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Appendix

More Analysis

In this section, we will provide more statistical analysis and show some visual-
ization results to demonstrate the effectiveness of the proposed method.

Selected Scales Distribution. We counted the distributions of the input
scales selected by DRS under the entire DLD framework, as illustrated in Table 1.
As we can see, the model dynamically chooses different input scales for different
images. When γ=0.1, the model is more inclined to accuracy, and more selections
are concentrated on the scales of 0.6, 0.7, or 0.8. With the γ increases, the model
will select more low-res scales. The scales distributions are also slightly different
for different datasets. For example, IC15 chooses more large scales than IC13
since it contains a larger proportion of small text.

Table 1. The distributions of the selected scales using different γ in DLD.

Scales
γ = 0.1 γ = 0.3 γ = 0.5

IC13 IC15 TT IC13 IC15 TT IC13 IC15 TT

0.3 0.4% 0.2% 0% 4.3% 1.6% 1.6% 17.5% 11.4% 15.0%
0.4 2.6% 0.6% 6.7% 15.9% 14.6% 11.3% 36.0% 35.2% 35.3%
0.5 7.7% 6.2% 7.3% 46.5% 44.2% 47.7% 42.3% 44.4% 42.7%
0.6 24.1% 21.0% 26.3% 21.1% 29.2% 28.7% 3.8% 8.6% 7.0%
0.7 34.8% 39.3% 38.3% 12.0% 10.0% 10.7% 0.4% 0.4% 0%
0.8 30.4% 32.7% 27.4% 0.4% 0.4% 0% 0% 0% 0%

Visualization of the DRS. Dynamic Resolution Selector (DRS) aims to assign
different images with different input scales dynamically. Under the candidate
scales set {0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, we randomly select some of the images from
three benchmarks in different scales and visualize them in Figure 1. On the
overall trend, we can see that DRS is optimized to choose smaller input scales
for images containing large text and bigger input scales for images with small
text. Here, the term ‘large’ or ‘small’ reflects the relative ratio of the text to the
whole image instead of the instance’s absolute resolution. The scale that benefits
the overall performance would be selected for images containing both large and
small text, such as the sample in row-3 and column-1.

Visualization of the SKD. The proposed Sequential Knowledge Distillation
(SKD) strategy could help low-resolution images obtain similar performance to
those in high-resolution. In Figure 2, we demonstrate some end-to-end results
before and after adopting the SKD strategy under the 1/2 resolution inputs (S-
384 for IC13, S-640 for IC15 S-448 for TT), respectively. We can see that with
the proposed SKD, the model can correctly recognize some of the confused text
through context semantic information.
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Fig. 1. The selection results of DLD-DRS-only for different scales in IC13, IC15, TT.

Visualization of the DLD. Combining with SKD, the model makes the small-
er scales have more chances of selecting the DRS module. As for those low-res
inputs, DRS can help them select different feasible scales in a cost-efficient way.
We illustrate some of the comparisons of End-to-End results between the model
of DLD-SKD-only and the entire DLD framework in Figure 3. The model of
DLD-SKD-only inferences images in the 1/2 scales. We can see that although
some of the blurred text has been correctly recognized, some text still failed
to predict since the infeasible fixed scale, such as the first group of images as
shown. Under the entire DLD framework, images can be resized to a suitable
scale, achieving better performance with minimal computational cost changes.
For those easily recognized images such as the fourth group images in Figure 3,
the DLD allows them to choose a lower input scale without performance reduc-
tion.

We select some of the samples that are corrected recognized in high-res but
failed in low-res by Vanilla Multi-Scale model, as visualized in Figure 4. We also
provide the compared results predicted by our proposed DLD model. As we can
see, under DLD framework, the model has dynamically selected different scales
and mostly correctly recognized these instances in the low resolution.
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Fig. 2. The visualization of end-to-end results in IC13, IC15, and TT under 1/2
resolution inputs. The first row shows the results without using SKD (Vanilla Multi-
Scale) and the second row adopts SKD (DLD-SKD-only). Text in red are incorrectly
recognized.

