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Abstract. In this paper, we study the task of synthetic-to-real domain
generalized semantic segmentation, which aims to learn a model that
is robust to unseen real-world scenes using only synthetic data. The
large domain shift between synthetic and real-world data, including the
limited source environmental variations and the large distribution gap
between synthetic and real-world data, significantly hinders the model
performance on unseen real-world scenes. In this work, we propose the
Style-HAllucinated Dual consistEncy learning (SHADE) framework to
handle such domain shift. Specifically, SHADE is constructed based on
two consistency constraints, Style Consistency (SC) and Retrospection
Consistency (RC). SC enriches the source situations and encourages the
model to learn consistent representation across style-diversified samples.
RC leverages real-world knowledge to prevent the model from overfitting
to synthetic data and thus largely keeps the representation consistent
between the synthetic and real-world models. Furthermore, we present
a novel style hallucination module (SHM) to generate style-diversified
samples that are essential to consistency learning. SHM selects basis
styles from the source distribution, enabling the model to dynamically
generate diverse and realistic samples during training. Experiments show
that our SHADE yields significant improvement and outperforms state-
of-the-art methods by 5.05% and 8.35% on the average mIoU of three
real-world datasets on single- and multi-source settings, respectively.

1 Introduction

Semantic segmentation, i.e., predicting a semantic category for each pixel, plays
a crucial role in autonomous driving. With modern deep neural networks [19,20]
and abundant annotated data [5,6], fully-supervised methods [2,21,39] have
achieved remarkable success on many public datasets. Nonetheless, annotating
each pixel for a high-resolution image is expensive and time-consuming. For ex-
ample, it takes more than 1.5 hours to annotate a 1024×2048 driving scene [5],
and the time is even doubled for scenes under adverse weather [32] and poor
lighting conditions [31]. To alleviate the heavy annotation cost, unsupervised
domain adaptive semantic segmentation (UDA-Seg) [35,46,47] has been intro-
duced to learn models that can perform well on a target set, given the labeled
(source) data and unlabeled (target) data. Considering that synthetic data can
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Fig. 1. Illustration of dual consistency constraints and examples of style hallucination.
We generate hallucinated samples (brown circle) from the style hallucination module
and then utilize the paired samples and real-world (retrospective) knowledge to learn
style consistency (blue dash line) and retrospection consistency (gray dash line).

be automatically generated and annotated by a pre-designed engine [29,30], ex-
isting works of UDA-Seg commonly use synthetic data as the source domain and
real-world data as the target domain.

Despite the success of UDA-Seg, the limitations are still severe. First, the
adapted model achieves remarkable performance on the target data, but still
degrades when facing unseen out-of-distribution samples. Second, it is almost
impractical to collect diverse enough real-world data that can cover all the con-
ditions. For example, a model trained with Singapore scenes cannot well ad-
dress the snowy road in Switzerland. To mitigate such limitations, a more prac-
tical but challenging setting, domain generalized semantic segmentation (DG-
Seg) [4,41,43], is introduced in the community. DG-Seg only leverages annotated
source data to train a robust model that can cope with different unseen condi-
tions. Similar to UDA-Seg, synthetic data are commonly used as the source data
to release expensive annotation cost in DG-Seg. In this paper, we aim to solve
the synthetic-to-real DG task in semantic segmentation.

The main challenge for synthetic-to-real DG-Seg is to cope with the signif-
icant domain shift between source and unseen target domains, which can be
roughly divided into two aspects. First, the environmental variations in source
data are very limited compared to those of unseen target data. Second, there
exists large distribution gap between synthetic and real-world data, e.g., image
styles and characteristics of objects. To learn the domain-invariant model that
can address the domain shift, previous works design tailor-made modules [4,26]
to remove domain-specific information, or leverage extra real-world data to trans-
fer synthetic data [14,41] to real-world styles for narrowing the distribution gap.
However, the removal of domain-specific information [4,26] is not complete and
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explicit due to the lack of real-world information; the real-world style trans-
fer [14,41] heavily relies on extra data, which are not always available in practice,
and ignores the invariant representation within the source domain. Taking the
above into account, in this paper, we aim to explicitly learn domain-invariant
representation with the stylized samples in the source domain and bridge the
gap between synthetic and real-world data without using extra real-world data.

