work

2.1 Scene Text Detection and Spotting

Most of recent scene text detectors are trained on fully-annotated data which
can be broadly classified into two categories. The first category takes a bottom-
up approach which first detects low-level text elements like characters [2], text
segments [41, 47] and text keypoints [65] and then groups them into words or text
lines. The second category treats words as one specific type of objects, and many
scene text detectors like EAST [76], TextBoxes++ [25], RRD [28] and PSENet
[54] are designed to detect text bounding boxes directly with generic object
detection or segmentation techniques. Besides, many researchers study the text-
specific features for robust text detection through text border or counter [66,
59, 77, 8], deformation convolution [52, 61], local refinement [73, 15] and so on.
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Besides, many methods are designed to address the data bias. Some works [11,
71, 26] aim to synthesize scene text images that can be used for training scene
text detection, recognition and spotting models. In addition, WeText [49] and
OPM [44] design different weakly supervised mechanisms to use different types
of data for training. GA-DAN [72] and TST [60] study the domain adaptation
that adapt the synthetic scene text images to real. More recently, STKM [51] is
proposed to pre-train a general model backbone for different scene text detectors.

Besides, many end-to-end trainable scene text spotters have been designed in
which text detector and recognizer are complementary to each other. Li et al. [21]
first integrates the scene text detector and RNN-based recognizer in to a unified
network. Liu et al. [29] and He et al. [16] leverage more advanced scene text de-
tectors or recognizers for better text spotting performances. More recently, Mask
TextSpotters [36, 23, 24] adopt Mask R-CNN [13] as text detector and character
segmentation or attention module for recognition. ABCNet [30, 31] proposes to
detect texts with Bezier curves. TextDragon [10] detects center lines of texts
along which characters are recognized in sequence. Baek et al. [3] proposes to
detect characters by training with weakly supervised mechanism. Xing et al.
[62] propose to detects and recognizes characters simultaneously. MANGO [39]
is designed for text spotting with mask attention guidance. TextTranSpotter [19]
is proposed to leverage the weakly-annotated images for training. Additionally,
text recognition with less annotation have been studied in [48, 1].

2.2 Vision-Language Pre-training

As inspired by the advanced Transformer-based pre-training techniques [9] in
Natural Language Processing (NLP) community, many vision-language pre-training
methods have been studied in recent years, which greatly promotes the many
multi-modal tasks in computer vision community. ViLBERT [35] and LXMERT
[46] present a two-stream framework with a vision-language co-attention module
for cross-modal feature fusion. On the other hand, VisualBERT [22], Unicoder-
VL [20], VL-BERT [43], and UNITER [4] follow a single-stream framework (i.e.
vanilla BERT structure), focusing on generic VL tasks including VCR and VQA.
Besides, many VLP methods have been proposed for VL tasks such as RVL-
BERT [6] for visual relationship detection, PERVALENT [12] and VLN-BERT
[37] for visual navigation, VisualID [38] and VD-BERT [58] for visual dialog, etc.

3 Methodology

We present oCLIP that learns better scene text visual representations by feature
alignment with textual information. As shown in Fig. 2, the proposed network
first extracts image embeddings from input images by using an image encoder
(including a network backbone ResNet-50 [14] followed by a multi-head atten-
tion layer). A character-aware text encoder is designed to extract the textual
information from the transcriptions of text instances in input images by encod-
ing the sequence of characters in each text instance. The extracted textual and
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Fig. 2. The framework of oCLIP: Given an input image, an image encoder (in-
cluding a backbone followed by a multi-head attention layer) first extracts the visual
features. Meanwhile, the characters in each text instance are transformed to character
embeddings, and a character-aware text encoder further extracts text instance embed-
dings from the character embeddings. A visual-textual decoder models the interactions
between the text instance embeddings and the corresponding image embeddings. Dur-
ing training, a random character in each text instance will be masked (as highlighted by
red boxes) and the overall network is optimized by predicting the masked characters.

visual features are passed into a visual-textual decoder which models the inter-
actions among the visual features of input image and the textual features of each
individual text instance. During training, we randomly mask a character in each
text instance and the network is optimized by predicting the masked characters
leveraging the extracted visual and textual features.

