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Abstract. Linguistic knowledge has brought great benefits to scene text
recognition by providing semantics to refine character sequences. How-
ever, since linguistic knowledge has been applied individually on the
output sequence, previous methods have not fully utilized the seman-
tics to understand visual clues for text recognition. This paper intro-
duces a novel method, called Multi-modAl Text Recognition Network
(MATRN), that enables interactions between visual and semantic fea-
tures for better recognition performances. Specifically, MATRN identifies
visual and semantic feature pairs and encodes spatial information into
semantic features. Based on the spatial encoding, visual and semantic fea-
tures are enhanced by referring to related features in the other modality.
Furthermore, MATRN stimulates combining semantic features into vi-
sual features by hiding visual clues related to the character in the training
phase. Our experiments demonstrate that MATRN achieves state-of-the-
art performances on seven benchmarks with large margins, while naive
combinations of two modalities show less-effective improvements. Further
ablative studies prove the effectiveness of our proposed components. Our
implementation is available at https://github.com/wp03052/MATRN.

1 Introduction

Scene text recognition (STR), a major component of optical character recog-
nition (OCR) technology, identifies a character sequence in a given text image
patch (e.g. words in a traffic sign). Applications of deep neural networks have
brought great improvements in the performance of STRmodels [2,26,27,29,33,34].
They typically consist of a visual feature extractor, abstracting the image patch,
and a character sequence generator, responsible for character decoding. Despite
wide explorations to find better visual feature extractors and character sequence
generators, existing methods still suffer from challenging environments: occlu-
sion, blurs, distortions, and other artifacts [2,3].

To address these remaining challenges, STR methods have tried to utilize
linguistic knowledge on the output character sequence. The mainstream of the
approaches had been to model recursive operations learning linguistic knowl-
edge for next character prediction. RNN [2,27] and Transformer [16,25,32] have
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been applied to learn the auto-regressive language model (LM). However, the
auto-regressive process requires expensive repeated computations and also learns
limited linguistic knowledge from the uni-directional transmission.

To compensate for the issues, Yu et al. [33] propose SRN that refines an out-
put sequence without auto-regressive operations. After identifying a seed charac-
ter sequence, SRN re-estimates the character for each position at once by utiliz-
ing a Transformer encoder with a subsequent mask. Based on SRN, Fang et al. [7]
improve the iterative refinement stages by explicitly dividing a vision model
(VM) and an LM by blocking gradient flows and employing a bi-directional LM
pre-trained on unlabeled text datasets. These methods incorporating semantic
knowledge of LMs provide breakthroughs in recognizing challenging examples
with ambiguous visual clues. However, the character refinements without visual
features might lead to wrong answers by missing existent visual clues.

For better combinations of semantics and visual clues, Bhunia et al. [3] pro-
pose a multi-stage decoder referring to visual features multiple times to enhance
semantic features. At each stage, a character sequence, designed as differen-
tiable with Gumbel-softmax, is re-fined by re-assessing visual clues. Concur-
rently, Wang et al. [30] propose VisionLAN utilizing a language-aware visual
mask that occludes selected character regions for enhancing the visual clues
at the training phase. They prove that combining visual clues and semantic
knowledge leads to better STR performances. Inspired by them, we raise a novel
question: what is the best way to model the interactions between visual and
semantic features identified by VM and LM, respectively?

To answer the question, this paper introduces a simple-but-effective extension
of a STR model, named Multi-modAl Text Recognition Network (MATRN),
that enhances visual and semantic features by referring to features in both
modalities. MATRN consists of three proposed modules applied upon visual
and semantic features: (1) multi-modal feature enhancement, incorporating bi-
modalities to enhance each feature, (2) spatial encoding for semantics, linking
two different modalities, (3) visual clue masking strategy, stimulating the cross-
references between visual and semantic features. Figure 1 shows four types of
visual and semantic feature fusions. MATRN is positioned in the bi-directional
feature fusion (Figure 1d) by applying multi-modal feature enhancement. To the
best of our knowledge, this natural but simple extension has never been explored.

