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Abstract. A novel scene text recognizer based on Vision-Language Trans-
former (VLT) is presented. Inspired by Levenshtein Transformer in the
area of NLP, the proposed method (named Levenshtein OCR, and Lev-
OCR for short) explores an alternative way for automatically transcrib-
ing textual content from cropped natural images. Specifically, we cast
the problem of scene text recognition as an iterative sequence refine-
ment process. The initial prediction sequence produced by a pure vision
model is encoded and fed into a cross-modal transformer to interact and
fuse with the visual features, to progressively approximate the ground
truth. The refinement process is accomplished via two basic character-
level operations: deletion and insertion, which are learned with imitation
learning and allow for parallel decoding, dynamic length change and good
interpretability. The quantitative experiments clearly demonstrate that
LevOCR achieves state-of-the-art performances on standard benchmarks
and the qualitative analyses verify the effectiveness and advantage of the
proposed LevOCR algorithm.
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1 Introduction

Scene text recognition is a long-standing and challenging problem [28, 52, 4] that
has attracted much attention from the computer vision community. It aims at de-
coding textual information from natural scene images, which could be very ben-
eficial to down-stream applications, such as traffic sign recognition and content-
based image retrieval. However, reading text from natural images is faced with
numerous difficulties: variation in text style and shape, non-uniform illumination,
partial occlusion, perspective distortion, to name just a few. Recently, various
text recognition methods [28] have been proposed to tackle this tough problem
and substantial progresses have been observed [44, 48, 47, 8, 32, 51, 14, 26].

It has become a trend in the computer vision community to draw inspirations
from methods initially proposed for NLP tasks to solve vision problems, for
instance, ViT [7], DETR [3] and Swin-Transformer [27]. Also, in the field of
scene text recognition, multiple recent works [47, 8] start to incorporate linguistic
knowledge into the text recognition process, fusing information from both the
vision and language modalities for higher text recognition accuracy.

⋆ Equal contribution. † Corresponding author.
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Fig. 1. Schematic overview of LevOCR. LevOCR accomplishes text recognition in an
iterative way through two basic operations: deletion and insertion. Note that in Lev-
OCR the operation of insertion is further decomposed into two sub-operations: Place-
holder Insertion and Token Prediction.

Inspired by the wisdom from these pioneering works, we propose an alterna-
tive algorithm for scene text recognition. The backbone of the proposed model
is a Vision-Language Transformer (VLT) [38, 5, 20], which is employed to per-
form cross-modal information fusion for more informative representations and
better recognition performance. To further facilitate more flexible and inter-
pretable text recognition, we introduce the strategy from Levenshtein Trans-
former (LevT) [10], which was originally designed for sequence generation and
refinement tasks in NLP, into our framework. The core idea is to learn one refine-
ment policy (deletion or insertion) for current iteration from its adversary in the
previous iteration, in order to manipulate the basic units in the sequence (corre-
sponding to characters in text recognition) to approach the target sequence. In
such a way, the proposed text recognizer Levenshtein OCR (LevOCR for short)
can realize text recognition in a progressive fashion, where the final prediction is
obtained by iteratively refining an initial or intermediate recognition result until
convergence (i.e. , post-editing for error correction). An intuitive illustration is
depicted in Fig. 1. Note that due to the diversity of data augmentation in the
training phase, the proposed model also supports generating the final recognition
from an empty sequence, which falls back to a text generation task.

Similar to ABINet [8], we also fuse the information of both the vision modal-
ity and the language modality in an iterative procedure to predict the final
recognition result. However, there are two key differences: (1) The main archi-
tecture of LevOCR is a Vision-Language Transformer (VLT), which allows for
more sufficient utilization of the interactions between vision and language; (2)
More importantly, while ABINet produces whole sequences at each iteration,
LevOCR performs fine-granularity predictions through character-level op-
erations (deletion or insertion of individual characters), endowing the system
with higher flexibility and better interpretability , i.e. , when a specific deci-
sion (deletion or insertion) is made, one can trace back to the input space (image
or text) to examine the supporting cues for that decision. This constitutes an
unique characteristic of our LevOCR algorithm.
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We have conducted both qualitative and quantitative experiments on widely-
used benchmark datasets in the field of scene text recognition to verify the
effectiveness of the LevOCR algorithm. LevOCR not only achieves state-of-the-
art recognition performances on various benchmarks (see the tables in Sec. 4),
but also provides clear and intuitive interpretation for each action prediction
(see the example in Sec. 4.8 for more details).