3.1 Character-Aware Text Encoder

In general VL tasks, texts (e.g. titles, captions, etc.) are usually sentences that
consist of sequences of text tokens. As such, the text encoders for VL tasks are
often designed to encode texts in a sequential way. However, the natural scene
images in OCR tasks usually contain one or multiple text instances. The text
tokens within each text instance are sequentially related to each other while
those from different text instances are often completely irrelevant. This makes
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Fig. 3. Illustration of the proposed character-aware text encoder: Given sam-
ple images in the first column, columns 2-3 show the attention maps (from the attention
layer in the image encoder) that are obtained from models with the general sentence-
level text encoder and the proposed character-aware text encoder, respectively. The
proposed character-aware text encoder attends better to text regions as compared
with the general text encoder, leading to better learning of the scene text visual rep-
resentations of the network backbone.

it difficult to encode these text instances by using a general text encoder. To
address this issue, we design a character-aware text encoder.

The proposed character-aware text encoder extracts instance-level text em-
beddings with the input text instances as sequences of characters. Given n an-
notated text instances T = {t0, t1, ...tn−1} in an image, each text instance ti
consists of a sequence of characters ti = [ci0, c1,

i , ..., cik−1]. We embed the char-
acters into fixed-sized vectors and add a set of learnt positional encoding [50]
PE = [PE0, PE1, ..., PEk] to capture the sequential information of characters
in each text instance only, which can be formulated by:

ceij = Wc · cij + PEj , i ∈ [0, n− 1], j ∈ [0, k − 1], (1)

whereWc is the character embedding matrix. The encoded character embeddings
of i − th text instance cei = [cei0, ce

i
1, ..., ce

i
k−1] are hence passed into a Trans-

former [50] encoder which models the interaction among all characters in the
text instance and extracts the text instance embeddings tei from its character
embeddings cei. As a result, the character-aware text encoder extracts the text
instance embeddings te = {te0, te1, ..., ten−1} from the annotated text instances
t = {t0, t1, ...tn−1}. Note a randomly selected character in each text instance is
masked during training by setting it to the mask category.

The proposed character-aware text encoder effectively encodes the instance-
level textual information and neglects the relations between each pair of text
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instances. In addition, it can help to learn better visual text representations.
Fig. 3 shows two sample images accompanied with the attention maps from the
attention layer in the image encoder (details in Fig. 2). As Fig. 3 shows, by
extracting textual information from the general text encoder, the overall model
only focuses on partial text instances (e.g. ‘Foo’ and ‘th’ of ‘Footpath’). This is
because the tokens in general text encoder usually contain multiple characters
(e.g. the token ‘Footpath’ contains 8 characters) and the model thus tends to
focus on the most important parts only in the token according to the linguis-
tic knowledge. Instead, the proposed text encoder can attend better to all text
regions in images with the awareness of each character, demonstrating the supe-
riority of the proposed encoder on learning visual text representations for scene
text detection and spotting tasks.

3.2 Visual-Textual Decoder

The existing scene text pre-training techniques require fully-annotated data for
training where the bounding boxes or transcriptions of all text instances are pro-
vided. However, such annotations are often extremely expensive and difficult to
obtain. To address the data annotation bias, we present a visual-textual decoder
that models the interaction between the input image and each individual anno-
tated text while ignoring the unlabelled texts. The model thus can be trained
by using the annotations of partial text instances in the images.

Given an input image I as shown in Fig. 2, we first extract the image embed-
dings ie and the the textual information te by using an image encoder (including
a network backbone followed by a multi-head attention layer) and a character-
aware text encoder, respectively. The visual-textual decoder hence learns the re-
lationships among ie and each item in te (i.e. embeddings of each text instance)
to enhance the learning of visual representations. Specifically, the visual-textual
decoder consists of 6 stacked decoder layers each of which contains a multi-head
attention layer and a feed-forward network. The text instance embeddings te are
passed into the visual-textual decoder as queries and the image embeddings ie
are passed into the decoder as keys and values. This allows every text instance
alone to attend over all positions in the image embeddings. Note that we don’t
adopt the self-attention layer in the visual-textual decoder in order to neglect
the relationships between each pair of text instances and eliminates the effects
of unlabelled text instances. The model thus can effectively learn from partial
annotated text instances. Finally, the visual-textual decoder predicts the masked
characters in each text instance for optimization.