Feature Distribution of SKD. The target of the SKD is to narrow the fea-
ture distribution difference between high resolution and low-resolution inputs.
To demonstrate the effectiveness, we visualize the feature distribution in two
network positions obtained by Principal Component Analysis (PCA), i.e., (1)
RoI Feature: the feature map after RoI-Masking operation, and (2) Contex-
ture Feature: the feature map after Bi-LSTM module. We compare the feature
distribution between high-res and low-res inputs for different models, and the
visualization results on three datasets are shown in Figure 5 and Figure 6. As
we can see, without using the SKD strategy (Vanilla Multi-Scale), the feature
differences between high-res and low-res inputs are relatively large. When the
model integrates with the SKD (DLD-SKD-only), the feature distributions are
narrowed. This demonstrates that, although the Multi-Scale training strategy
improves the models’ robustness on different input scales, the model actually
assigns different scales with different feature distributions and results in per-
formance discrepancies when input scales change. The SKD strategy essentially
aligns the feature distribution differences and makes the model more robust in
low-resolution.

Table 2 records the quantitative differences calculated by L2 distance. Com-
pared with Vanilla Multi-Scale training, distillation training can reduce the L2
distance of RoI Feature distribution by 0.13 on IC13, 0.11 on IC15 and 0.13
on Total-Text, respectively. As for the Contextual Feature, the distances can be
decreased by 0.08, 0.08, 0.10, respectively. Comparing the feature discrepancies
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Fig. 3. The visualization of end-to-end results in IC13, IC15, and TT. The first row
shows the results under 1/2 input scales in DLD-SKD-only and the second row corre-
sponds to the entire DLD. The numbers below the images are the down-sampled scales
compared to the original high-resolution. Text in red are incorrectly recognized.

Fig. 4. The compared recognition results between Vanilla Multi-Scale and DLD. Char-
acters in red are incorrectly recognized.

in two positions, the RoI feature’s differences between high-res and low-res in-
puts are much larger than the other. This demonstrates that it is unwise only
to adopt distillation in the deepest layer. Distillation on RoI features can help
the model recover the information in the early phases and prevent over-fitting.

Discussion

The technique of End-to-End text spotting has been studying for several years
since [4] was proposed. Many advances have demonstrated the advantages of
End-to-End models compared to the traditional two-staged pipeline, for exam-
ple, (1) better performance since freeing from error accumulation between two
tasks, (2) faster inference and smaller storage requirements by information shar-
ing and jointly optimization (3) lower maintenance cost [1].
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Fig. 5. The PCA visualization of the RoI Feature distributions on high-res and low-res
inputs. (a) Vanilla Multi-Scale on IC13. (b) Vanilla Multi-Scale on IC15. (c) Vanilla
Multi-Scale on TT. (d) DLD-SKD-only on IC13. (e) DLD-SKD-only on IC15. (f) DLD-
SKD-only on TT. Blue points denote the high resolution distribution and Red points
denote the low resolution distribution.

However, most of the current Optical Character Recognition (OCR) engines
still solve the real tasks in a two-staged way, such as Tesseract [6], PP-OCR [2],
Calamari [7], etc. There might exist many reasons, but one of the immediate fac-
tors is that an end-to-end model with good performance and robustness is hard
to obtain in many real complicated situations. Due to the different characteris-
tics of the sub-tasks, it is not easy to balance two tasks [8]. The text detection
task predicts instances’ scopes and locations and focuses more on the different
scales of coarse-grained features like boundaries. The recognition task is a se-
quential classification problem that usually requires images on a uniform scale,
and it is more concentrated on fine-grained features like textures. Therefore, the
input resolution becomes a sensitive factor to the second staged task and may
cause the overall performance fluctuation.

To alleviate such problems, besides the intuitive way that makes the model
be trained on more samples and with abundant means of augmentations, the
proposed DLD framework can effectively reduce the resolution sensitivity of the
text recognition task from the feature level. In real applications, the DLD can
be flexibly used to enhance the robustness of the end-to-end model.