To this end, we introduce a novel dual consistency learning framework that
can jointly achieve the above two goals. As shown in Fig. 1, we introduce two con-
sistency constraints, style consistency (SC) and retrospection consistency (RC),
which explicitly encourage the model to learn style invariant representation and
to be less overfitting to the synthetic data respectively. Specifically, we first di-
versify the samples in SC by style variation, and then enforce the consistency
between them. To obtain the diverse samples, we adopt the style features, i.e.,
channel-wise mean and standard deviation, to generate new data. Compared
with directly transferring the whole image (e.g., CycleGAN [48]), changing style
features can maintain the pixel alignment to the utmost extent. This forces the
model to learn pixel-level consistency between paired samples. In addition, our
RC lies in the guidance of real-world information. We leverage ImageNet [6]
pre-trained model which is available in all the DG-Seg models. The pre-trained
model contains general knowledge of classifying some “things” class, e.g., bicy-
cle, bus and car. Furthermore, the features of these classes in the pre-trained
model reflect the representation in the context of real-world. Consequently, such
features can serve as the guidance for the ongoing model to retrospect what the
real-world looks like and to lead the model less overfitting to the synthetic data.

Style diversifying is crucial for the success of dual consistency learning. Previ-
ous works [33,44] commonly mix or swap styles within the source domain, which
will generate more samples of the dominant styles (e.g., daytime in GTAV [29]).
Nevertheless, it is not the best way since the target styles may be quite different
from the dominant styles. To fully take the advantage of all the source styles,
we propose style hallucination module (SHM), which leverages C basis styles to
represent the style space of C dimension and thus to generate new styles. Ide-
ally, the basis styles should be linearly independent so the linear combination of
basis styles can represent all the source styles. However, many unrealistic styles
that impair the model training are generated when we directly take C orthogo-
nal unit vectors as the basis. To reconcile diversity and realism, we use farthest
point sampling (FPS) [28] to select C styles from all the source styles as basis
styles. Such basis styles contain many rare styles since rare styles are commonly
far away from the dominant ones. With these basis styles that represent the
style space in a better way, we utilize linear combination to generate new styles.
To summarize, we propose the Style-HAllucinated Dual consistEncy learning
(SHADE) framework for domain generalization in the context of semantic seg-
mentation, and our contributions are as follows:

– We propose the dual consistency constraints for domain generalized semantic
segmentation, which learn the style invariant representation among diversi-
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fied styles and narrow the domain gap between synthetic and real domains
by retrospecting the real-world knowledge.

– We propose the style hallucination module to generate new and diverse styles
with the representative basis styles, enhancing the dual consistency learning.

– Experiments on single-source and multi-source DG benchmark demonstrate
the effectiveness of the proposed method and we achieve new state-of-the-art
performance.