In summary, the contributions of the work are as follows: (1) We propose a
novel, cross-modal transformer based scene text recognizer, which fully explores
the interactions between vision and language modalities and accomplishes text
recognition via an iterative process. (2) The proposed LevOCR allows for par-
allel decoding and dynamic length change, and exhibits good transparency and
interpretability in the inference phase, which could be very crucial for diagnosing
and improving text recognition models in the future. (3) LevOCR achieves state-
of-the-art results on standard benchmarks, and extensive experiments verify the
effectiveness and advantage of LevOCR.

2 Related Work

2.1 Scene Text Recognition Methods

Traditional methods directly cast scene text recognition as a sequence classifica-
tion task, which is purely based on visual features without any explicitly linguis-
tic knowledge. CTC-based methods [36, 41, 13, 15] provide differentiable Con-
nectionist Temporal Classification (CTC) loss for access to end-to-end trainable
sequence recognition, among which RNN model is often employed for context
modeling of feature maps extracted by CNNs[36]. Segmentation-based meth-
ods [25, 40] utilize FCN to directly predict the character labels in pixel-level
and further group characters into words, in which character-level annotation
is required. Opposite to parallel prediction of CTC and segmentation methods,
attention-based methods [21, 6, 37] with encoder-decoder mechanism sequentially
generates characters in order via RNN-attention model, where language infor-
mation between characters can be implicitly captured. Due to the promising
results, attention-based methods have previously dominated this field.

2.2 Enhanced Attention-based Methods

Considering irregular text, previous methods [50, 37] integrate spatial trans-
former module into attention-based framework, which rectifies the input with
perspective and curvature distortion into a more canonical form. [6] observes
the attention drift problem [42], in which the alignments between feature ar-
eas and text targets are not accurate for complicated images, and proposes a
focus network to suppress the attention adrift. RobustScanner [48] utilizes po-
sitional clues to decode random character sequences effectively, by introducing
a position enhancement branch into attention-based framework. Furthermore,
SE-ASTER [33] employs a pre-trained language model to predict additional se-
mantic information, which can guide the decoding process.
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Fig. 2. Overview of the architecture of LevOCR.

2.3 Transformer-based Methods

Recently, transformer units [39] are employed in scene text recognition model
to replace the complex LSTM blocks of RNN. Some prior methods [22, 35,
29] provide conventional transformer-based encoder-decoder framework for text
recognition, which is based on customized CNNs feature extraction block. Fur-
thermore, TrOCR [23] proposes an encoder-decoder structure with pre-trained
transformer-based CV and NLP models, to deal with original image patches di-
rectly. ViTSTR [1] then employs vision transformers (ViT) for scene text recog-
nition with image patches, where only transformer encoder is required and so
that the characters can be predicted in parallel. To handle the linguistic context
well, VisionLAN [45] presents a visual reasoning module to capture the visual
and linguistic information simultaneously by masking the input image in the fea-
ture level. Additionally, SRN [47] introduces a global semantic reasoning module
with transformer units to enhance semantic context. ABInet [8] goes a further
step and proposes an explicit language model via transformer.

3 Methodology

LevOCR consists of three essential modules: Visual Feature Extraction (VFE),
Linguistic Context (LC) and Vision-Language Transformer (VLT). Given an
input image, the CNN model first extracts visual information and makes an
initial visual prediction. And the initial visual prediction is further fed into
transformer-based textual module to generate linguistic context. Finally, the in-
termediate visual features and linguistic features are directly concatenated and
fed into VLT for sufficient information interaction, without any explicit cross-
modal alignments. Additionally, different action decoders are built upon VLT
for subsequent task. The schematic pipeline is illustrated in Fig. 2.
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3.1 Visual Feature Extraction

Given a image x ∈ RH×W×3 and the corresponding text label y = (y1, y2, . . . , yN )
with N maximum text length, a modified ResNet [37, 12] backbone is utilized
for visual information extraction, and then transformer units [39] are employed

to generate enhanced 2D visual features Fv ∈ RH
4 ×W

4 ×D, where D is the feature
dimension. We directly decrease the height of feature Fv to 3 by 2 convolution
layers, generating V ∈ R3×W

4 ×D as the visual feature for subsequent refinement
task. In addition, we construct another position attention [8] branch on feature
Fv to generate the initial visual prediction ŷ = (ŷ1, ŷ2, . . . , ŷN ). Then, the vi-
sual loss Lv can be realized by a cross-entropy loss between y and ŷ. Notably,
the pure visual feature V is not used for visual prediction, in order to preserve
more feature information for subsequent refinement task. The pipeline of visual
information extraction is illustrated in Fig. 2 (a) with blue color.