The masked characters can be predicted by learning the language knowledge
from textual information only. We illustrate the attention maps of the decoder in
Fig. 4 to demonstrate the effectiveness of the proposed visual-textual decoder.
For each sample image in Fig. 4, we pass three text instances (with masked
characters [M]) into our network, and we obtain three attention maps and three
predicted masked characters each of which corresponds to an input text instance.
As Fig. 4 shows, the visual-textual decoder not only predicts the masked char-
acters (e.g. ‘I’ for ‘ST[M]RLING’) but also attends the regions of corresponding
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Fig. 4. Illustration of the proposed visual-textual decoder: Given two sample
images in the first column, the input text instances (masked characters are highlighted
by [M]), corresponding attention maps in the decoder and the predicted masked char-
acters are shown from top to bottom in each box in columns 2-4, respectively. The
proposed visual-textual decoder aligns the visual and textual features well, which ef-
fectively attends and predicts the masked characters in images.

masked characters well in the images. It can be seen that the proposed decoder
aligns the visual and textual features to predict the masked characters (instead
of using textual information alone), demonstrating the effectiveness of the pro-
posed visual-textual decoder.

3.3 Network Optimization

During training, the proposed model takes text instances T (with masked charac-
ters ymsk) and images I as inputs, and predicts the masked characters pmsk(I, T )
for optimization. We consider the masked character prediction as a classification
problem and adopt cross-entropy H for optimization:

Lcls = E(I,T )∼DH(ymsk,pmsk(I, T )). (2)

Besides, as inspired by CLIP [40], we adopt a batch-level contrastive loss for
faster convergence. Given N images and N texts in a training batch, we form N2

(text, image) pairs from all texts and images, where N pairs of texts and images
are correlated with each other and N2 −N pairs are unrelated. For each image
and text, we calculate the softmax-normalized image-to-text and text-to-image
similarity as:

pi2tb (I) =
exp(I, Tb)∑B
b=1exp(I, Tb)

, pt2ib (T ) =
exp(T, Ib)∑B
b=1exp(T, Ib)

. (3)
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Let yi2t(I) and yt2i(T ) denote the ground-truth one-hot similarity, where neg-
ative pairs have a probability of 0 and the positive pair has a probability of 1.
The batch-level contrastive loss is thus defined by:

Lbc = E(I,T )∼D[H(yi2t(I),pi2t(I)) + H(yt2i(T ),pt2i(T ))]. (4)

The full pre-training objective is defined by:

L = Lcls + Lbc. (5)

4 Experiments

4.1 Datasets

We use a number of public datasets in our experiments including SynthText[11],
ICDAR2019-LSVT[45], CTW1500[70], Total-Text[7], and ICDAR2015[17]. More
details are available in the supplementary material.

4.2 Implementation Details

Pre-training: We use ResNet-50 [14] as the backbone in the image encoder of
the proposed network. The input images are resized to 512×512 during training.
We adopt the Adam optimizer [18] with decoupled weight decay regularization
[34] applied to all weights that are not gains or biases. The initial learning rate is
1e−4 which decays using a cosine schedule [33]. The model is trained end-to-end
for 100 epochs on 8 Tesla V100 GPUs with batch size of 640. The length of each
text instance is set as 25 following [69, 64].

Fine-tuning: We fine-tune several scene text detectors and spotters for eval-
uation of oCLIP including: 1) PSENet [54], 2) DB [27], 3) FCENet [77], 4)
TextBPN [75], and 5) Mask TextSpotter-v3 [24]. More details are available in
the supplementary material.

4.3 Experimental Results

We evaluate the proposed oCLIP from three aspects. First, we evaluate the
performances of the proposed method by training with weakly annotated data
(i.e. with partial annotated text instances available in each image). Second, we
compare the proposed method with the existing pre-training techniques in scene
text community. Third, we compare the proposed method with the state-of-the-
art scene text detectors and spotters.
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Table 1. Scene text detection performances of different models on ICDAR2019-
LSVT dataset. ‘+oCLIP’: Our pre-trained model with 400,000 weakly annotated im-
ages in ICDAR2019-LSVT dataset is adopted for fine-tuning.