2 Related Work

Domain Generalization. To tackle the performance degradation in the out-
of-distribution conditions, domain generalization [14,41,4,23,44] is introduced to
learn a robust model with one or multiple source domains, aiming to perform
well on unseen domains. Considering the expensive annotation cost in semantic
segmentation, synthetic data are commonly adopted as the source domain in re-
cent DG-Seg works. The large domain shift and the restricting conditions in the
training data greatly limit the performance on the unseen real-world test data.
To address these problems, one main stream of previous works [14,41] focuses on
diversifying training data with real-world templates and learning the invariant
representation from all the domains. Another main stream aims at directly learn-
ing the explicit domain-invariant features within the source domain [4,26,33].
IBN-Net [26] and ISW [4] leverage tailor-made instance normalization block and
whitening transformation to reduce the impact of domain-specific information.
Different from previous methods, we generate new styles only with the synthetic
source domain and learn the invariant representation across styles.
Consistency learning (CL). CL is adopted by many computer vision tasks
and settings. One main stream is leveraging CL to exploit the unlabeled samples
in semi-supervised learning [8,34] and unsupervised domain adaptation [25,49,45]
since the consistency between two view samples can be used for pseudo-labeling.
CL is also applied to address the corruptions and perturbations [12,36] by max-
imizing the similarity between different augmentations. In addition, CL is also
used in self-supervised learning [3,10] as the contrastive loss to utilize totally
unlabeled data. We introduce CL into domain generalization, leading the model
robust to various styles. We also leverage consistency with real-world knowledge
to narrow the domain gap between synthetic and real-world data.
Style Variation. Style features are widely explored in style transfer [7,16],
which aims at changing the image style but maintaining the content. Inspired
by this, recent domain generalization methods leverage the style features to
generate diverse data of different styles to improve the generalization ability.
Swapping [33,42] and mixing [44] existing styles within the source domains is an
effective way and generating new styles [38] by specially designed modules can
also make sense. We also only leverage the styles within the source domain but
take the relatively rare styles in the source domains into account, thus generating
more diverse samples to improve generalization ability.
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Fig. 2. Overview of the proposed style-hallucinated dual consistency learning (SHADE)
framework. Training images are fed into the segmentation model (ongoing knowledge)
and the ImageNet pre-trained model (retrospective knowledge). The style hallucination
module is inserted into a certain layer of the segmentation model to generate stylized
samples. Finally, the model is optimized by the dual consistency losses: style consistency
LSC and retrospection consistency LRC . Note that the cross entropy loss is also used
and we omit it here for brevity.

3 Methodology

Preliminary. In synthetic-to-real domain generalized semantic segmentation,
one or multiple labeled source domains S = {xi

S , y
i
S}

NS
i=i, where NS is the number

of source domains, are used to train a segmentation model, which is deployed to
unseen real-world target domains T directly. In general, the source and target
domains share the same label space YS , YT ∈ (1, NC) but belong to different
distributions. The goal of this task is to improve the generalization ability of
model in unseen domains using only the source data.
Overview. To solve the above challenging problem, we propose the Style-
HAllucinated Dual consistEncy learning (SHADE) framework, which is
quipped with dual consistency constraints and a Style Hallucination Module
(SHM). The dual consistency constraints effectively learn the domain-invariant
representation and reduce the gap between the real and synthetic data. SHM
enriches the training samples by dynamically generating diverse styles, which
catalyzes the advantage of dual consistency learning. The overall framework is
shown in Fig. 2.

3.1 Dual Consistency Constraints

In SHADE, we introduce two consistency learning constraints: (1) Style Con-
sistency (SC) that aims at learning the consistent predictions across stylized
samples. (2) Retrospection Consistency (RC) that focuses on narrowing the dis-
tribution shift between synthetic and real-world data in the feature-level.
Style Consistency (SC). Different from traditional cross entropy constraint
focusing on the high-level semantic information, logit pairing [12,17] has demon-
strated its effectiveness in learning adversarial samples by highlighting the most
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invariant information. Inspired by this, we propose SC to ameliorate the style
shift with logit pairing. To fulfill this, SC requires the style-diversified samples
x̃S which share the same semantic content with the source samples xS but of
different styles. Due to the pixel-level segmentation requirement, it is better to
obtain the style-diversified samples x̃S by non-geometry style variation, e.g.,
MixStyle [44], CrossNorm [33] and the proposed style hallucination in Sec. 3.2.
Formally, we minimize the Jensen-Shannon Divergence (JSD) between the pos-
terior probability p of the semantically aligned x̃S and xS :

LSC(xS , x̃S) = JSD (p(xS); p(x̃S))

=
1

2
(D[p(xS)||Q] +D[p(x̃S)||Q]) ,

(1)