The resulting model, MATRN, is architecturally simple but effective. In addi-
tion, the visual and semantic feature fusions are not expensive because the whole
process is conducted in parallel. When we evaluate simple combinations of visual
and semantic features without our proposed components, the performance im-
provements are observed as less-effective. However, interestingly, the proposed
components contribute to STR performances effectively and lead MATRNs to
achieve superior performances with notable gains from the current state-of-the-
art. Consequently, our paper proves that semantics is helpful to capture better
visual clues as well as that combining visual and semantic features reaches better
STR performances.

Our contributions are threefold.
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(a) (b) (c) (d)

Fig. 1. Four types of visual and semantic feature fusions for STR: (a) simple combina-
tion of outputs from VM and LM, (b) visual-to-semantic feature fusion, (c) semantic-
to-visual feature fusion, and (d) bi-directional feature fusion. SRN [33] is placed in (a)
by applying LM to refine the output of VM. ABINet [7], PIMNet [22], and JVSR [3]
can be aligned in (b) because their decoders refer to visual features iteratively during
refining the final output sequence. VisionLAN [30] combines semantic information into
visual features in a similar way to (c). Our method, MATRN, is positioned in (d) by
enhancing both features through the bi-directional reference.

– We explore the combinations of visual and semantic features, identified by
VM and LM, and prove their benefits. To the best of our knowledge, multi-
modal feature enhancements with bi-directional fusions are novel compo-
nents, that are natural extensions but have never been explored.

– We propose a STR method, named MATRN, that contains three major com-
ponents, spatial encoding for semantics, multi-modal feature enhancements,
and visual clue masking strategy, for better combinations of two modalities.
Thanks to the effective contributions of the proposed components, MATRN
achieves state-of-the-art performances on seven STR benchmarks.

– We provide empirical analyses that illustrate how our components improve
STR performances as well as how MATRN contributes to the existing chal-
lenges.

2 Related Work

To utilize the benefits of a bi-directional Transformer, the non-autoregressive de-
coder has been introduced in the STR community. The general decoding process
of them [1,7,22,30,33] lies in the effective construction of a sequence processed
parallelly in the decoder. Specifically, positional embeddings describing the order
of the output sequence are used to align visual (or semantic) features. Although
the output sequence is generated in parallel, the bi-directional Transformer has
shown comparable performances with the auto-regressive approaches.

ViTSTR [1] mainly focused on their VM without explicitly learning the LM.
Inspired by the success of ViT [6], ViTSTR [1] has adopted ViT training scheme
to STR. Specifically, its composition is very simple composed of the Transformer
encoder and is trained with un-overlapped patches.
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In order to incorporate linguistic knowledge, PIMNet [22], SRN [33] and
ABINet [7] have been proposed. To learn linguistic knowledge from the auto-
regressive model, PIMNet [22] proposed step-wise predictions and similarity dis-
tance between non-autoregressive and auto-regressive models. SRN and ABINet
introduced a language modality that refines the output sequence of VM. Then,
the final predictions are achieved by fusing the output sequences of LMs and
VMs. In SRN [33], the LM is trained along with VM where the LM learns se-
mantic information from other words. Based on SRN, ABINet [7] improves the
iterative refinement stages by explicitly dividing the VM and LM. With a pre-
training LM on unlabeled text datasets, it provides breakthroughs in recognizing
challenging examples with ambiguous visual clues.

To interactively combine LM and VM, multi-modal recognizers are also in-
troduced [3,30]. JVSR [3] proposes a multi-stage decoder referring to visual fea-
tures multiple times to enhance semantic features. Specifically, it is based on
an RNN-attention decoder with multi-stages where each stage generates an out-
put sequence and visual features are employed for updating each hidden state.
Since the decoder takes a hidden state as an input, the visual feature can iter-
atively enhance the semantic features. Concurrently, VisionLAN [30] proposes
a language-aware visual mask that refers to semantic features for enhancing
the visual features. Given a masking position of the word, the masking mod-
ule occludes corresponding visual feature maps of the character region at the
training phase. The previous multi-modal recognizers focus on one modality for
final prediction and they utilize the other modality to improve their chosen one.
In contrast, we explore the multiple combinations of multi-modal processes and
propose MATRN which conducts both bi-directional enhancements.