3.2 Linguistic Context

NLP community has achieved substantial performance improvement. to model
linguistic knowledge. The textual module is constructed with Transformer blocks [39]
to model linguistic knowledge. Concretely, the input of textual module is a text
sequence that need to be corrected, represented by ỹ = (ỹ1, ỹ2, . . . , ỹN ). First,
word embedding at character level is used to encode ỹ into feature Ft ∈ RN×D.
Then, multiple transformer blocks transcribe Ft into refined text feature T ∈
RN×D, where N is the maximum text length and D is the feature dimension.
The pipeline of linguistic context is illustrated in Fig. 2 (b) with red color.

3.3 Vision-Language Transformer

Text instances in natural scenes do not always conform with linguistic rules. For
example, digits and random characters appear commonly. Therefore, LevOCR
employs VLT [20] to integrate visual and linguistic features. In this way, no en-
forced alignments as in ABInet [8] of two modalities are required and adaptive
weights of two modalities are directly driven by the objective function. Then,
action decoder heads are built upon VLT for deletion and insertion action learn-
ing, which can make a complementary judgement on both two modalities and
be explicitly examined for good interpretability. Specifically, the visual feature
V = [v1;v2; . . . ;vNv

] ∈ RNv×D and textual feature T = [t1; t2; . . . ; tN ] ∈ RN×D

are produced by the corresponding modules, respectively. We directly concate-
nate these features of two modalities as the input of VLT blocks. In order to
discriminate the features with different modalities and positions, position em-
beddings and modal-type ones are introduced. The detailed process of VLT is
formulated as follows:

V = [v1 + pv
1;v2 + pv

2; . . . ;vNv
+ pv

Nv
] +Ev

T = [t1 + pt
1; t2 + pt

2; . . . ; tN + pt
N ] +Et

H(0) = [h
(0)
1 ;h

(0)
2 ; . . . ;h

(0)
N+Nv

] = [T;V]

H(l+1) = BERTl(H
(l)).

(1)
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Here, Nv is 3× W
4 . The visual and textual position embeddings are represented

as [pv
1;p

v
2; . . . ;p

v
Nv

] ∈ RNv×D and [pt
1;p

t
2; . . . ;p

t
N ] ∈ RN×D. Then, visual and

textual modal-type embeddings are denoted as Ev ∈ R1×D and Et ∈ R1×D.
And the l-th transformer block is denoted as BERTl. Thus, the final aggregated
feature H ∈ R(N+Nv)×D are generated by L-th transformer block, in which even
the unaligned features of two modalities can be adaptively interacted and fused.

3.4 Imitation Learning

In order to mimic how humans edit text, we cast this text sequence refinement
task into a Markov Decision Process (MDP) denoted as a tuple (Y,A, E ,R,y0)
as in [10]. We define a text as a sequence that consists of digits and characters,
and thus Y is a set of word vocabulary with the dictionary of symbols V. Typi-
cally, y0 ∈ Y represents the initial sequence. For text refinement task, two basic
actions deletion and insertion are defined as the set of actions A. The reward
function R = −D(y,y∗) directly measures the Levenshtein distance between the
prediction and the sequence of ground-truth text. Given k-th step text sequence
yk, the agent interacts with the environment E , executes editing actions and
returns the modified sequence yk+1, which is denoted as yk+1 = E(yk,ak+1).
Our main purpose is to learn a favourable policy π that model the probability
distribution over actions A for maximum reward.

Deletion Action The input text sequence for imitation learning is also denoted
as y = (y1, y2, . . . , yN ) for simplicity. Deletion policy πdel(d|i,y) aims to make
a binary decision for every character yi ∈ y, in which d = 1 indicates that this
token should be deleted or d = 0 for keeping it. Typically, y1 and yN are special
symbols <s> and </s> for sequence boundary, respectively. Thus, they can not
be deleted, which is denoted as πdel(0|1,y) = πdel(0|N,y) = 1. Moreover, based
on the aggregated feature H, the deletion classifier can be formulated as follows:

πdel
θ (d|i,y) = softmax(hiW

T
del), i = 2, . . . , N − 1, (2)

where Wdel ∈ R2×D is the weight of deletion classifier. Note that only the first
N sequences of H are used for prediction, and N is the maximum text length.

Insertion Action Insertion action is more complicated than deletion one, since
the position of insertion need to be predefined. Technically, insertion is decom-
posed into two sub-operations: placeholder insertion and token prediction. Con-
cretely, for each consecutive pairs (yi, yi+1) in y, placeholder insertion policy
πplh(p|i,y) predicts the number p of placeholder should be inserted at position
i. Thus, the classifier of placeholder insertion is defined as follows:

πplh
θ (p|i,y) = softmax([hi,hi+1]W

T
plh),

i = 1, . . . , N − 1,
(3)
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where Wplh ∈ RM×2D is the weight of the placeholder classifier, and M is the
max number of placeholders can be inserted. [hi,hi+1] is the concatenation of
hi and hi+1.