where Q = (p(xS) + p(x̃S))/2 is the average information of the original and
style-diversified samples. D denotes the KL Divergence between the posterior
probability p ∈ {p(xS), p(x̃S)} and Q. JSD highlights the invariant pixel-level
semantic information across two styles, impelling the model to be stable and
insensitive to varied styles.
Retrospection Consistency (RC). Backbones of semantic segmentation mod-
els commonly start from ImageNet [6] pre-trained weights since the pre-trained
backbones have learned general representation of many “things” categories in
the real-world, including some classes in the self-driving scenes, e.g., bicycle,
bus, and car. However, the model learns more task-specific information and fit
to the synthetic data when training with synthetic semantic segmentation data.
As the model is required to deploy on unseen real-world scenarios, it is impor-
tant to obtain some knowledge for the real-world objects. Previous works [41,14]
leverage the abundant and even carefully selected images from real-world data,
which may not be readily fulfilled in applications. Since ImageNet pre-trained
weights are available to every segmentation model as the initialization, we pro-
pose RC to leverage such knowledge to lead the model less overfitting to the
synthetic data and to retrospect the real-world knowledge lying in initializa-
tion. As the ImageNet pre-trained model is trained by image classification, only
“things” classes are learned instead of “stuff” classes like road and wall. Conse-
quently, RC is implemented as the feature-level distance minimization on those
pixels of “things” classes. In addition, the style-diversified samples x̃S in style
consistency is also used in RC, which can lead the generated samples close to
the real-world style. We define RC as:

LRC(xS , x̃S) =
1∑

m M
(m)
things

∑
m

M
(m)
things·

((
f(xS ; θS)

(m) − f(xS ; θIN )(m)
)2

+
(
f(x̃S ; θS)

(m) − f(xS ; θIN )(m)
)2

)
,

(2)

where Mthings denotes the mask of “things” classes. f(xS ; θS) and f(x̃S ; θS) de-
note the bottleneck feature of original sample xS and style-diversified sample
x̃S respectively, which are obtained from the ongoing segmentation model θS .
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f(xS ; θIN ) denotes the bottleneck feature of original sample xS in the retrospec-
tive ImageNet pre-trained model θIN .
Discussion. Our retrospection consistency is inspired by the Feature Distance
(FD) in DAFormer [13] but with different motivation and implementation. First,
DAFormer focuses on unsupervised domain adaptation in semantic segmentation
with unlabeled real-world data available, so it only focuses on fitting to the
specific target domain (CityScapes [5]) rather than addressing unseen domain
shift. Second, FD in DAFormer is used to better classify those similar classes
(e.g., bus and train) with the classification knowledge from ImageNet. Since we
have no idea about the target distribution in DG-Seg, RC in our framework
serves as an important guidance for the real-world knowledge, especially for
more complex real-world scenes (e.g., BDD100K [40] and Mapillary [24]). In
addition, RC can also enhance the learning of real-world styles by taking the
style-diversified samples into account.

3.2 Style Hallucination

Background. Style transfer [1,16] and domain generalization [33,44] methods
show that the channel-wise mean and standard deviation can represent the non-
content style of the image, which plays an important role in the domain shift.
The style features can be readily used by AdaIN [16] which can transfer the
image to an arbitrary style while remaining the content:

AdaIN(x, y) = σ(y)

(
x− µ(x)

σ(x)

)
+ µ(y), (3)

where x and y denotes the feature maps providing the content and style respec-
tively. µ(∗) and σ(∗) denotes the channel-wise mean and standard deviation.
In domain generalization, as only one or multiple source domains are accessi-
ble, previous works modify AdaIN by replacing style features with other source
styles. Those styles can be directly obtained from other samples [33] or can be
generated by mixing other styles with its own styles [44].
Style Hallucination Module (SHM). Unlike image classification benchmarks
where images are commonly of the same style in one dataset, even one seman-
tic segmentation dataset contains various styles, e.g., daytime, nighttime and
twilight. This is why existing style variation methods [33,44] can work in single-
source domain generalized segmentation. However, the ways of these methods
in generating extra styles are sub-optimal, since they just randomly swap or
mix source styles without considering the frequency and diversity of the source
styles. As a result, more samples of the dominant style (e.g., daytime) will be
generated, yet the generated distribution may be quite different from the real-
world one. Since we have no idea about the real-world target set, it is better to
diversify the source samples as much as possible. We next introduce the Style
Hallucination Module (SHM) for generating diverse source samples.
Definition 1: A basis B of a vector space V over a field F is a linearly indepen-
dent subset of V that spans V . When the field is the reals R, the resulting basis
vectors are n-tuples of reals that span n-dimensional Euclidean space Rn [9].
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Fig. 3. Visualization of distributions of different domains. (a) Comparison of two kinds
of basis styles; (b) generated style with Kmeans basis style; (c) generated style with
FPS basis style. (Zoom in for details.)