Model Precision Recall F-score

MSR [67] 86.4 63.4 73.1
Keypoint [65] 78.5 70.1 74.1

DB [27] 76.5 70.5 73.4
DB+oCLIP 81.5 70.9 75.8

PSENet [54] 90.4 63.5 74.6
PSENet+oCLIP 90.7 67.0 77.1

Table 2. Scene text spotting performances of different models on ICDAR2019-
LSVT dataset. ‘+oCLIP’: Our pre-trained model with 400,000 weakly annotated im-
ages in ICDAR2019-LSVT dataset is adopted for fine-tuning. ‘P’, ‘R’, ‘F’, ‘1-NED’,
and ‘E2E’ refer to Precision, Recall, F-score, Normalized metric in terms of Normal-
ized Edit Distance, and end-to-end, respectively.

Method
Detection E2E Spotting

P R F 1-NED P R F

Mask TextSpotter-V3 80.5 61.0 69.4 35.7 32.1 24.4 27.7
Mask TextSpotter-V3+oCLIP 80.6 61.9 70.1 39.0 37.4 28.7 32.5

Weakly Supervised Pre-training: We evaluate the performances of oCLIP
on learning visual text representations from weakly annotated data. We first
conduct the experiments by pre-training our model on 400,000 weakly anno-
tated images (i.e. only the transcription of the text-of-interest in each image is
provided), and fine-tuning different scene text detectors and spotters on 30,000
fully annotated images from ICDAR2019-LSVT dataset. As Table 1 and 2 show,
oCLIP improves the performances of different scene text detectors and spotters,
demonstrating that the proposed method effectively learns the visual represen-
tations from weakly annotated data. Note that most previous approaches are
designed to train on fully annotated images and they can’t utilize the weakly
annotated images from ICDAR2019-LSVT dataset well.

In addition, we conduct an experiment on SynthText dataset to show the
effects of the amount of annotated texts on model performances. We first pre-
pare four sets of text annotations from SynthText dataset by randomly selecting
different proportions of text instances (i.e. 25%, 50%, 75%, and 100%) in each
image (e.g. 1 out of 4 text instances in each image are used for training ‘25%’
model). Next, we pre-train four models on all images in SynthText dataset by
using the four sets of text annotations, and then transfer the backbone weights
to fine-tune PSENet on Total-Text dataset. For comparison, we report the per-
formances of two additionally models including: 1) ‘No Pre-train’ model in which
no pre-training is adopted, and 2) ‘Baseline’ model that first trains PSENet on
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Table 3. The effectiveness of the proposed weakly supervised pre-training technique:
We pre-train four models by using different proportions of text instances in SynthText
dataset (e.g. 1 out of 4 text instances in each image are used for training for ‘25%’
model), and transfer the models weights to fine-tune PSENet on Total-Text dataset.
‘Baseline’: Train PSENet on SynthText and then fine-tune on Total-Text.

% annotated texts Precision Recall F-score

No Pre-train 81.8 75.1 78.3
Baseline 87.8 79.0 82.6

25% 90.2 80.1 84.8
50% 91.1 80.0 85.2
75% 90.6 80.8 85.4
100% 90.7 80.8 85.5

Table 4. Comparison with existing scene text pre-training techniques: by pre-training
on the same set of data (i.e. SynthText dataset), the proposed pre-training method
outperforms the existing pre-training techniques consistently across different datasets.
‘+SynthText’: Train PSENet with SynthText and then fine-tune with Total-Text.

Model
Total-Text CTW1500

P R F P R F

PSENet [54] 81.8 75.1 78.3 80.6 75.6 78.0
PSENet+SynthText 87.8 79.0 82.6 81.8 77.8 79.7
PSENet+STKM[51] 86.3 78.4 82.2 85.1 78.2 81.5
PSENet+oCLIP[SynthText] 90.7 80.8 85.5 86.3 79.6 82.8
PSENet+oCLIP[Web Images] 92.2 82.4 87.0 87.5 79.9 83.5

SynthText and then fine-tunes on Total-Text, respectively. As Table 3 shows, all
four pre-train models help to improve the performances of PSENet, which out-
performs the ‘No Pre-train’ and ‘Baseline’ models significantly. Besides, the four
models achieve comparable performances on scene text detection task by pre-
training on different amount of annotated texts, demonstrating the effectiveness
of the proposed weakly supervised learning.