Referring to the predicted number of placeholder insertion, we can insert
a corresponding number of placeholders at the relevant positions. Then, token
prediction policy πtok(t|i,y) is required to replace placeholder yi with symbol t
in the dictionary V, which is formulated as follows:

πtok
θ (t|i,y) = softmax(hiW

T
tok),∀yi =< p > . (4)

Here, Wtok ∈ R|V|×D is the weight of token predictor, <p> is the placehoder
and |V| is the size of dictionary.

Training Phase Notably, deletion and insertion are alternatively executed.
For instance, given a text sequence, deletion policy is first called to delete wrong
symbols. Then, placeholder insertion policy inserts some possible placeholders.
Finally, token prediction policy replaces all placeholders with right symbols.
Typically, these actions are performed in parallel for each position. Moreover,
the imitation learning strategy is utilized for LevOCR training, aiming to ap-
proximating the expert policy π∗ that can be directly and simply derived from
the ground-truth text sequence as follows:

a∗ = argmin
a

D(y∗, E(y,a)). (5)

Here, Levenshtein distance D is used for distance measure. The optimal actions
a∗ can represent d∗, p∗, and t∗, which can be produced by dynamic programming
efficiently. The loss function of deletion is formulated as follows:

Ldel = Eydel∼dπ̃del

∑
d∗
i ∈d∗

− log πdel
θ (d∗i |i,ydel), (6)

where d∗ = (d∗1, d
∗
2, . . . , d

∗
N ) ∼ π∗ denotes the optimal deletion action for each

position of ydel, generated by Eq. (5). And dπ̃del
is a text distribution induced

by policy π̃del for the sequence generation with additive noise:

dπ̃del
=

{
{E(E(y0, p̃), t̃)), p̃ ∼ πR, t̃ ∼ πR}, α < µ

{E(E(y′,p∗), t̃)),p∗ ∼ πplh
θ∗

, t̃ ∼ πtok
θ }, α ⩾ µ,

(7)

where πR represents a random policy, α ∼ Uniform[0, 1], µ ∈ [0, 1] is a mixture
factor, y0 is the initial sequence, and y′ is any sequence ready to insert. For
µ < α, we randomly add some symbols on y0 to generate ydel. For µ ⩾ α, we
use expert placeholder policy and the learned token prediction to generate ydel

based on y′. This procedure can be regarded as adversarial learning in GAN [9].
Similarly, the loss function of insertion is as follows:

Lins = Eyins∼dπ̃ins
[
∑

p∗
i ∈p∗

− log πplh
θ (p∗i |i,yins)

+
∑
t∗i ∈t∗

− log πtok
θ (t∗i |i,y′

ins)],
(8)
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where p∗ = (p∗1, p
∗
2, . . . , p

∗
N−1) ∼ π∗ represents the optimal number of place-

holders for each consecutive position pair in yins, generated by Eq. (5). And
t∗ = (t∗1, t

∗
2, . . . , t

∗
N−1) ∼ π∗ denotes the optimal symbol for each placeholder in

y′
ins, where y′

ins = E(yins,p), p ∼ πplh
θ . Moreover, dπ̃ins is a text distribution

induced by policy π̃ins for the sequence generation with deleted noise:

dπ̃ins =

{
{E(y∗, d̃)), d̃ ∼ πR}, β < µ

{E(y0,d∗)),d∗ ∼ πdel
θ∗

}, β ⩾ µ,
(9)

where factor β ∼ Uniform[0, 1]. We also adopt mixture manner to construct yins

for insertion learning. For β < µ, we randomly delete some symbols on ground-
truth y∗ to produce yins. For β ⩾ µ, expert deletion policy is employed to
generate yins based on initial sequence y0. The training procedure is illustrated
in Fig. 2 (c) with green color, and the final loss function is formulated as:

L = λ1Lv + λ2Ldel + λ3Lins, (10)

where λ1, λ2 and λ3 are weights for visual prediction, deletion and insertion.

Notably, the visual model is pre-trained with only images for better initial-
ization by Lv. And the textual model and VLT blocks can also be pre-trained
with only texts. Specifically, the input of VLT is H(0) = T without image fea-
ture, which is used for deletion and insertion learning via Ldel and Lins. Based
on these pre-trained models, LevOCR is further trained by Eq. (10).

Note that the input sequences (i.e. ỹ) for deletion and insertion are indeed
different. Typically, ỹ is not always a “true” word. For instance, ỹ could be the
output of placeholder insertion for token prediction that includes placeholders
or even be an empty sequence. Therefore, different input sequences ỹ should be
fed into textual model individually and encoded as the unique text features T
and aggregated features H for the specific action (deletion, placeholder insertion
and token prediction) learning in training phase.