According to Definition 1, style space can be viewed as a subspace of C-
dimensional vector space, and thus all possible styles can be represented by the
basis vectors. However, if we directly take C linearly independent vectors as the
basis, e.g., orthogonal unit vectors, many unrealistic styles are generated since
the realistic styles are only in a small subspace, and such generated styles can
impair the model training. To reconcile the diversity and realism, we use farthest
point sampling (FPS) [28] to select C styles from all the source styles as basis
styles. FPS is widely used for point cloud downsampling, which can iteratively
choose C points from all the points, such that the chosen points are the most
distant points with respect to the remaining points. Despite not strictly linearly
independent, basis styles obtained by FPS can represent the style space to the
utmost extent, and also contain many rare styles since rare styles are commonly
far away from dominant ones. In addition, we recalculate the dynamic basis styles
every k epochs instead of fixing basis style, as the style space is changing along
with the model training. To generate new styles, we sample the combination
weight W = [w1, · · · , wC ] from Dirichlet distribution B([α1, · · · , αC ]) with the
concentration parameters [α1, · · · , αC ] all set to 1/C. The basis styles are then
linearly combined by W :

µHS = W · µbase, σHS = W · σbase, (4)

where µbase ∈ RC×C and σbase ∈ RC×C are the C basis styles. With the gener-
ated styles, style hallucinated samples x̃S can be obtained by:

x̃S = σHS

(
xS − µ(xS)

σ(xS)

)
+ µHS . (5)

Discussion. Selecting representative basis styles is crucial for SHM. FPS is
adopted in our method as it can cover the rare styles to the utmost extent. An-
other way is taking the Kmeans [22] clustering centers as the basis. As shown in
Fig. 3(a), FPS samples (black cross) spread out more than Kmeans centers (teal
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triangle), and can cover almost all possible source styles (lightskyblue point).
When using the basis styles for style generation, styles obtained from Kmeans
centers (Fig. 3(b)) are still within the source distributions and even ignore some
possible rare styles. In contrast, FPS basis styles can generate more diverse styles
(Fig. 3(c)), and even generate some styles close to the real-world ones (yellow,
pink and orange point). Tab. 4 further demonstrates the effectiveness of FPS
basis styles and shows that the Kmeans basis styles are even worse than directly
swapping and mixing source styles.

3.3 Training Objective

The overall training objective is the combination of pixel-level cross entropy loss
and the proposed two consistency constraints:

L =
1

2
(LCE(xS , yS) + LCE(x̃S , yS))

+ λSCLSC(xS , x̃S) + λRCLRC(xS , x̃S),
(6)

where λSC and λRC are the weights for style consistency and retrospection
consistency, respectively.

4 Experiments

4.1 Experimental Setup

Datasets. Two synthetic datasets (GTAV [29] and SYNTHIA [30]) are taken
as the source domains. GTAV [29] contains 24,966 images with the size of
1914×1052, splitting into 12,403 training, 6,382 validation, and 6,181 testing
images. SYNTHIA [30] contains 9,400 images of 960×720, where 6,580 images
are used for training and 2,820 images for validation. We evaluate the model
on the validation sets of the three real-world datasets. CityScapes [5] contains
500 validation images of 2048×1024. BDD-100K [40] and Mapillary [24] contain
1,000 1280×720 images and 2,000 1920×1080 images for validation, respectively.
Implementation Details. Following [4], we use DeepLabV3+ [2] as the seg-
mentation model. The segmentation model is equipped with two backbones,
ResNet-50 and ResNet-101 [11]. The SHM is inserted after the first Conv-BN-
ReLU layer (layer0). We re-select the basis styles with the interval k = 3. We set
λSC = 10 and λRC = 1. Models are optimized by the SGD optimizer with the
learning rate 0.01, momentum 0.9 and weight decay 5×10−4. The polynomial
decay [18] with the power of 0.9 is used as the learning rate scheduler. All mod-
els are trained with the batch size of 8 for 40K iterations. During training, four
widely used data augmentation techniques are adopted, including color jittering,
Gaussian blur, random flipping, and random cropping of 768×768.
Protocols. We conduct experiments on both single-source DG and multi-source
DG. For single-source DG, to conduct a fair comparison with [4] and [14], we
train the model with GTAV training data (12,403 images) when using ResNet-50
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Table 1. Comparison with state-of-the-art methods on single-source DG with ResNet-
50 and ResNet-101 as backbone, respectively. “Extra Data” denotes using extra real-
world data during training. § denotes selecting best checkpoint for each target dataset.