3 MATRN

Here, we describe our recognition model, MATRN, which incorporates both vi-
sual and semantic features. We will provide an overview of our method, and then
describe each component in detail.

3.1 Overview of MATRNs

Figure 2 shows the overview of our model. It includes a visual feature extractor
and a seed text generator to embed an image and provide an initial sequence
of characters, as traditional STR models do. LM is applied to the seed text to
extract semantic features.

Our contributions are focused on incorporating the visual and semantic fea-
tures for better STR performances. Our method first encodes spatial positions
into semantic features by utilizing an attention map identified during the seed
text generation. The multi-modal feature enhancement module enriches indi-
vidual visual and semantic features by incorporating multi-modalities. The en-
hanced features are named as multi-modal visual features, enhanced visual fea-
tures with semantic knowledge, and multi-modal semantic features, enhanced
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Fig. 2. An overview of MATRN. A visual feature extractor and an LM extract vi-
sual and semantic features, respectively. By utilizing the attention map, representing
relations between visual features and character positions, MATRNs encode spatial in-
formation into the semantic features and hide visual features related to a randomly
selected character. Through the multi-modal feature enhancement module, visual and
semantic features interact with each other and the enhanced features in the two modal-
ities are fused to finalize the output sequence.

semantic features with visual clues. Finally, both features are combined to pro-
vide the output sequence.

In the training phase of MATRN, the visual clue masking module hides visual
features, related to a single character to stimulate the combination of semantics.
Furthermore, the output sequence can be iteratively applied into the seed text
for the LM, as follows [7].

3.2 Visual and Semantic Feature Extraction

To identify visual and semantic features, we construct three components: vi-
sual feature extractor, seed text generator, and language model. The following
describes each module.

For the visual feature extractor, ResNet and Transformer units [7,33] are ap-
plied. The ResNet, FV.R, with 45 layers embeds an input image, X ∈ RH×W×3,
into convolution visual features, Vconv ∈ RH

4 ×W
4 ×D. H,W are height and width

of the image and D is the feature dimension. Before applying the Transformer,
sinusoidal spatial position embeddings, PV ∈ RH

4 ×W
4 ×D, are added. Then, the

Transformer, FV.T, with three layers is applied:

V = FV.T(FV.R(X) +PV), (1)

where V ∈ RH
4 ×W

4 ×D indicates visual features that are the outputs of the visual
feature extractor.

For the seed text generation, an attention mechanism is utilized to tran-
scribe visual features into character sequences. Specifically, an attention map,
AV-S ∈ RT×HW

16 , is calculated by setting queries as text positional embeddings,
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PS ∈ RT×D, and keys as G(V) ∈ RHW
16 ×D in the attention mechanism, where T

is the maximum length of sequence and G(·) is a mini U-Net. Through the atten-

tion map, visual features are abstracted upon sequential features, EV = AV-SṼ,
where Ṽ ∈ RHW

16 ×D indicates the flattened visual features. By applying a linear
layer and softmax function, a seed character sequence, Y(0) ∈ RT×C , is gener-
ated, where C indicates the number of character classes. The whole process can
be formalized as follows;

AV-S = softmax
(
PSG(V)⊤/

√
D
)
, (2)

Y(0) = softmax
(
AV-SṼW

)
, (3)

where W ∈ RD×C indicates a linear transition matrix.
The LM, introduced by [7], consists of four Transformer decoder blocks. It

uses PS as inputs and Y(0) as the key/value of the attention layer. By processing
the multiple decoder blocks, the LM identifies semantic features, S ∈ RT×D;

S = FLM(Y(0)), (4)

where FLM indicates the LM. We initialize the LM with the weights, pre-trained
on WikiText-103, provided by [7].

3.3 Spatial Encoding to Semantic Features

One important point of combining the visual and semantic features is how to
align each piece of information of different modalities. To guide the relationship
between visual and semantic features, MATRN encodes spatial positions of visual
features into semantic features. We call this process spatial encoding to semantics
(SES).