Failure cases. In this section, we demonstrate some failure cases in the testing
phase. The failure cases are mainly caused by wrong resolution selection and
errors inherent in the detection model, here we only focus on the failure cases
caused by the wrong resolution selection to reveal the limitations of our proposed
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Fig. 6. The PCA visualization of the Contexture Feature distributions on high-res and
low-res inputs. (a) Vanilla Multi-Scale on IC13. (b) Vanilla Multi-Scale on IC15. (c)
Vanilla Multi-Scale on TT. (d) DLD-SKD-only on IC13. (e) DLD-SKD-only on IC15.
(f) DLD-SKD-only on TT. Blue points denote the high resolution distribution and Red
points denote the low resolution distribution.

framework. As shown in 7, we can see that it is difficult for the resolution selector
to choose a suitable resolution when the text size distribution in the images varies
greatly. Moreover, there are also a few failure cases assigning large resolutions
to images with large text or assigning small resolutions to images with small
text, which will brings extra time consumption or makes the text unrecognizable.
Nonetheless, our proposed resolution selector works well for most text images and
reduces the input resolution without affecting the performance. To demonstrate
the effectiveness, as shown in Table 3, we illustrate the distribution of failure
cases. We can see from the table that most of the failure cases are caused by errors
inherent in the detection model. Moreover, errors due to the introduction of our
proposed DLD framework only account for 2.51% in IC13, 2.16% in IC15 and
1.94% in TT, respectively. Furthermore, equipped with our proposed sequential
distillation, we can effectively correct some of incorrect recognition results.

Limitations. Although the proposed DLD framework effectively optimizes the
model’s performance of accuracy and computational cost, there are still some
problems to be solved in the future.

First, the basic high-resolution and the set of candidate down-sampled scales
need to be decided manually, which requires sufficient data analysis and certain
experiences of people. Given an empirical setting, although the model can per-
form better than simply using multi-scale training and fixed-scale testing, but
can hardly find out the theoretically best solution. Enlarging the candidate set’s
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Dataset Training Method
L2 distance of
RoI Feature

L2 distance of
Contexture Feature

IC13
Vanilla Multi-Scale 0.43 0.20
DLD-SKD-only 0.30 0.12

IC15
Vanilla Multi-Scale 0.28 0.18
DLD-SKD-only 0.17 0.10

TT
Vanilla Multi-Scale 0.34 0.19
DLD-SKD-only 0.21 0.09

Table 2. L2 distances of feature distribution between high-res and low-res inputs on
different benchmarks.

Dataset Vanilla Multi-Scale DLD ratio (%)

IC13

✔ ✔ 78.08
✔ ✗ 2.51
✗ ✔ 3.49
✗ ✗ 15.92

IC15

✔ ✔ 62.93
✔ ✗ 2.16
✗ ✔ 4.72
✗ ✗ 30.19

TT

✔ ✔ 64.79
✔ ✗ 1.94
✗ ✔ 4.74
✗ ✗ 28.53

Table 3. The distribution of failure cases in IC13, IC15 and TT. 4 means correct text
recognition, 7 means incorrect text recognition.

capacity is a way to find more optimal results. However, the training cost will
inevitably increase since the selector needs to calculate the forward results of all
candidate scales during training. A possible alternative way to achieve dynamic
resolution selecting is to predict resolutions in soft labels rather than hard labels,
such as quality assessment [3]. However, we still face many challenges since it is
hard to define the quality of an image containing different text.

Second, Although the KD strategy can increase the performance of the low-
res model, there is always a limit to the competence of the model. When the
input image is down-sampled to a small scale that even humans cannot recognize,
the KD learning might lead the model to an over-fitting state. Furthermore, the
current model only considers the KD problem on the recognition task. However,
the detection task is also sensitive to the resolution for the text spotters that
adopt the segmentation-based detection branch. Although we have demonstrated
the effectiveness to adopt our method on those models, the performances still
have large improvement spaces. More experiments should be conducted on the
different types of models in the future.

The last problem is a common problem for most current text spotters. The
target of text spotting is to obtain the final text sequences prediction. Howev-
er, the text detection branch is mostly optimized to obtain high-IoU with the
detection Ground Truth (GT), which is not always consistent with text recogni-



8

Fig. 7. Visualization of some failure cases caused by wrong resolution selection in
IC13, IC15, and TT. The first row shows the results under original input scales with
Vanilla Multi-Scale and the second row corresponds to the entire DLD. The numbers
below the images are the down-sampled scales compared to the original high-resolution.
Text in red are incorrectly recognized.

tion [5,8]. This problem would introduce the new question about how to balance
these two tasks. In our DLD, in addition to the GT-oriented optimization, many
other balance parameters still need to be set manually, which might also influence
the model’s performance to some extent.
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