Net Methods (GTAV) Extra Data CityScapes BDD100K Mapillary Mean

R
es

N
et

-5
0

Baseline ✗ 28.95 25.14 28.18 27.42

SW [27] ✗ 29.91 27.48 29.71 29.03
IterNorm [15] ✗ 31.81 32.70 33.88 32.79
IBN-Net [26] ✗ 33.85 32.30 37.75 34.63
DRPC [41]§ ✓ 37.42 32.14 34.12 34.56
ISW [4] ✗ 36.58 35.20 40.33 37.37
Ours ✗ 44.65 39.28 43.34 42.42

R
es

N
et

-1
01

Baseline ✗ 32.97 30.77 30.68 31.47

IBN-Net [26] ✗ 37.37 34.21 36.81 36.13
ISW [4] ✗ 37.20 33.36 35.57 35.38
DRPC [41]§ ✓ 42.53 38.72 38.05 39.77
FSDR [14]§ ✓ 44.80 41.20 43.40 43.13
Ours ✗ 46.66 43.66 45.50 45.27

backbone (same with [4]), and with the whole GTAV datasets (24,966 images)
when using ResNet-101 backbone (same with [14]). For multi-source DG, we
follow [4] to train the model with the training set of GTAV (12,403 images) and
SYNTHIA (6,580 images) using ResNet-50 backbone. Note that several state-
of-the-art works, e.g., [14] and [41], select the best checkpoint for each target
dataset respectively, which is impractical since we cannot estimate the model
performance on unseen domains in real-world applications. Instead, we directly
use the last checkpoint to evaluate the three target datasets, which is more in
line with the practical purpose of domain generalization.
Baseline. The baseline in each protocol is the model trained with the corre-
sponding source training data by cross entropy loss function.
Evaluation Metric. We use the 19 shared semantic categories for training and
evaluation. The mean intersection-over-union (mIoU) of the 19 categories on the
three real-world datasets is adopted as the evaluation metric.

4.2 Comparison with State-of-the-art Methods

Single-source DG. In Tab. 1, we compare SHADE with state-of-the-art meth-
ods under single source setting, including SW [27], IterNorm [15], IBN-Net [26],
ISW [4], DRPC [41] and FSDR [14]. First, we compare models that are trained
with GTAV training set, using ResNet-50 backbone. SHADE achieves an average
mIoU of 42.42% on the three real-world target datasets, yielding an improvement
of 15.00% mIoU over the baseline and outperforming the previous best method
(ISW) by 5.05%. Second, we further compare methods under the training pro-
tocol of DRPC [41] and FSDR [14], using ResNet-101 backbone and taking the
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Table 2. Comparison with state-of-the-art methods on multi-source DG. All models
use ResNet-50 backbone and are trained with training sets of GTAV and SYNTHIA.

Methods (G+S) CityScapes BDD100K Mapillary Mean

Baseline 35.46 25.09 31.94 30.83

IBN-Net [26] 35.55 32.18 38.09 35.27
ISW [4] 37.69 34.09 38.49 36.76
Ours 47.43 40.30 47.60 45.11

Table 3. Ablation studies on loss functions. All models use ResNet-50 backbone and
are trained with GTAV training set. SHM: our style hallucination module; EMA: using
exponential moving average model instead of ImageNet pre-trained model.