The key idea of SES is utilizing the attention map AV-S, used for the seed
text generation, and the spatial position embedding PV, introduced in the visual
feature extractor. Since AV-S provides which visual features are used to estimate
a character at each position, the spatial positions for semantic features, PAlign ∈
RT×D, are calculated as follows;

PAlign = AV-SP̃V, (5)

where P̃V ∈ RHW
16 ×D is the flattened sinusoidal spatial position embedding, PV.

Then, we encode the spatial information into semantic features:

SAlign = S+PAlign. (6)

From this encoding process, the spatially aligned semantic features, SAlign, con-
tain spatial clues of visual features are highly related. It should be noted that
SES does not need any additional parameters as well as it is simple and effective
for the cross-references between visual and semantic features.
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3.4 Multi-modal Features Enhancement

Now, we hold visual features, Ṽ, that learn visual clues for character estimations,
and semantic features, SAlign, that contain linguistic knowledge for a character
sequence. Previous methods [33,7] simply use a gated mechanism to seed charac-
ter feature EV and semantic feature S. However, this simple fusion mechanism
might not completely utilize these two features. Therefore, we propose a way
in which the visual and semantic features refer to each other effectively and
consequently enhance the features.

Multi-modal transformer [28], which consists of transformer layers processing
multiple types of features at once, has been introduced in several domains such
as visual question answering [10], vision-language navigation [4], autonomous
driving [21], video retrieval [8], and many others. Inspired by them, we employ
the multi-modal transformer for visual and semantic features enhancement for
STR. The multi-modal transformers have multiple Transformer encoder blocks
that consist of an attention layer and a feed-forward layer. At the attention
layer, both visual and semantic features are processed through self-attentions.
Since the queries determine their major modality, visual features are enhanced as
multi-modal visual features, VM ∈ RHW

16 ×D, and semantic features are updated
into multi-modal semantic features, SM ∈ RT×D.

3.5 Final Output Fusion

Both multi-modal features are utilized to finalize the output character sequence.
While multi-modal semantic features are already aligned as a sequence, multi-
modal visual features are required to be re-organized to estimate characters.
To align the visual features into a sequence, we apply a character generator,
which has the same architecture of the seed text generator, to aggregate VM

into sequential features, EVM

(See §3.2). Afterward, two sequential features,

EVM

and SM, are combined through a gate mechanism to identify features,
F ∈ RT×D, used for final character estimations:

G = σ
([

EVM

;SM
]
Wgated

)
, (7)

F = G⊙EVM

+ (1−G)⊙ SM, (8)

where Wgated ∈ R2D×D is a weight, [; ] indicates concatenation, and ⊙ is
element-wise product. Finally, a linear layer and softmax function are applied
on F to estimate a character sequence, Y(1) ∈ RT×C .

3.6 Visual Clue Masking Strategy

To facilitate a better blend of the visual and semantic features, we propose a
visual clue masking strategy, which is motivated by VisionLAN [30]. This strat-
egy selects a single character randomly and hides corresponding visual features
based on the attention map, AV-S, identified in the seed text generation. By ex-
plicitly deleting influential features for the character estimation, the multi-modal
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Fig. 3. Conceptual descriptions of visual clue masking strategy. Based on the attention
map, representing relations between visual features and characters, influential features
for a randomly selected character position are masked. In the multi-modal FE stage,
semantic features are stimulated to be merged more strongly to compensate for the
missing visual clues.

FE module becomes stimulated to encode semantic knowledge into the visual
features in order to compensate for the missing visual clues. Figure 3 provides
the conceptual description of the visual clue masking strategy.

The masking process chooses a position randomly in a character sequence and
finds the top-K visual features relevant to the chosen position. For example, if
the fourth position is selected, the process identifies the frontK visual features in
the descending order of the attention scores at the fourth position. The identified
visual features are replaced into v[MASK] ∈ RD. The visual clue masking is only
applied in the training phase. To reduce the discrepancy between training and
evaluating phases, we keep the identified features unchanged with probability
0.1, as like [5].