3.5 Inference Phase

We alternatively employ deletion and insertion to refine text at inference pro-
cess, until two policies converge (either nothing to delete or insert, or reaching
maximum iterations). Concretely, given a image x, we first obtain the visual
feature V and the initial sequence y0 (e.g. visual prediction). And then y0 is fed
into textual module, generating refined text texture T. Furthermore, the visual
feature and textual one are interacted and fused in VLT to produce aggregated
feature H. Finally, action decoders greedily choose the action with the maxi-
mum probability at each position by Eq. (2)(3)(4) in parallel. Then, deletion
and insertion are executed in turn with new corresponding features T and H.
Note that LevOCR can not only accomplish text refinement on initial visual
predictions, but also perform text generation with empty sequence y0.
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4 Experiment

4.1 Datasets

For fair comparison, we follow previous settings [2, 8] to train LevOCR on two
synthetic datasets MJSynth (MJ) [16, 17] and SynthText(ST) [11] without fine-
tuning on other datasets. Extensive experiments are conducted on six stan-
dard Latin scene text benchmarks, including 3 regular text datasets (IC13 [19],
SVT [43], IIIT [30]) and 3 irregular ones (IC15 [18], SVTP [31], CUTE [34]).

ICDAR 2013 (IC13) [19] includes 1095 cropped word images for test-
ing. We evaluate on 857 images with alphanumeric characters and more than 2
characters. Street View Text (SVT) [43] contains 647 testing images collected
from Google Street View.IIIT 5K-Words (IIIT5k) [30] is crawled from Google
image search, and consists of 3000 testing images. ICDAR 2015 (IC15) [18]
includes word patches cropped from incidental scene images captured by Google
Glasses.Street View Text-Perspective (SVTP) [31] consists of 639 images
collected from Google Street View, and many images are heavily distorted.
CUTE80 (CUTE) [34] contains 80 natural scenes images for curved text recog-
nition. 288 images are cropped from these images for testing.

4.2 Implementation Details

The textual model and VLT block consist of 6 stacked transformer units with
8 heads for each layer, respectively. The number of hidden units in FC-layer of
transformer block is 2048, and the dimension D of visual and textual feature is
set to 512. Besides, The size of symbol dictionary |V| is 40, including 0-9, a-z,
<s>, </s>, pad and <p>. The max length of output sequence N is set to 28,
and the max number of placeholders M is set to 28. The mixture factor µ is
set to 0.5. λ1, λ2 and λ3 are set to 1. The input images are resized to 32× 128.
Common data augmentation is employed, such as rotation, affine, perspective
distortion, image quality deterioration and color jitter. Our approach is trained
on NVIDIA Tesla V100 GPUs with batch size 128. Adadelta [49] optimizer is
adopted with the initial learning rate 0.1, and the max training epoch is 10.

4.3 Text Refinement and Text Generation

The initial sequence y0 is pivotal in LevOCR, which not only determines the
final performance, but also endows LevOCR with the ability of highly flexible
text editing. To empirically verify the ability of text refinement and generation,
we construct 4 kinds of initial sequence: (1) y0

V P : the visual prediction is directly
adopted and LevOCR essentially aims to text refinement. (2) y0

Emp: empty se-
quence is simply used and thus the inference stage falls back to a text generation
task. (3) y0

Rand : ground-truth is corrupted by random noise, where we replace
one character for 30% text, add one character for 30% text, delete one character
for 40% text, and remain the digit text unchangeable. (4) y0

GT : ground-truth.
These results with different initial sequences are reported in Tab. 1.
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Table 1. The accuracies of LevOCR with different initial sequences y0 and max iter-
ations on 6 public benchmarks.

Initial Sequence Iteration IC13 SVT IIIT IC15 SVTP CUTE AVG

LevOCRV P - 95.10 90.57 95.23 83.98 83.41 87.84 90.65

LevOCR + y0
V P

#1 96.50 92.43 96.50 86.09 87.75 91.32 92.55
#2 96.73 92.89 96.63 86.42 88.06 91.67 92.79
#3 96.85 92.89 96.63 86.42 88.06 91.67 92.81

LevOCR + y0
Emp

#1 95.45 90.42 95.00 83.99 83.72 88.89 90.64
#2 96.73 92.43 96.33 86.03 87.60 92.01 92.51
#3 96.97 92.74 96.37 86.09 88.06 92.01 92.63

LevOCR + y0
Rand

#1 84.83 85.32 87.90 82.05 82.33 84.38 85.20
#2 84.83 85.63 87.93 82.05 82.33 84.38 85.25
#3 84.83 85.63 87.93 82.05 82.33 84.38 85.25

LevOCR + y0
GT

#1 99.07 98.15 98.67 92.16 97.83 97.22 96.91
#2 99.07 98.15 98.67 92.16 97.83 97.22 96.91
#3 99.07 98.15 98.67 92.16 97.83 97.22 96.91

Table 2. The accuracies of LevOCR with different backbones.