Comparing with Existing Scene Text Pre-training Strageties: We com-
pare the oCLIP with two scene text pre-training strategies including: (1) train-
ing PSENet on SynthText dataset and then fine-tuning on real dataset, and (2)
pre-training on SynthText by using STKM [51] and transferring the pre-trained
weights to fine-tune PSENet on real dataset. For a fair comparison, we pre-train
our model on SynthText with full annotations and transfer the backbone weights
for fine-tuning PSENet on real datasets. As Table 4 shows, by pre-training on
the same set of data, oCLIP outperforms the existing pre-training techniques by
+3.3% and +1.3% in F-score on Total-Text and CTW1500 datasets, respectively.
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Table 5. Comparison with state-of-the-art scene text detection techniques on
CTW1500 dataset. ‘+oCLIP’ refers to that our pre-trained model on SynthText
dataset is adopted for fine-tuning. ‘RN50’, ‘PD’, ‘Syn’, and ‘MLT’ refer to ResNet-
50, pre-training data, SynthText dataset, and ICDAR2027-MLT dataset, respectively

Model PD Precision Recall F-score

TextSnake [32] Syn 67.9 85.3 75.6
ATRR [57] - 80.1 80.2 80.1
TextField [63] Syn 83.0 79.8 81.4
Keypoint [65] Syn 88.3 77.7 82.7
PAN [56] Syn 88.0 79.4 83.5
CRAFT [2] Syn 86.4 81.4 83.7
ContourNet [59] - 83.7 84.1 83.9
SD [61] MLT 85.8 82.3 84.0
DRRG [74] MLT 85.9 83.0 84.5
TextBPN [75] Syn 87.8 81.5 84.5

DB-RN50 [27] - 81.1 80.6 80.8
DB-RN50+oCLIP Syn 82.5 81.5 82.0 (+1.2)

FCENet-RN50 [77] - 85.7 80.7 83.1
FCENet-RN50+oCLIP Syn 87.2 83.9 85.6 (+2.5)

Automatic Data Acquisition and Training from Web Images: The pro-
posed oCLIP can be simply applied to an automatic data acquisition and training
pipeline due to the success of learning from weakly-annotated images. We ex-
tracted texts from 40 million web images and filtered out less-confident ones by
using the existing scene text detector and recognizer form model pre-training.
As Table 4 shows, by learning from the automatically extracted data from web
images, oCLIP significantly improves the performances of PSENet on Total-Text
and CTW1500 datasets. More details are available in supplementary material.

Comparing with State-of-the-Art Scene Text Detectors and Spotters:
We further conduct experiments to compare oCLIP with state-of-the-art scene
text detection and spotting techniques. For a fair comparison, we pre-train a
model by our method on SynthText with full annotations and transfer the back-
bone weights to fine-tune DB, FCENet, TextBPN, and Mask TextSpotter-V3
on real datasets. As Table 5-8 show, the proposed pre-trained model effectively
promote the existing scene text detectors to state-of-the-art performances on
different dataset. In addition, by transferring the pre-trained weights from our
model, the performances of different scene text detectors and spotters are con-
sistently improved by large margins.

4.4 Ablation Studies

We study the contributions of different modules in our method including a
character-aware encoder (CAE), a visual-textual decoder (VTD), and a batch-
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Table 6. Comparison with state-of-the-art scene text detection techniques on Total-
Text dataset. ‘+oCLIP’ refers to that our pre-trained model on SynthText dataset
is adopted for fine-tuning. ‘RN50’, ‘PD’, ‘Syn’, and ‘MLT’ refer to ResNet-50, pre-
training data, SynthText dataset, and ICDAR2027-MLT dataset, respectively

Model PD Precision Recall F-score

TextSnake [32] Syn 82.7 74.5 78.4
ATRR [57] - 80.9 76.2 78.5
MSR [67] Syn 83.8 74.8 79.0
TextField [63] Syn 81.2 79.9 80.6
PAN [56] Syn 88.0 79.4 83.5
CRAFT [2] MLT 87.6 79.9 83.6
Keypoint [65] Syn 86.1 82.6 84.4
ContourNet [59] - 86.5 84.9 85.4
DRRG [74] MLT 86.5 84.9 85.7
SD [61] MLT 89.2 84.7 86.9