SHM LSC LRC EMA CityScapes BDD100K Mapillary Mean

✗ ✗ ✗ ✗ 28.95 25.14 28.18 27.42

✓ ✗ ✗ ✗ 38.68 32.40 35.96 35.68
✓ ✓ ✗ ✗ 42.66 35.92 40.42 39.67
✓ ✗ ✓ ✗ 41.43 37.65 41.77 40.29
✓ ✓ ✗ ✓ 42.38 38.04 42.34 40.92
✓ ✓ ✓ ✗ 44.65 39.28 43.34 42.42

whole set of GTAV (24,966 images) as the training data. Note that DRPC [41]
and FSDR [14] utilize extra real-world data from ImageNet [6] or even driving
scenes. Moreover, they select the best checkpoint for each target dataset, which is
impractical in the real-world applications. Even so, we achieve the best results on
all three datasets, 46.66% on CityScapes, 43.66% on BDD100K, 45.50%
on Mapillary, outperforming FSDR [14] by 2.14% in the average mIoU. These
results show that we produce new state of the art in domain generalized semantic
segmentation.
Multi-source DG. To further verify the effectiveness of SHADE, we compare
SHADE with IBN-Net [26] and ISW [4] under the multi-source setting. We use
ResNet-50 as the backbone and take the training set of GTAV and SYNTHIA
as the source domains. As shown in Tab. 2, SHADE gains an improvement of
14.28% in average mIoU over the baseline, and outperforms ISW and IBN-Net by
8.35% and 9.84% respectively. The significant improvement over ISW and IBN-
Net is mainly benefited from the various samples. With richer source samples,
our SHM can generate more informative and diverse styles, which can effectively
facilitate the dual consistency learning.

4.3 Ablation Studies

To investigate the effectiveness of each component in SHADE, we conduct abla-
tion studies in Tab. 3.
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Table 4. Comparison of different style variation methods. All models use ResNet-50
backbone and are trained with GTAV training set.

Methods (GTAV) CityScapes BDD100K Mapillary Mean

Baseline 28.95 25.14 28.18 27.42

Random Style 37.99 37.63 38.06 37.89
MixStyle [44] 43.14 37.94 42.22 41.10
CrossNorm [33] 43.13 37.20 41.83 40.72
Kmeans Basis 40.50 37.62 39.46 39.19
Ours 44.65 39.28 43.34 42.42

Effectiveness of Style Hallucination Module (SHM). SHM is the basis
of SHADE. When using SHM only, we directly apply cross entropy loss on the
style hallucinated samples. As shown in the second row of Tab. 3, our SHM can
largely improves the model performance even without using the proposed dual
consistency learning. This demonstrates the importance of training the model
with diverse samples and the effectiveness of our SHM.
Effectiveness of Style Consistency (SC). SC is the consistency constraint
that leads the model to learn style invariant representation. In Tab. 3, compared
with only applying SHM, SC yields an improvement of 3.99% in average mIoU,
demonstrating the superiority of the proposed logit pairing over cross entropy
loss in learning style invariant model.
Effectiveness of Retrospection Consistency (RC). First, RC serves as
an important guidance for narrowing the domain gap between synthetic and
real data. Applying RC on top of SHM can yield an improvement of 4.61%,
while removing RC will degrade the performance of SHADE by 2.75% in mIoU.
Second, we conduct experiments to verify that the effectiveness of RC lies in
the real-world knowledge instead of feature-level distance minimization of the
paired samples. As directly minimizing the feature-level absolute distance of
paired samples will lead to sub-optimal results (lead all the features close to
zero), we replace the ImageNet pre-trained model in RC by exponential moving
average (EMA) model. Comparing the fifth row and the sixth row in Tab. 3,
EMA model only gains 1.25% improvement while RC improves the SC model by
2.75%. The results verify the significance of the retrospective knowledge in RC.