Methods Backbone IC13 SVT IIIT IC15 SVTP CUTE AVG

LevOCRV P w/o LevT
CNN

95.21 90.41 95.30 83.26 83.41 88.88 90.53
LevOCR w/o LevT 95.21 90.42 95.43 83.43 84.03 89.23 90.70

LevOCRV P
ViT

94.86 89.18 93.6 82.38 84.18 82.98 89.30
LevOCR 96.15 91.80 95.63 85.81 88.06 86.81 91.87

LevOCRV P CNN
95.10 90.57 95.23 83.98 83.41 87.84 90.65

LevOCR 96.85 92.89 96.63 86.42 88.06 91.67 92.81

The performance of y0
Rand and y0

GT can be regarded as the lower bound
and upper bound of LevOCR, respectively. Based on the noisy initial sequences,
y0
Rand gets 85.25% average accuracy. This implies that almost 85% noisy texts

can be corrected. Moreover, y0
GT achieves the best accuracy 96.91% than oth-

ers, proving that better linguistic context can be captured in better initial text
sequence, leading to better performance of LevOCR. Additionally, the first line
LevOCRV P records the accuracy of pure visual prediction of LevOCR. Both
y0
V P and y0

Emp can obtain obvious improvements over LevOCRV P , showing the
effectiveness of text refinement and generation of LevOCR. Generally, the ac-
curacies of 4 constructions (i.e.y0

GT > y0
V P > y0

Emp > y0
Rand) suggest that

choosing a better y0 is crucial, and LevOCR indeed adopts linguistic informa-
tion, not just relies on visual features. These results sufficiently demonstrate the
powerful abilities of LevOCR in text refinement and text generation.

4.4 Iterative Refinement

We investigate the influence of various maximum refinement iterations (i.e. ,
1, 2, 3) and the results are also shown in Tab. 1. Notably, even if the maximum
iteration is set to 3, the refinement process might be stopped after 2 iterations
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Table 3. The detailed iterative process of LevOCR with different initial sequences on
6 public benchmarks. “Iteration” represents the current number of refinement itera-
tion. “Input” represents the initial sequence or the output of last iteration. “Delete”,
“PLHIns” and “TokenPred” represent the action output of deletion, placeholder in-
sertion and token prediction, respectively. And <3p> indicates that three consecutive
placeholders <p> are inserted into the sequence. Best viewed in colors.

Image GT Initial Sequence Iteration: Input-Delete-PLHIns-TokenPred

1: IC13

service

y0
V P = servce #1: servce-sere-ser<3p>e-service

y0
Emp = <s> < /s >

#1: <s> < /s >-<s> < /s >-<7p>-serbice

#2: serbice-serbice-serb<p>ice-serblice

#3: serblice-serice-ser<p>ice-service

y0
Rand = servcce #1: servcce-servce-serv<p>ce-service

2: SVT

public

y0
V P = publif #1: publif-publi-publi<p>-public

y0
Emp = <s> < /s >

#1: <s> < /s >–<s> < /s >-<6p>-publif

#2: publif-publi-publi<p>-public

y0
Rand = publcc

#1: publcc-publc-publc<2p>-publcip

#2: publcip-publi-publi<p>-public

3: IIIT

solaris

y0
V P = solris #1: solris-soris-so<2p>ris-solaris

y0
Emp = <s> < /s >

#1: <s> < /s >-<s> < /s >-<6p>-solris

#2: solris-soris-so<2p>ris-solaris

y0
Rand = solacis #1: solacis-solais-sola<p>is-solaris

4: IC15

breakfast

y0
V P = breakeast #1: breakeast-breakast-break<p>ast-breakfast

y0
Emp = <s> < /s >

#1: <s> < /s >-<s> < /s >-<9p>-breakeast

#2: breakeast-breakast-break<p>ast-breakfast

y0
Rand = breaufast #1: breaufast-breafast-brea<p>fast-breakfast

5: SVTP

house

y0
V P = houce #1: houce-hou-hou<2p>-house

y0
Emp = <s> < /s >

#1: <s> < /s >-<s> < /s >-<5p>-houce

#2: houce-hou-hou<2p>-house

y0
Rand = housk

#1: housk-houk-houk<2p>-houke2

#2: houke2-hou2-hou<p>2-hous2

#3: hous2-hou-hou<2p>-house

6: CUTE

vacation

y0
V P = vagation #1: vagation-vaation-va<p>ation-vacation

y0
Emp = <s> < /s > #1: <s> < /s >-<s> < /s >-<8p>-vacation

y0
Rand = vacction #1: vacction-vaction-vac<p>tion-vacation

when the sequence remains the same as the first iteration. Thus the results may
be the same under different maximum iterations. Apparently, the results at #1
are already promising, and more iterations lead to further improvements. There-
fore, there is no sophisticated setting for the maximum iteration and the adaptive
convergence enables access to high efficiency. Thus, the maximum iteration is set
to 3 for convenience. It is crucial to note that the accuracy of y0

