
TextAdaIN: Paying Attention to Shortcut Learning in
Text Recognizers

Supplementary Material

Oren Nuriel, Sharon Fogel, and Ron Litman

AWS AI Labs
{onuriel, shafog, litmanr}@amazon.com

A SCATTER - Baseline Architecture

As mentioned in the paper, throughout this work our baseline architecture is a state-of-
the-art recognizer named SCATTER [16]. The SCATTER architecture consists of four
main components:
1. Transformation: A rectification module that aligns the input text image using a Thin

Plate Spline (TPS) transformation [17, 23].
2. Feature extraction: A convolutional neural network (CNN) that extracts features

from the rectified image. Similar to [4, 3, 16, 2, 1], a 29-layer ResNet is employed
as the backbone. Subsequently, the features are mapped to a sequence of frames,
denoted by V = [v1, v2, ..., vT], each corresponding to different receptive fields in
the image.

3. Visual feature refinement: An intermediate supervision in the form of a CTC de-
coder [7] is employed to provide direct supervision for each frame in the visual
features V .

4. Selective-Contextual Refinement Block: Contextual features are extracted using a
two-layer bi-directional LSTM encoder. These features are concatenated to the vi-
sual features, V . The features are then fed into a selective decoder and into a sub-
sequent block if it exists. These blocks can be stacked together to improve results.
In this work, for convenience, we set the number of blocks to two.

B Image Corruptions

In Sections 3.1 and 5.4, we compare the performance of the baseline model and the
TextAdaIN version on corrupted versions of the IAM test set. Fig. 1 contains original
images from the test set on the first column and the results of applying each of the
corruptions on the following columns. They are split into three categories based on their
impact: (a) local masking, (b) pixel-wise distortions and (c) geometric. The corruptions
are applied utilizing the imgaug [11] package as explicitly written below.

1 from imgaug import augmenters as iaa
2 corruptions = {
3 ’original’: iaa.Noop(),
4 ’dropout’: iaa.CoarseDropout((0.0, 0.05),

2 Nuriel et al.

Original
Shear

& Rotate
Dropout

Elastic
Transform

Cutout Perspective
Additive

Gaussian Noise
Motion

Blur

(a) (b) (c)

Fig. 1: Visualization of selected corruptions. To assert TextAdaIN’s advantage on
challenging testing conditions, we compare its performance to the baseline while ap-
plying different types of corruptions. We visualize the different corruptions and divide
them into categories based on their impact: local masking, pixel-wise distortions and
geometric.

5 ’cutout’: iaa.Cutout(nb_iterations=4),
6 ’additiive_gaussian_noise’: iaa.AdditiveGaussianNoise(scale

=(0, 0.2*255)),
7 ’elastic_transformation’: iaa.ElasticTransformation(alpha

=(0, 5.0), sigma=0.5),
8 ’motion_blur’: iaa.MotionBlur(k=15, angle=[-45, 45]),
9 ’shear_rotate’: iaa.Affine(shear=(-10, 10),rotate=(-10, 10),

mode=’reflect’),
10 size_percent=(0.02, 0.25)),
11 ’perspective’: iaa.PerspectiveTransform(scale=(0.05, 0.2)),
12 }

C Datasets

In this work, we consider the following public datasets for handwriting and scene text.
Samples from the different datasets are depicted in Fig. 2.

C.1 Handwritten text

For handwriting recognition, we consider three datasets:

– IAM [19] handwritten English text dataset, written by 657 different writers. This
dataset contains 101,400 correctly segmented words, partitioned into writer inde-
pendent training, validation and test.

– CVL [14] handwritten English text dataset, written by 310 different writers. 27 of
the writers wrote 7 texts, and the other 283 writers wrote 5 texts. This dataset con-
tains 84,990 correctly segmented words, partitioned into writer independent train-
ing and test. We use the same partitions as in [6, 2], in which the 310 writers are
used for training and the additional 27 writers are considered test.

– RIMES [8] handwritten French text dataset, written by 1300 different writers. This
dataset contains 66,480 correctly segmented words, partitioned into training, vali-
dation and test sets that are independent of writers.

TextAdaIN: Paying Attention to Shortcut Learning in Text Recognizers 3

(a) IAM (c) CVL (b) RIMES

(d) Regular text

(e) Irregular text

Fig. 2: Dataset samples. Examples of images from each dataset.