DB-RN50 [27] - 81.7 75.0 78.2
DB-RN50+oCLIP Syn 86.1 82.1 84.1 (+5.9)

TextBPN [75] - 88.0 82.9 85.4
TextBPN+oCLIP Syn 89.0 85.3 87.1 (+1.7)

Table 7. Comparison with state-of-the-art scene text detection techniques on IC-
DAR2015 dataset. ‘+oCLIP’ refers to that our pre-trained model on SynthText
dataset is adopted for fine-tuning. ‘RN50’, ‘PD’, ‘Syn’, and ‘MLT’ refer to ResNet-
50, pre-training data, SynthText dataset, and ICDAR2027-MLT dataset, respectively.

Model PD Precision Recall F-score

SegLink [42] Syn 76.1 76.8 75.0
TextField [63] Syn 84.3 80.1 82.4
TextSnake [32] Syn 84.9 80.4 82.6
PAN [56] Syn 84.0 81.9 82.9
ATRR [57] - 90.4 83.3 86.8
CRAFT [2] MLT 89.8 84.3 86.9
ContourNet [59] - 87.6 86.1 86.9
SD [61] MLT 88.7 88.4 88.6

DB-RN50 [27] - 89.3 74.0 80.9
DB-RN50+oCLIP Syn 89.1 82.0 85.4 (+4.5)

FCENet-RN50 [77] - 88.0 81.9 84.9
FCENet-RN50+oCLIP Syn 91.2 82.7 86.7 (+1.8)

level contrastive loss (BCL). We train four models with different modules in-
cluded on fully annotated SynthText dataset and fine-tune PSENet on Total-
Text dataset. As Table 9 shows, with the inclusion of different modules in our
network, the performances of PSENet can be improved consistently, demonstrat-
ing the effectiveness of different modules in of network.
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Table 8. Comparison with state-of-the-art scene text spotting techniques on IC-
DAR2015 and Total-Text dataset. ‘+oCLIP’ refers to that the model are fine-tuned
from the our pre-trained model on SynthText dataset. ‘S’, ‘W’, and ‘G’ refer to end-
to-end recognition with strong, weak, generic lexicon for ICDAR2015. ‘Full’ refers to
full lexicon for Total-Text.

Model ICDAR2015 Total-Text
S W G Full

CharNet [62] 80.1 74.5 62.2 -
FOTS [29] 83.6 74.5 62.2 -
TextDragon [10] 82.5 78.3 65.2 74.8
Boundary TextSpotter [53] 79.7 75.2 64.1 -
PAN++ [55] 82.7 78.2 69.2 78.6
ABCNet-V2 [31] 82.7 78.5 73.0 78.1

Mask TextSpotter-V3 [24] 83.3 78.1 74.2 78.4
Mask TextSpotter-V3+oCLIP 84.1 78.6 74.3 79.6

Table 9. Ablation study of the proposed method for scene text detection over Total-
Text dataset. We fine-tune PSENet by using the pre-trained models with different
modules. ‘CAE’, ‘VTD’, and ‘BCL’ refer to character-aware encoder, visual-textual
decoder, and batch-level contrastive loss, respectively.

CAE VTD BCL Precision Recall F-score

No Pretrain 81.8 75.1 78.3
1 ✓ 88.1 77.7 82.6
2 ✓ ✓ 89.6 78.9 83.9
3 ✓ ✓ 89.3 77.4 82.9
4 ✓ ✓ ✓ 90.7 80.8 85.5

5 Conclusion

This paper presents a weakly supervised pre-training technique for scene text
detection and spotting tasks. It focuses on the joint learning of visual and textual
information from images and text transcriptions to enhance the learning of visual
representations. It designs a character-aware text encoder and a visual-textual
decoder that improves the feasibility of oCLIP on learning from partial text
transcriptions only without text bounding boxes. Experimental results show that
the proposed method can effectively learn from weakly-annotated scene text
datasets which greatly mitigates the data acquisition challenge and significantly
promotes different scene text detectors and spotters.
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