4.4 Further Evaluation

In this section, we compare other style variation methods with SHM and evaluate
two important factors influencing SHM, i.e., basis style selection interval k and
the insert location of SHM.
Comparison of different style variation methods. We compare SHM with
random style, MixStyle [44], CrossNorm [33] and style hallucination with Kmeans
basis in Tab. 4. Random style utilizes the randomly sampled new styles from the
standard normal distribution to form new samples. MixStyle [44] generates new
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Fig. 4. Parameter analysis on the location of SHM and the basis style selection interval.

styles by mixing the original style with the random shuffled style within a mini-
batch, and CrossNorm [33] swaps the original style with another style within the
shuffled mini-batch. SHM and Kmeans basis both use the linear combination of
basis style to generate new styles, but the basis styles of SHM are selected by
FPS [28] while those of Kmeans basis are obtained by Kmeans clustering cen-
ters. We can make four observations from Tab. 4. First, we cannot make full use
of dual consistency to achieve significant performance with the unrealistic ran-
dom styles since standard normal distribution cannot represent the source nor
the target domains. Second, despite the use of realistic source styles, random
utilization of MixStyle and CrossNorm leads to the generation of more samples
from the dominant styles that may be different from the real-world target styles.
When using MixStyle and CrossNorm, the model achieves an average mIoU of
41.10% and 40.72%, respectively. Third, as shown in Fig. 3(b), Kmeans basis
suffers from the similar but more severe dominant style issue in style genera-
tion. As a result, rare styles are discarded and thus the model achieves poorer
performance than the above two. Fourth, SHM selects basis styles with FPS,
and thus the selection can cover the source distribution to a large extent, espe-
cially those rare styles. With such basis styles, SHM generates styles from all the
source distributions, and some generated styles are even close to the target do-
mains (Fig. 3(c)). Consequently, combining SHM with dual consistency learning,
SHADE can reap the benefit of the source data and outperforms other methods
on all three target datasets.

Location of SHM. We investigate the impact of inserting SHM in different
locations in Fig. 4(a). “L0” denotes inserting SHM after the first Conv-BN-ReLU
layer (layer0) and “L1” to “L3” denote inserting SHM after the corresponding (1-
3) ResNet layer. As shown in Fig. 4(a), “L0” achieves the best result while the
performance of “L1” and “L2” drops a little. However, the model suffers from
drastic performance degradation when inserting SHM after layer3. The reasons
are two-fold. First, the channel-wise mean and standard deviation represent more
style information in the shallow layers of deep neural networks while they contain
more semantic information in deep layers [16,7]. Second, the residual connections
in ResNet will lead the ResNet activations of deep layers to have large peaks and
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Table 5. Comparison with state-of-the-art methods trained on CityScapes.

Methods GTAV SYNTHIA BDD100K Mapillary

IBN-Net [26] 45.06 26.14 48.56 57.04
ISW [4] 45.00 26.20 50.73 58.64
Ours 48.61 27.62 50.95 60.67

small entropy, which makes the style features biased to a few dominant patterns
instead of the global style [37].
Basis style selection interval. The distribution of source styles is varied along
with the model training. To better represent the style space, we re-select the ba-
sis styles with the interval of k epochs. The abscissa of Fig. 4(b) denotes the
selection interval k and “inf” denotes only selecting the basis style once in the
beginning of training. As shown in Fig. 4(b), the model achieves consistent and
good performance with frequent re-selection (k <= 3) while the performance de-
grades with the increase of selection interval, and the average mIoU is lower than
41% when only selecting once. Taking both the performance and computational
cost into consideration, we set k = 3 in SHADE.

4.5 Real-to-Others Domain Generalization

To further demonstrate the effectiveness of SHADE, we leverage CityScapes [5]
as the source domain and generalize to real (BDD100K [40] and Mapillary [24])
and synthetic (GTAV [29] and SYNTHIA [30]) domains. As shown in Tab. 5,
SHADE consistently outperforms ISW [4] and IBN-Net [26] on both real and
synthetic datasets. These results verify the versatility of our method.

5 Conclusion

In this paper, we propose a novel framework (SHADE) for synthetic-to-real
domain generalized semantic segmentation. SHADE leverages two consistency
constraints to learn the domain-invariant representation by seeking consistent
representation across styles and the guidance of retrospective knowledge. In ad-
dition, the style hallucination module (SHM) is equipped into our framework,
which can effectively catalyze the dual consistency learning by generating di-
verse and realistic source samples. Experiments on three real-world dataset show
that SHADE achieves state-of-the-art performance under both single- and multi-
source domain generalization settings with different backbones.
Acknowledgements. This research/project is supported by the National Re-
search Foundation Singapore and DSO National Laboratories under the AI Sin-
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