C.2 Scene text

For training the scene text models, we utilized only synthetic datasets:

– MJSynth (MJ) [10] a synthetic text in image dataset which contains 9 million
word-box images, generated from a lexicon of 90K English words.

– SynthText (ST) [9] a synthetic text in image dataset, containing 5.5 million words,
designed for scene text detection and recognition.

– SynthAdd (SA) [15] only when training SCATTER for scene text, as in the original
paper [16], SA was also utilized for training data. This dataset was generated using
the same synthetic engine as in ST and contains 1.2 million word box images. SA
is used for compensating the lack of non-alphanumeric characters in the training
data.

Aligned with many scene text recognition manuscripts (e.g. [24, 3, 15, 16]), we
evaluate our models using seven scene text datasets: ICDAR2003, ICDAR2013, IIIT5K,
SVT, ICDAR2015, SVTP and CUTE. Those datasets are commonly divided into regular
and irregular text according to the text layout.
Regular text datasets are composed of:

– IIIT5K [20] consists of 2000 training and 3000 testing images that are cropped
from Google image searches.

– SVT [25] is a dataset collected from Google Street View images and contains 257
training and 647 testing cropped word-box images.

– ICDAR2003 [18] contains 867 cropped word-box images for testing.
– ICDAR2013 [13] contains 848 training and 1,015 testing cropped word-box im-

ages.

4 Nuriel et al.

Irregular text datasets are composed of:

– ICDAR2015 [12] contains 4,468 training and 2,077 testing cropped word-box im-
ages, all captured by Google Glass, without careful positioning or focusing.

– SVTP [21] is a dataset collected from Google Street View images and consists of
645 cropped word-box images for testing.

– CUTE 80 [22] contains 288 cropped word-box images for testing, many of which
are curved text images.

D Implementation Details

In our experiments, we utilize four types of architectures. The first is SCATTER, the
second and third are two other are variants of the Baek et al.[3] framework and the last
is AbiNet [5]. All models are trained and tested using the PyTorch framework on a Tesla
V100 GPU with 16GB memory.

We follow the training procedure performed in [16]. Accordingly, models are trained
using the AdaDelta optimizer with: a decay rate of 0.95, gradient clipping with a magni-
tude of 5 and batch size of 128. During training, 40% of the input images are augmented
by randomly resizing them and adding extra distortion. Models trained on handwriting
and scene text datasets are trained for 200k iterations and 600k iterations, respectively.
Model selection is performed on the validation set, which for scene text is the union of
the IC13, IC15, IIIT5K and SVT training splits and for handwriting is the predefined
validation sets. When utilizing SCATTER, all images are resized to 32×128 and are in
RGB format. For evaluation, word accuracy measured is case insensitive. We refer the
reader for any additional implementation details, both during inference and training, to
the original papers [3, 16].

To reproduce the results for AbiNet we downloaded the pretrained models from the
official open source implementation (https://github.com/FangShancheng/
ABINet) and re-ran the fine-tune step. When adding TextAdaIN, we apply it in both
phases, in the pre-training step as well as in the fine-tuning step. We use the default
configurations as defined in the repository. For handwriting, we use the default config-
urations but run for 100 epochs and adjust the learning rate schedule to 60, 25, 15.

For TextAdaIN, we use p = 0.01 and split images into K = 5 windows. In the
cases where the number of windows does not divide the width, we use the maximum
width that can be divided and ignore the remainder.

E Failure Cases

In Fig. 3, we display failure cases of our method on the IAM dataset. The failure cases
are mostly composed of highly cursive text, unclear handwriting styles and ambigu-
ous cases. Adding additional context by employing a line-level approach can assist in
rectifying these types of errors, nevertheless, line-level recognition has its own caveats.

https://github.com/FangShancheng/ABINet
https://github.com/FangShancheng/ABINet

TextAdaIN: Paying Attention to Shortcut Learning in Text Recognizers 5

GT: these

Pred: there

GT: meal

Pred: meat

GT: Mos

Pred: Yos

GT: inferior

Pred: interior
GT: Moon

Pred: Noon

GT: instil

Pred: instill

GT: sun

Pred: seen

GT: storm

Pred: strom

GT: 4microdebs

Pred: Amicradeds

GT: 4makrodeb

Pred: Umakrodeb

GT: reverenced

Pred: reverenced

GT: thought

Pred: thought

Fig. 3: Failure cases. Samples of failure cases on the IAM dataset. GT stands for the
ground truth annotation, and Pred is the predicted result. Prediction errors are marked
in red, and missing characters are annotated by strike-through.