3.7 Training Objective

MATRN is trained as end-to-end learning with multi-task cross-entropy objec-
tives from multi-level visual and semantic features. We denote L∗ is a cross-
entropy loss for estimated character sequences from a feature ∗. For the estima-
tions, a linear layer and a softmax function are utilized. In addition, MATRN
applies iterative semantic feature correction to resolve the noisy input for the
LM, as follows [7,15]. At the iteration, the input of LM is replaced into the
output of the output fusion layer (See Figure 2). The loss of MATRN is formed
as follows;

L = LEV +
1

M

M∑
i=1

(
LS(i)

+ LSM
(i)

+ L
EVM

(i)

+ LF(i)

)
, (9)

where M is the number of iterations. Here, S(i), S
M
(i), E

VM

(i) , and F(i) indicate the
semantic, multi-modal semantic, multi-modal visual, and final fused features at
the i-th iteration, respectively.
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4 Experiments

4.1 Datasets

For fair comparisons, we use the same training dataset and evaluation protocol
with [7,33]. For the training set, we use two widely-used synthetic datasets,
MJSynth [11] and SynthText [9]. MJSynth has 9M synthetic text images and
SynthText consists of 7M images including examples with special characters.
Most previous works have used these two synthetic datasets together: MJSynth
+ SynthText [2].

For evaluation, eight widely used real-world STR benchmark datasets are
used as test datasets. The datasets are categorized into two groups: “regular”
and “irregular” datasets, according to the geometric layout of texts. “regular”
datasets mainly contain horizontally aligned text images. IIIT5K (IIIT) [19]
consists of 3,000 images collected from the web. Street View Text (SVT) [12] has
647 images collected from Google Street View. ICDAR2013 (IC13) [13] represents
images cropped from mall pictures and has two variants; 857 images (IC13S) and
1015 images (IC13L). We utilize all two variants for providing fair comparisons.
We skipped the evaluation on ICDAR2003 [17] because it contains duplicated
images with IC13 [2].

“irregular” datasets consist of more examples of text in arbitrary shapes. IC-
DAR2015 (IC15) consists of images taken from scenes and also has two versions;
1,811 images (IC15S) and 2,077 images (IC15L). Street View Text Perspective
(SVTP) [20] contains 645 images of which texts are captured in perspective
views. CUTE80 (CUTE) [24] consists of 288 images of which texts are heavily
curved.

In our analyses, we measure the word prediction accuracy on each dataset.
For “Total.”, we evaluate the accuracy of unified evaluation datasets except for
IC13L and IC15L. It should be noted that we follow the philosophy of Baek et
al. [2] which compares STR models upon the common evaluation datasets.

4.2 Implementation Details

The height and width of the input image are 32 and 128 by re-sizing text images
and we apply image augmentation methods [7,18,33] such as rotation, color
jittering, and noise injection. The number of character classes is 37; 10 for digits,
26 for alphabets, and a single padding token.

We borrow the network structures of the visual feature extractor, seed text
generator, and language model from ABINet [7]. We set the feature dimension,
D, as 512 and the maximum length of the sequence, T , as 25. For the multi-
modal transformer, we use 2 Transformer blocks with 8 heads and a hidden size
of 512. The iteration number M is set to 3 unless otherwise specified. We fixed
the number of visual features mask, K, as 10.

We adopt the code from ABINet4, and keep the experiment configuration.
We use a pre-trained visual feature extractor and a pre-trained language model,

4 https://github.com/FangShancheng/ABINet
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Table 1. Recognition accuracies (%) on eight benchmark datasets, including the vari-
ant versions. The underlined values represent the best performances among the previous
STR methods and the bold values indicate the best performances among all models
including ours. For our implementation, we conduct repeated experiments with three
different random seeds and report the averaged accuracy with standard deviation.