Emp at #1 is
close to LevOCRV P , which is only based on visual feature. While the accuracy
of y0

Emp is greatly increased 2.1% at #2 iteration over #1, demonstrating that
LevOCR indeed utilizes language knowledge for further text refinement.
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4.5 Effectiveness of Levenshtein Transformer

To further explore the significance of Levenshtein Transformer pipeline for text
refinement, we construct some variants of LevOCR and these results are shown
in Tab. 2. We remove the deletion and insertion losses in Eq.(10) and replace
them with only one classification loss, the performance of LevOCR without LevT
is not significantly improved and approximate to pure image prediction. While
the proposed LevOCR with LevT obtains obvious 2.4% improvement than pure
visual prediction. Besides CNN feature, vision transformer (ViT) [7] with 4× 4
patches is utilized for image feature extraction. And the proposed deletion and
insertion actions are learned for text refinement. ViT-based LevOCR can also
achieve stable improvement 2.9% than visual prediction. These results demon-
strate that LevT is a perfect fit for text refinement and the proposed LevOCR
works well with CNN and ViT backbones, resulting in promising generalization.

4.6 Qualitative Analyses

It is essential to qualitatively dissect the iterative process of LevOCR. We select
6 exemplar images for qualitative exhibition, of which the visual predictions are
incorrect. Generally, these challenging images are with various types of noises,
such as motion blur, Gaussian blur, irregular font, occlusion, curved shape, per-
spective distortion and low resolution. The iterative refinement processes are
elaborately reported in Tab. 3. And different 3 initial sequences as in Sec. 4.3
are adopted to show the amending capability powered by deletion and insertion.

Deletion action targets at removing wrong letters. As in Img.6, the ‘C’ is
recognized as ‘G’ by visual model due to the curved shape. By leveraging both
visual and linguistic information, ‘G’ in y0

V P tends to be deleted. Similarly, dele-
tion is triggered in y0

Rand to remove a redundant ‘C’. Considering placeholder
insertion in empty sequence y0

Emp, we clearly observe that the inserted num-
ber of placeholder equals to the length of GT, indicating that LevOCR can
fully comprehend image. When the length of input text is shorter than GT,
placeholder insertion try to add the rest of placeholders at the right position.
Consequently, placeholder insertion and deletion endows LevOCR with the abil-
ity of directly altering sequence length, which is different from previous methods
(such as SRN [47] and ABINet [8]).

As for token prediction, it heavily relies on the output of placeholder inser-
tion. When both predicted placeholders and the rest characters are correct, token
prediction can directly make right decision (such as Img.4 and Img.6). However,
when the output of deletion or placeholder insertion is incorrect, the refinement
might collapse. As shown in Img.5 with y0

Rand, ‘k’ is not removed and 2 more
placeholders are inserted. Fortunately, Img.5 can be successfully corrected after
2 more iterations. This phenomenon demonstrates that deletion and insertion
are well learned by imitation learning, and adversarial learning guarantees that
these two actions are complementary and inter-inhibitive. Additionally, token
prediction supports inserting not only one character, but also word piece (mul-
tiple characters), such as “vic” in Img.1, “la” in Img.3 and “se” in Img.5. These
results clearly confirm the superiority of our method.
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Table 4. The accuracy comparisons with SOTA methods on 6 public benchmarks. The
underlined and bold values represent the second and the best results, respectively.

Methods Datasets
Regular Text Irregular Text

Average
IC13 SVT IIIT IC15 SVTP CUTE

TBRA [2] MJ+ST 93.6 87.5 87.9 77.6 79.2 74.0 84.6
ViTSTR [1] MJ+ST 93.2 87.7 88.4 78.5 81.8 81.3 85.6
ESIR [50] MJ+ST 91.3 90.2 93.3 76.9 79.6 83.3 87.1
SAM [24] MJ+ST 95.3 90.6 93.9 77.3 82.2 87.8 88.3
SE-ASTER [33] MJ+ST 92.8 89.6 93.8 80.0 81.4 83.6 88.3
TextScanner [40] MJ+ST 92.9 90.1 93.9 79.4 84.3 83.3 88.5
DAN [44] MJ+ST 93.9 89.2 94.3 74.5 80.0 84.4 87.2
ScRN [46] MJ+ST 93.9 88.9 94.4 78.7 80.8 87.5 88.4
RobustScanner [48] MJ+ST 94.8 88.1 95.3 77.1 79.5 90.3 88.4
PIMNet [32] MJ+ST 95.2 91.2 95.2 83.5 84.3 84.4 90.5