F The importance of an induced distribution

We show the importance of sampling from an induced distribution, specifically the
distribution derived by the representation spaces of natural text images. As shown in
Table 1, using Gaussian noise or background images only slightly increases perfor-
mances. In contrast, TextAdaIN, which samples from the appropriate induced distribu-
tion, shows the highest increase in performance.

Table 1: The importance of the induced distribution. Best performance is achieved
only when injecting distortions from an induced distribution namely, other text images

Injection Method Donors Accuracy

Baseline X 85.7

TextAdaIN Gaussian Noise 86.1
TextAdaIN Blank Image 86.2

TextAdaIN Text Images 87.3

G Number of Windows

As mentioned in the main paper, TextAdaIN splits the feature map into windows along
the width axis. As the features vary in size at different layers, we define K to represent
the number of elements created per sample. Thus, K determines the window size at each
layer. Modifying K has several different effects. For example, it controls the granularity
level in which the statistics are calculated and modified and the number of donors.
Therefore, an optimal value of K can be found to balance the different effects. In Fig. 4,

6 Nuriel et al.

Fig. 4: Number of windows. Varying the number of windows extracted per sample has
multiple effects, including the granularity level and the number of donor images.

we plot the performance as a function of K. The best result is achieved when using
K = 5.

H TextAdaIN Pseudo-Code

In this section, we provide pseudo-code for TextAdaIN. The code includes two func-
tions not explicitly implemented: create windows from tensor, revert windowed tensor.
The first function represents the mapping:

X ∈ RB×C×H×W → X̂ ∈ RB·K×C×H×W
K ,

and the second represents the corresponding inverse mapping. As mentioned in the
paper, we do not backpropogate through µc,h(x̂π(i)), σc,h(x̂π(i)) and thus, detach is
used.

1 def TextAdaIN(x, p=0.01, k=5, eps=1e-4):
2 # input x - a pytorch tensor
3 if rand() > p:
4 return x
5 N, C, H, W = x.size()
6 # split into windows
7 x_hat = create_windows_from_tensor(x,k)
8 # calculate statistics
9 feat_std = sqrt(x_hat.var(dim=3)+ eps)

10 feat_std = feat_std.view(N*k, C, H, 1)
11 feat_mean = x_hat.mean(dim=3)
12 feat_mean = feat_mean.view(N*k, C, H, 1)
13 # perform permutation
14 perm_indices = randperm(N*k)
15 perm_feat_std = feat_std[perm].detach()

TextAdaIN: Paying Attention to Shortcut Learning in Text Recognizers 7

16 perm_feat_mean = feat_mean[perm].detach()
17 # normalize
18 x_hat = (x - feat_mean) / feat_std
19 # swap
20 x_hat = x_hat * perm_feat_std
21 x_hat += perm_feat_mean
22 # merge windows
23 x = revert_windowed_tensor(x_hat, k, W)
24 return x

Bibliography

[1] Aberdam, A., Ganz, R., Mazor, S., Litman, R.: Multimodal semi-supervised learn-
ing for text recognition. arXiv preprint arXiv:2205.03873 (2022) 1

[2] Aberdam, A., Litman, R., Tsiper, S., Anschel, O., Slossberg, R., Mazor, S., Man-
matha, R., Perona, P.: Sequence-to-sequence contrastive learning for text recogni-
tion. arXiv preprint arXiv:2012.10873 (2020) 1, 2

[3] Baek, J., Kim, G., Lee, J., Park, S., Han, D., Yun, S., Oh, S.J., Lee, H.: What is
wrong with scene text recognition model comparisons? dataset and model anal-
ysis. In: Proceedings of the IEEE International Conference on Computer Vision.
pp. 4715–4723 (2019) 1, 3, 4

[4] Cheng, Z., Bai, F., Xu, Y., Zheng, G., Pu, S., Zhou, S.: Focusing attention: To-
wards accurate text recognition in natural images. In: Proceedings of the IEEE
international conference on computer vision. pp. 5076–5084 (2017) 1

[5] et al., F.: Read like humans: Autonomous, bidirectional and iterative language
modeling for scene text recognition 4

[6] Fogel, S., Averbuch-Elor, H., Cohen, S., Mazor, S., Litman, R.: Scrabblegan:
Semi-supervised varying length handwritten text generation. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp.
4324–4333 (2020) 2