Regular test dataset Irregular test dataset
Model Year IIIT SVT IC13S IC13L IC15S IC15L SVTP CUTE

CombBest [2] 2019 87.9 87.5 93.6 92.3 77.6 71.8 79.2 74.0
ESIR [35] 2019 93.3 90.2 - 91.3 - 76.9 79.6 83.3
SE-ASTER [23] 2020 93.8 89.6 - 92.8 80.0 81.4 83.6
DAN [29] 2020 94.3 89.2 - 93.9 - 74.5 80.0 84.4
RobustScanner [34] 2020 95.3 88.1 - 94.8 - 77.1 79.5 90.3
AutoSTR [37] 2020 94.7 90.9 - 94.2 81.8 - 81.7 -
Yang et al. [32] 2020 94.7 88.9 - 93.2 79.5 77.1 80.9 85.4
SATRN [16] 2020 92.8 91.3 - 94.1 - 79.0 86.5 87.8
SRN [33] 2020 94.8 91.5 95.5 - 82.7 - 85.1 87.8
GA-SPIN [36] 2021 95.2 90.9 - 94.8 82.8 79.5 83.2 87.5
PREN2D [31] 2021 95.6 94.0 96.4 - 83.0 - 87.6 91.7
JVSR [3] 2021 95.2 92.2 - 95.5 - 84.0 85.7 89.7
VisionLAN [30] 2021 95.8 91.7 95.7 - 83.7 - 86.0 88.5
ABINet [7] 2021 96.2 93.5 97.4 - 86.0 - 89.3 89.2

ABINet (reproduced) 96.2 93.7 97.2 95.4 85.9 82.1 89.3 89.0
±0.2 ±0.4 ±0.2 ±0.2 ±0.2 ±0.1 ±0.4 ±0.3

MATRN (ours) 96.6 95.0 97.9 95.8 86.6 82.8 90.6 93.5
±0.1 ±0.2 ±0.1 ±0.1 ±0.1 ±0.0 ±0.2 ±0.6

which are provided by [7]. We use 4 NVIDIA GeForce RTX 3090 GPUs to train
our models with batch size of 384. We used Adam [14] optimizer of initial learning
rate 10−4, and the learning rate is decayed to 10−5 after six epochs.

4.3 Comparison to State-of-the-Arts

Table 1 shows the existing STR methods and their performances on the eight
STR benchmark datasets, including the variant versions of IC13 and IC15. In this
comparison, we only consider the existing methods that are trained on MJSynth
and SynthText.

When comparing the existing STR methods, PREN2D, JVSR, and ABINet
showed state-of-the-art performances (See underlined values in the table). When
compared to them, MATRN achieves the state-of-the-art performances on all
evaluation datasets except IC15L. Specifically, our model achieved superior per-
formance improvements on SVTP and CUTE, 1.3 percent point (pp) and 1.8pp
respectively, because these datasets contain low-quality images, curved images,
or proper nouns. Therefore, we found that our multi-modal fusion modules re-
solve the difficulties of scene text images, which cannot solve alone. JVSR [3] still
holds the best position on IC15L, but MATRN shows huge performance gains
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Table 2. Comparison of ABINet and MATRN under the comparable resources.
Param. indicates the number of model parameters (M) and Time represents the
inference time (ms/image) with batch size of 1 under AMD 32 cores, RTX 3090 GPU,
and SSD 2TB. The underline indicates the similar or more resource when comparing
from those of MATRN and the bold represents the best performer.

Model Param. Time IIIT SVT IC13S IC15S SVTP CUTE Total.

ABINet 36.7M 21.6ms 96.2 93.7 97.2 85.9 89.3 89.0 92.6

ABINet w/ VM-Big 46.2M 22.6ms 96.4 93.8 97.9 86.3 89.5 88.5 92.9
ABINet w/ LM-Big 46.2M 26.6ms 96.0 94.3 97.5 86.3 89.9 88.9 92.8

ABINet w/ VM-Bigger 90.3M 29.7ms 96.3 94.9 98.0 86.5 89.9 89.9 93.1
ABINet w/ LM-Bigger 52.5M 30.0ms 96.1 94.3 97.7 86.0 90.1 89.2 92.8

MATRN (ours) 44.2M 29.6ms 96.6 95.0 97.9 86.6 90.6 93.5 93.5
±0.1 ±0.2 ±0.1 ±0.1 ±0.2 ±0.6 ±0.1

on the other datasets: 1.4pp on IIIT, 2.8pp on SVT, 0.3pp on IC13L, 4.9pp on
SVTP, and 3.8pp on CUTE.