SATRN [22] MJ+ST 94.1 91.3 92.8 79.0 86.5 87.8 88.6
MASTER [29] MJ+ST 95.3 90.6 95.0 79.4 84.5 87.5 89.5

SRN [47] MJ+ST 95.5 91.5 94.8 82.7 85.1 87.8 90.4
ABINet [8] MJ+ST 97.4 93.5 96.2 86.0 89.3 89.2 92.6

LevOCR MJ+ST 96.85 92.89 96.63 86.42 88.06 91.67 92.81

4.7 Comparisons with State-of-the-Arts

We compare our LevOCR against thirteen state-of-the-art scene text recognition
methods on 6 public benchmarks, and the recognition results are illustrated in
Tab. 4. For fair comparison, we only choose the methods that trained on synthetic
datasets MJ and ST, and no lexicon is employed for evaluation. Specifically, Le-
vOCR outperforms SATRN [22] and MASTER [29] that are transformer-based
encoder-decoder models, showing the effectiveness of BERT-based framework for
text recognition. In addition, SRN [47] and ABINet [8] achieve impressive perfor-
mance by explicitly modelling linguistic information in their methods. The pro-
posed LevOCR gains 2.4% improvement over SRN on average accuracy. Mean-
while, LevOCR surpasses the performance of ABINet on IIIT, IC15 and CUTE
datasets and thus achieves the state-of-the-art performance on average accuracy.
These results demonstrate the effectiveness of LevOCR.

4.8 Interpretability of LevOCR

Four intuitive examples to demonstrate the good interpretability of LevOCR are
shown in Fig. 3. As in Fig. 3 (a), the second character “n” is mis-classified as
“m” in the image with GT string “snout”. LevOCR is able to identify that ‘m’
is wrong and thus should be deleted (the probability of deletion is 0.87). Be-
yond that, one can easily examine the reason why LevOCR makes this decision
through attention visualization and quantitative comparison. In this case, Lev-
OCR relies more on visual information than on textual information (0.737 vs.
0.263) and the pixels near ‘n’ in the image contribute the most for this decision.
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s o u tm

𝜋!"#(1|2, 𝑦) = 0.87

Sum = 0.737Sum = 0.263 Sum=0.864Sum=0.136

𝜋$#%(1|3, 𝑦) = 0.94

Sum = 0.445Sum = 0.555

o w ea ··· c eel

Sum = 0.4957Sum = 0.5043

(c) GT: towe (d) GT: service

s d i ot s

(a) GT: snout (b) GT: studios

𝜋!"#(1|1, 𝑦) = 0.67 𝜋!"#(1|1, 𝑦) = 0.97

Fig. 3. Illustration of the interpretability of LevOCR. The details (attention maps and
intermediate results) of the prediction of LevOCR are depicted. The sum attention
weights of different modalities in the top layer are visualized. Best viewed in colors.

Similarly, in the case of Fig. 3 (b), where the GT string is “studios” and ‘u’
is intentionally removed, LevOCR manages to perceive that the third character
is missing and thus should be brought back (the probability of inserting one
character between ‘t’ and ‘d’ is 0.94).

Additionally, when the initial prediction is incorrect and the image is severely
corrupted or blurry, LevOCR will pay more attention to textual information in
decision making, as shown in Fig. 3 (c) and (d). Through the visualization and
numbers produced by LevOCR, we can intuitively comprehend the character-
level supporting evidences used by LevOCR in giving this prediction. Notably,
good interpretability is an unique characteristic that distinguish the proposed
LevOCR from other scene text recognition algorithms. Based on it, we can un-
derstand the underlying reason for a specific decision of LevOCR and diagnose
its defects. We could even gain insights for designing better systems in the future.

4.9 Limitation

The deletion and insertion operations in LevOCR are relatively time-consuming,
where one refinement iteration costs about 36 ms. Considering the time of visual
feature extraction (11 ms) and alternative process, the elapsed time is about
47/83/119 ms for 1/2/3 iteration. The model size (109 × 106 parameters) is
relatively large. Therefore, a more efficient architecture will be our future work.

5 Conclusion

In this paper, we have presented an effective and explainable algorithm LevOCR
for scene text recognition. Based on Vision-Language Transformer (VLT), Lev-
OCR is able to sufficiently exploit the information from both the vision modality
and the language modality to make decisions in an iterative fashion. LevOCR
can give fine-granularity (character-level) predictions and exhibits a special prop-
erty of good interpretability. Extensive experiments verified the effectiveness and
advantage of the proposed LevOCR algorithm.
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