[7] Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural net-
works. In: Proceedings of the 23rd international conference on Machine learning.
pp. 369–376. ACM (2006) 1

[8] Grosicki, E., El Abed, H.: Icdar 2009 handwriting recognition competition. In:
2009 10th International Conference on Document Analysis and Recognition. pp.
1398–1402. IEEE (2009) 2

[9] Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in nat-
ural images. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. pp. 2315–2324 (2016) 3

[10] Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and
artificial neural networks for natural scene text recognition. arXiv preprint
arXiv:1406.2227 (2014) 3

[11] Jung, A.B., Wada, K., Crall, J., Tanaka, S., Graving, J., Reinders, C., Yadav, S.,
Banerjee, J., Vecsei, G., Kraft, A., Rui, Z., Borovec, J., Vallentin, C., Zhydenko,
S., Pfeiffer, K., Cook, B., Fernández, I., De Rainville, F.M., Weng, C.H., Ayala-
Acevedo, A., Meudec, R., Laporte, M., et al.: imgaug. https://github.
com/aleju/imgaug (2020), online; accessed 01-Feb-2020 1

[12] Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S., Bagdanov, A., Iwa-
mura, M., Matas, J., Neumann, L., Chandrasekhar, V.R., Lu, S., et al.: Icdar 2015
competition on robust reading. In: 2015 13th International Conference on Docu-
ment Analysis and Recognition (ICDAR). pp. 1156–1160. IEEE (2015) 4

[13] Karatzas, D., Shafait, F., Uchida, S., Iwamura, M., i Bigorda, L.G., Mestre, S.R.,
Mas, J., Mota, D.F., Almazan, J.A., De Las Heras, L.P.: Icdar 2013 robust reading

https://github.com/aleju/imgaug
https://github.com/aleju/imgaug

TextAdaIN: Paying Attention to Shortcut Learning in Text Recognizers 9

competition. In: 2013 12th International Conference on Document Analysis and
Recognition. pp. 1484–1493. IEEE (2013) 3

[14] Kleber, F., Fiel, S., Diem, M., Sablatnig, R.: Cvl-database: An off-line database for
writer retrieval, writer identification and word spotting. In: 2013 12th international
conference on document analysis and recognition. pp. 560–564. IEEE (2013) 2

[15] Li, H., Wang, P., Shen, C., Zhang, G.: Show, attend and read: A simple and strong
baseline for irregular text recognition. In: Proceedings of the AAAI Conference
on Artificial Intelligence. vol. 33, pp. 8610–8617 (2019) 3

[16] Litman, R., Anschel, O., Tsiper, S., Litman, R., Mazor, S., Manmatha, R.: Scat-
ter: Selective context attentional scene text recognizer. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2020) 1, 3, 4

[17] Liu, W., Chen, C., Wong, K., Su, Z., Han, J.: Star-net: A spatial attention residue
network for scene text recognition. In: BMVC (2016) 1

[18] Lucas, S.M., Panaretos, A., Sosa, L., Tang, A., Wong, S., Young, R.: Icdar 2003
robust reading competitions. In: Seventh International Conference on Document
Analysis and Recognition, 2003. Proceedings. pp. 682–687. Citeseer (2003) 3

[19] Marti, U.V., Bunke, H.: The iam-database: an english sentence database for of-
fline handwriting recognition. International Journal on Document Analysis and
Recognition 5(1), 39–46 (2002) 2

[20] Mishra, A., Alahari, K., Jawahar, C.: Scene text recognition using higher order
language priors (2012) 3

[21] Quy Phan, T., Shivakumara, P., Tian, S., Lim Tan, C.: Recognizing text with per-
spective distortion in natural scenes. In: Proceedings of the IEEE International
Conference on Computer Vision. pp. 569–576 (2013) 4

[22] Risnumawan, A., Shivakumara, P., Chan, C.S., Tan, C.L.: A robust arbitrary text
detection system for natural scene images. Expert Systems with Applications
41(18), 8027–8048 (2014) 4

[23] Shi, B., Wang, X., Lyu, P., Yao, C., Bai, X.: Robust scene text recognition with au-
tomatic rectification. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 4168–4176 (2016) 1

[24] Shi, B., Yang, M., Wang, X., Lyu, P., Yao, C., Bai, X.: Aster: An attentional scene
text recognizer with flexible rectification. IEEE transactions on pattern analysis
and machine intelligence (2018) 3

[25] Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: 2011
International Conference on Computer Vision. pp. 1457–1464. IEEE (2011) 3