For apples-to-apples comparisons, we reproduced ABINet, which is one of the
state-of-the-art methods and also our baseline before adding multi-modal fusion
modules. In the sanity check, we observed that all reproduced performances are
aligned upon confidence intervals from the reported scores. When comparing
MATRN from the reproduced ABINet, the performance improvements are sta-
tistically significant over all datasets and the gaps are 0.4pp, 1.3pp, 0.7pp, 0.7pp,
1.3pp, and 4.5pp on IIIT, SVT, IC13S, IC15S, SVTP, and CUTE, respectively.

Many previous works, such as SE-ASTER, SRN, ABINet, JVSR, and Vi-
sionLAN, also analyzed how semantic information can be utilized for text recog-
nition. When compared to them, MATRN shows the best performances on all
but one datasets. This result implies that our incorporation method for visual
and semantic features is effective compared to the existing methods that utilized
semantic information.

4.4 Performance Comparison under the Comparable Resources

Since MATRN employs additional layers and modules upon ABINet, the per-
formance gains might be considered as the effect of the additional memories
and computational costs. To prove the pure benefits of the proposed methods,
we evaluate large ABINets that utilize additional memories and computational
costs as much as that MATRN requires. Specifically, the scale-up is conducted
in two parts; adding transformer layers into VM (or LM) until the models have
a similar number of parameters (Big models) and a similar inference speed (Big-
ger models). Table 2 shows the evaluation results. The Big models have similar
parameters with MATRN but their speeds are faster since there is no cross-
references between visual and semantic features. By scaling up the models, the
Bigger models have similar inference speeds with MATRN but hold more pa-
rameters. When comparing the performances, the Big models provide relatively
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Table 3. Performance improvements through gradual applications of our proposed
modules. At the last line, all modules are applied and the model becomes MATRN.

Multi- SES Visual Clue
IIIT SVT IC13S IC15S SVTP CUTE Total.

modal FE Encoding Masking

ABINet→ 96.2 93.7 97.2 85.9 89.3 89.0 92.6

✓ 96.5 94.3 98.0 85.9 90.1 91.0 93.0

✓ ✓ 96.4 94.7 98.1 86.9 90.4 89.9 93.3

MATRN→ ✓ ✓ ✓ 96.6 95.0 97.9 86.6 90.6 93.5 93.5

small performance improvements: 0.3pp of VM-Big and 0.2pp of LM-Big in To-
tal. The Bigger models show better performance improvements than the Big
models; 0.5pp of VM-Bigger and 0.2pp of LM-Bigger in Total. However, the
performance gains from the scaling-up are restricted when comparing the perfor-
mance improvements of MATRN; 0.9pp in Total. In addition, the performances
of MATRN are statistically significant when comparing all large ABINets. The
experiments prove that the benefits of MATRN have not solely lie in the increas-
ing computation resources.

4.5 Ablation Studies on Proposed Modules

Here, we analyze how the proposed modules contribute to the final performances.
Table 3 shows the ablation studies that start from ABINet and add the proposed
modules one by one. As can be seen, the total performances increase when adding
proposed modules gradually. The application of the multi-modal transformer
provides 0.4pp performance improvements based on ABINet. By applying SES
on the multi-modal transformer, the total performance increases by 0.3pp. When
adding the visual clue masking, the total performance finally becomes 93.5% with
the 0.2pp improvement. Consequently, the simple application of a multi-modal
transformer brings 0.4pp and our novel modules provide 0.5pp of performance
improvements. We should note that applying a multi-modal transformer requires
additional computations and parameters but the other proposed modules use
quite small computations without any additional parameters. The ablation study
indicates that our proposed modules for better multi-modal fusion lead to better
STR performances effectively.

4.6 Discussion

Uni-modal vs. Multi-modal Feature Enhancement. The existing meth-
ods [3,30] focus on uni-modal FE by utilizing the other modality. To analyze
the benefit of multi-modal FE, we compare the uni-modal FE that updates only
a single modality utilizing the multi-modal transformer. In this experiment, we
use SES for better fusion through the multi-modal transformer but do not ap-
ply the visual clue masking strategy for a fair comparison. Table 4 provides the
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Table 4. Comparisons between uni-modal and multi-model FEs.

Visual FE Semantic FE IIIT SVT IC13S IC15S SVTP CUTE Total.

96.5 93.2 97.0 85.9 89.0 89.2 92.7

✓ 96.5 93.8 97.2 85.8 89.0 90.3 92.8

✓ 96.1 93.5 97.5 86.1 89.8 91.3 92.8

✓ ✓ 96.4 94.7 98.1 86.9 90.4 89.9 93.3

Table 5. STR Performances with each level of features from VM, LM, and their fusions.
Each value indicates total STR accuracy (%). V and S represent the output features
from VM and LM, respectively. VM and SM indicate the enhanced features through
the cross-reference. F represents the combined features for the final output.

Model V S VM SM F

ABINet 90.9 49.5 - - 92.6
MATRN 91.2 52.6 93.4 93.4 93.5

comparison results. In the table, the first model is identical to ABINet with
SES and the uni-modal FE models (the second and third models) update the
target features through the multi-modal transformer. As can be seen, the uni-
modal FEs provide marginal performance improvements; 0.1pp in Total. When
enhancing both modalities (the last model), the STR model enjoys two benefits
of the semantic and visual FE and shows large performance improvements in
Total. Given these points, we found that combining visual and semantic features
improves the recognition performance, but one-way information flows are not
enough to fuse two modalities. Besides, the multi-modal FE enables the two
features to communicate in both directions and provides better performance.

STR Performance at Each Level of Features MATRN utilizes multi-task
cross-entropy objectives, described in §3.7. Here, we evaluate the STR perfor-
mances from the multiple features; V, S, VM, SM, and F. Table 5 shows the
results of ABINet and MATRN. Interestingly, the results of S show insufficient
performances in both models by refining character sequences without consid-
eration of visual clues. However, the semantic features are combined and lead
to better performances; F (ABINet), VM, and SM (MATRN). In addition, the
multi-modal features in MATRN show better performances than the final per-
formances of ABINet and their combination shows the best.

Analysis on Cross-references Figure 4 shows attention map examples iden-
tified by the multi-modal FE of MATRN. At each attention map, the top-left
and the bottom-right show the uni-modal attentions referring to their uni-modal
features and the others provide the cross attentions between two different modal-
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Fig. 4. Examples of self-attention maps in multi-modal FE. Attention maps on the
top-right and the bottom-left indicate the cross attentions between two modalities.

Fig. 5. Examples that ABINet fails (first line) but MATRN succeeds (second line).

ities. As can be seen in the examples, visual and semantic features refer to their
own modality as well as interact with each other.

Analysis on Previous Failure Cases Figure 5 shows the test examples that
ABINet fails but MATRN successes. As can be seen, MATRN provides robust
results on “cropped characters”, “heavily curved text”, “ambiguous visual clues”
and “low resolutions”. The results show that MATRN tackles the existing chal-
lenges.

5 Conclusion

This paper explores the combinations of visual and semantic features identified
by VM and LM for better STR performances. Specifically, we propose MATRN
that enhances visual and semantic features through cross-references between
two modalities. MATRN consists of SES, that matches semantic features on
2D space that visual features are aligned in, multi-modal FE, that updates vi-
sual and semantic features together through the multi-modal transformer, and
visual clue masking strategy, that stimulates the semantic references of visual
features. In our experiments, naive applications of the multi-modal transformer
lead to marginal improvements from the baseline. To this end, the components
of MATRN effectively contribute to the multi-modal combinations and MATRN
finally achieves state-of-the-art performances on seven STR benchmarks with
large margins.
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